Object-Oriented Programming
with [incr Tcl]

Building Mega-Widgets
with [incr TK]

Michael J. McLennan
Bell Labs Innovations for Lucent Technologies
1247 S. Cedar Crest Blvd.
Allentown, PA 18104
mmclennan@lucent.com

Copyright © 1996 Lucent Technologies

ABSTRACT

Applications with short development cycles have the best chance for success in
today’s marketplace. Tcl/Tk provides an interactive development environment
for building Graphical User Interface (GUI) applications with incredible speed.
Tcl/Tk applications look like they were constructed with the Motif toolkit, but
they can be written in a fraction of the time. This is due, in part, to the high-
level programming interface that the Tcl language provides. It is also due to the
interpretive nature of the Tcl language; changes made to a Tcl/Tk application
can be seen immediately, without waiting for the usual compile/link/run cycle.
Developers can prototype new ideas, review them with customers, and deliver a
finished product within a span of several weeks. The finished product will run
on all of the major platforms: Unix, PC Windows, and Macintosh.

But the Tcl language was not designed to support large programming projects.
When Tcl/Tk scripts grow larger than a thousand lines, the code complexity can
be difficult to manage.[INCR TcL] extends the Tcl language to support object-
oriented programming. This allows developers to write high-level building
blocks that are more easily assembled into a finished application. The resulting
code has more encapsulation, and is easier to maintain and ekterrl.TcL]

is patterned after C++, so for many developers, it is easy to learn.

This memo contains two chapters that will appear in a book published by
O'’Reilly and Associates. It provides an overview[ofcR TcL], and shows

how it can be used to support Tcl/Tk applications. It also describes a special
library of base classes call§dicr Tk], which can be used to build high-level
user interface components called “mega-widgets”.

In this Chapter:
» Objects and Classes
* Inheritance

* Namespaces

* Interactive
Development

 Autoloading

+ Adding C code to Object-Oriented

[INCRTcL] Classes

Programming with
[incr Tcl]

Tcl/Tk applications come together with astounding
speed. You can write a simple file browser in an
afternoon, or a card game like Solitaire within a
week. But as applications get larger, Tcl code
becomes more difficult to understand and maintain.
% You get lost in the mass of procedures and global

variables that make up your program. It is hard to
More Than Chrome | Create data structures, and even harder to make reus-
able libraries.

[INCR TcL] extends the Tcl language to support object-oriented programming.
It wasn't created as an academic exercise, nor to be buzzword-compatible with
the latest trend. It was created to solve real problems, so that Tcl could be used
to build large applications.

[INCcR TcL] is fully backward-compatible with normal Tcl, so it will run all of
your existing Tcl/Tk programs. It simply adds some extra commands which let
you create and manipulate objects.

It extends the Tcl language in the same way that C++ extends the base language
C. It borrows some familiar concepts from Clsp many developers find it

easy to learn. But while it resembles C++, it is written to be consistent with the
Tcl language. This is reflected in its name, which you can pronounce as “incre-
ment tickle” or “inker tickle.” This is the Tcl way of saying “Tcl++".

t Stanley B. LippmarC++ Primer (2nd edition), Addison-Wesley, 1991; and Bjarne Strousfrbg,
Design and Evolution of C+#+Addison-Wesley, 1994.

Tcl/Tk Tools

This chapter shows how [INCR TcL] can be used to solve common programming
problems. Asan example, it shows how a tree data structure can be created and
used to build a file browser. Along the way, it illustrates many important
concepts of object-oriented programming, including encapsulation, inheritance,
and composition.

Objects and Classes

I won't go on for pages about object-oriented programming. You have prob-
ably read about it in other contexts, and there are some really good texts' that
explain it well. But the basic idea is that you create objects as building blocks
for your application. If you are building a kitchen, for example, you might need
objects like toasters, blenders and can openers. If you are building a large
kitchen, you might have many different toasters, but they all have the same char-
acteristics. They all belong to the same class, in this case a class called
Toast er.

Each object has some data associated with it. A toaster might have a certain
heat setting and a crumb tray that collects the crumbs that fall off each time it
toasts bread. Each toaster has its own heat setting and its own crumb count, so
each Toast er object has its own variables to represent these things. In object
speak, these variables are called instance variables or data members. You can
use these instead of global variablesto represent your data.

You tell an object to do something using special procedures called methods or
member functions. For example, a Toast er object might have a method called
t oast that you use to toast bread, and another method called cl ean that you use
to clean out the crumb tray. Methods let you define a few strictly limited ways
to access the data in a class, which helps you prevent many errors.

Everything that you need to know about an object is described in its class defini-
tion. The class definition lists the instance variables that hold an object’s data
and the methods that are used to manipulate the object. It acts like a blueprint
for creating objects. Objects themselves are often called instances of the class
that they belong to.

Variables and Methods

Let’'s see how objects work in areal-life example. Suppose you want to use the
Tk canvas widget to build a file browser. It might look something like the one

T For example: Grady Booch, Object-Oriented Design, Benjamin/Cummings, 1991; and Timothy
Budd, An Introduction to Object-Oriented Programming, Addison-Wesley, 1991.

4

Chapter 1: Object-Oriented Programming with [incr Tcl]

shown in Figure 1-1. Each entry would have an icon next to the file name to
indicate whether the file is an ordinary file, a directory, or an executable
program. Aligning each icon with its file name is ordinarily a lot of work, but
you can make your job much simpler if you create an object to represent each
icon and its associated file name. When you need to add an entry to the file
browser, you simply create a new object with an icon and a text string, and tell
it to draw itself on the canvas.

= |
Directory: "fusn’localfitcl |

= |

3 itel

3 bin
(3 include
—% i;c(l-: M Stl),!al Rep
B itk

L& toin L (0] jeCtS

—B tkh /
o
itci2.0

J- _____
J%D_irﬂt-i_tcl J
B tclApplnit.c

T LT N /

4 File: [fusrlocalfitclincludesitclh

Figure 1-1 Using VisualRep objectsto build a file browser.

We will create a class M sual Rep to characterize these objects. The class defini-
tion is contained in the file itcl/tree/visrep.itcl on the CD-ROM that
accompanies this book, and it appearsin Example 1-1.

Example 1-1 The class definition for Visual Rep objects.

i nage create photo default -file default.gif

class M sual Rep {
vari abl e canvas
variabl e i con
variable title

constructor {cwn ival tval} {
set canvas $cw n
set icon $ival
set title $tval

destructor {
erase

nethod draw {x y} {
erase

$canvas create image $x $y -inage $icon -anchor c -tags $this
set x1 [expr $x + [inage width $icon]/2 + 4]

Tcl/Tk Tools

Example 1-1 The class definition for Visual Rep objects.
$canvas create text $x1 $y -text $title -anchor w-tags $this

nethod erase {} {
$canvas del ete $this

}

All of the [INCR TcL] keywords are shown above in bold type. You use the
cl ass command to define a new class of abjects. Inside the class definition isa
series of statements that define the instance variables and the methods for
objects that belong to this class. In this example, each M sual Rep object has
three variables: canvas, i con and title. The canvas variable contains the
name of the canvas widget that will display the object. The icon variable
contains the name of a Tk image used as the icon. And the titl e variable
contains a text string that is displayed next to the icon. Each object also has a
built-in variable named t hi s, which you don’'t have to declare. It is automati-
caly defined, and it contains the name of the object.

Each M sual Rep object responds to the two methods listed in the class defini-
tion. You can ask the object to dr awitself at an (x,y) coordinate on the canvas,
and the icon will be centered on this coordinate. You can also ask the object to
erase itself. Notice that al of the canvas items created in the dr awmethod are
tagged with the name of the object, taken from the built-in t hi s variable. This
makes it easy to erase the object later by deleting al canvas items tagged with
the object name.

Theconst ruct or and dest ruct or are specia methods that are called automati-
cally when an object is created and destroyed. We'll talk more about these | ater.

The methods and variables in one class are completely separate from those in
another. You could create a Book classwith atitl e variable, or a Chal kboar d
class with drawand er ase methods. Since these members belong to different
classes, they will not interfere with our M sual Rep class. It is aways obvious
which methods and variables you can use if you think about which object you
are manipulating. Because classes keep everything separate, you don’'t have to
worry so much about hame collisions, and you can use simpler names in [INCR
TcL] code than you would in ordinary Tcl code.

Methods look alot like an ordinary Tcl procedures. Each method has a name, a
Tcl-style argument list, and a body. But unlike procedures, methods automati-
cally have access to the variables defined in the class. In the dr awmethod, we
talk to the canvas widget using the name stored in the canvas variable. We
access the icon using $i con, and thetitle string using $titl e. Thereisno need
to declare these variables with anything like the Tcl gl obal statement. They
have been declared once and for al in the class definition.

6

Chapter 1: Object-Oriented Programming with [incr Tcl]

The same thing holds true for methods. Within one method, we can treat the
other methods as ordinary commands. In the destructor, for example, we call
the er ase method simply by using the command er ase. If effect, we are telling
this object (whichever one is being destroyed) to erase itself. In the code
outside of a class, we have to be more specific. We have to tell a particular
object to erase itsalf.

Having defined the class M sual Rep, we can create an object like this:
M sual Rep vrl .canv default "Dsplay this text"

The first argument (vr 1) is the name of the new object. The remaining argu-
ments (.canv default "D splay this text") are passed along to the
constructor to initialize the object. This might look familiar. It is precisely how
you would create a Tk widget:

button .b -background red -text "Aert"

Here, the first argument (. b) is the name of the new widget, and the remaining
arguments (-background red -text "Alert") are used to configure the
widget. This similarity is no accident. [INCR TcL] was designed to follow the
Tk paradigm. Objects can even have configuration options just like the Tk
widgets. We'll seethislater, but for now, we'll stick with simple examples.

Once an object has been created, you can manipulate it using its methods. You
start by saying which object you want to manipulate. Y ou use the object name
as a command, with the method name as an operation and the method argu-
ments as additional parameters. For example, you could tell the object vr1 to
draw itself like this:

vrl draw 25 37
or to erase itself from the canvas like this:
vrl erase

Again, this might look familiar. It is precisely how you would use a Tk widget.
Y ou might tell a button to configure itself like this:

.b configure -background bl ue -foreground white
or to flash itself like this:
.b flash

Putting all of this together, we can use M sual Rep objects to create the drawing
shown in Figure 1-2.

We need to create five M sual Rep objects for this drawing. The first object has
a directory folder icon and the message “[incr Tcl] has:”. The remaining
objects have file icons and various message strings. We can create these objects

7

Tcl/Tk Tools

Ai visrep.itcl i |

= [incr Tcl] has:
B Objects
B Mega-Widgets
B Hamespaces
B And more...

Figure 1-2 Smple drawing composed of Visual Rep objects.

and tell each one to draw itself on the canvas using the handful of code in
Example 1-2.
Example 1-2 Code used to produce Figure 1-2.

canvas .canv -w dth 150 -hei ght 120 - background white
pack . canv

inage create photo dirl -file dirl.gif
image create photo file -file file.gif

Visual Rep title .canv dirl "\[incr Tcl\] has:"
title draw 20 20

Vi sual Rep bulletl .canv file "(pjects”
bul let1 draw 40 40

Vi sual Rep bullet2 .canv file "Mga- Wdgets"
bul I et2 draw 40 60

Vi sual Rep bullet3 .canv fil e "Nanespaces"
bul I et3 draw 40 80

Vi sual Rep bullet4 .canv file "And nore..."
bul I et4 draw 40 100

Constructors and Destructors

Let's take a moment to see what happens when an object is created. The
following command:

M sual Rep bulletl .canv file "(bjects”

creates an object named “bul | et 1" in class M sual Rep. It starts by allocating
the variables contained within the object. For a M sual Rep object, this includes
the variables canvas, i con, and ti tl e, aswell as the built-in t hi s variable. If
the class has a constructor method, it is automatically caled with the
remaining arguments passed as parameters to it. The constructor can set
internal variables, open files, create other objects, or do anything else needed to
initialize an object. If an error is encountered within the constructor, it will
abort, and the object will not be created.

Chapter 1: Object-Oriented Programming with [incr Tcl]

Like any other method, the constructor has a Tcl-style argument list. You can
have required arguments and optional arguments with default values. You can
even use the Tcl args argument to handle variable-length argument lists. But
whatever arguments you specify for the constructor, you must supply those
arguments whenever you create an object. In class M sual Rep, the constructor
takes three values. a canvas, an icon image, and a title string. These are all
reguired arguments, so you must supply all three values whenever you create a
\i sual Rep abject. The constructor shown in Example 1-1 simply stores the
three values in the instance variables so they will be available later when the
object needs to draw itself.

The constructor is optional. If you don’t need one, you can leave it out of the
class definition. Thisislike having a constructor with a null argument list and a
null body. When you create an object, you won't supply any additional parame-
ters, and you won't do anything special to initialize the object.

The dest ruct or method is aso optional. If it is defined, it is automatically
called when an object is destroyed, to free any resources that are no longer
needed. An object like bul | et1 is destroyed using the “del et e obj ect”
command like this:

del ete object bulletl

This command can take multiple arguments representing objects to be deleted.
It is not possible to pass arguments to the destructor, so as you can see in
Example 1-1, the destructor is defined without an argument list.

Instance variables are deleted automatically, but any other resources associated
with the object should be explicitly freed. If afile is opened in the constructor,
it should be closed in the destructor. If an image is created in the constructor, it
should be deleted in the destructor. As aresult, the destructor usually looks like
the inverse of the constructor. If an error is encountered while executing the
destructor, the “del et e obj ect” command is aborted, and the object remains
aive.

For the M sual Rep class, the destructor uses the erase method to erase the
object from its canvas. Whenever a\M sual Rep object is deleted, it disappears.

Pointers

Each object must have a unique name. When we use the object name as a
command, there is no question about which object we are talking to. In effect,
the object name in [INCR TcL] is like the memory address of an object in C++.
It uniquely identifies the object.

Tcl/Tk Tools

We can create a “pointer” to an object by saving its name in a variable. For
example, if wethink of the objects created in Example 1-2, we could say:

set x "bul | et1"

$x erase
The variable x contains the name “bul | et 1", but it could just as easily have the
name “bul | et2” or “titl e”. Whatever object it refers to, we use the name $x
as acommand, telling that object to erase itself.

We could even tell all of the objects to erase themselves like this:

foreach obj {title bulletl bullet2 bullet3 bull et4} {
$obj erase

}
One object can point to another smply by having an instance variable that
stores the name of the other object. Suppose you want to create a tree data struc-
ture. In ordinary Tcl, this is extremely difficult, but with [INCR TcL], you
simply create an object to represent each node of the tree. Each node has a vari-
able parent that contains the name of the parent node, and a variable
chi | dren, that contains alist of names for the child nodes. The class definition
for a Tree node is contained in the file itcl/treg/treel.itcl, and it appears in
Example 1-3.
Example 1-3 The class definition for a simple Tree data structure.

class Tree {
variabl e parent ""
variabl e children ""

nethod add {obj} {
$obj parent $this
| append chi | dren $obj

nethod clear {} {
if {Schildren !=""} {
eval del ete object $children

}
set children ""

}

net hod parent {pobj} {
set parent $pobj

net hod contents {} {
return $children

}

Notice that when we declared the par ent and chi | dr en variables, we included
anextra"" value. Thisvalueis used to initialize these variables when an object
is first created, before calling the constructor. It is optional. If a variable does
not have an initializer, it will still get created, but it will be undefined until the
constructor or some other method sets its value. In this example, we do not

10

Chapter 1: Object-Oriented Programming with [incr Tcl]

have a constructor, so we are careful to include initializers for both of the
instance variables.

The Tr ee class has four methods: The add method adds another Tr ee object as
achild node. The parent method stores the name of a parent Tr ee object. The
cont ent s method returns a list of immediate children, and is used to traverse
thetree. Thecl ear method destroys all children under the current node.

Notice that in the cl ear method, we used the Tcl eval command. This lets us
delete al of the children in one shot. The eval command flattens the list
$children into a series of separate object names, and the del et e obj ect
command deletes them. If we had forgotten the eval command, the
del ete obj ect command would have misinterpreted the value $chi | dren as
one long object name, and it would have generated an error.

= treel.itcl (=

& bridget & justin vanessa & troy

Figure 1-3 Diagram of a family tree.

We can create a series of Tree objects to represent any tree information that
exists as a hierarchy. Consider the tree shown in Figure 1-3. We can create the
root object “henry” likethis:

Tree henry

This allocates memory for the object and initializes its parent and chi | dren
variables to the null string. If effect, it has no parent and no children. Since
there is no constructor for this class, construction is over at this point, and the
object isready to use.

We can add children to this node by creating them:

Tree peter
Tree jane

and by adding them in:
henry add pet er

henry add j ane

11

Tcl/Tk Tools

Each of these calls to the add method triggers a series of other statements. We
could draw the flow of execution as shown in Figure 1-4. Each object is drawn
with a piece broken off so that you can see the parent and chi | dren variables
hidden inside of it. When we cal “henry add peter”, we jump into the
context of the henry object (meaning that we have access to its variables), and
we execute the body of the add method. The first statement tells pet er that its
parent is now henry. We jump into the context of the pet er object, execute its
par ent method, and store the name henry into its parent variable. We then
return to henry and continue on with its add method. We append pet er to the
list of henry’s children, and the add operation is complete. Now henry knows
that pet er isachild, and pet er knowsthat henry isits parent.

henry add peter

v

net hod add {obj} {
$obj parent $this
| append chi | dren $obj

peter parent henry

v

net hod parent {pobj} {
set parent $pobj

}

Figure 1-4 Execution can flow from one object context to another.

This simple example shows the rea strength of [INCR TcL]: encapsulation.
The variables inside each object are completely protected from the outside
world. You cannot set them directly. You can only call methods, which
provide a controlled interface to the underlying data. If you decide next week
to rewrite this class, you can change the names of these variables or you can
eliminate them entirely. You will have to fix the methods in the class, but you
won't have to fix any other code. As long as you don’t change how the
methods are used, the programs that rely on this class will remain intact.

We can create the rest of the tree shown in Figure 1-3 as follows:

peter add [Tree bridget]
peter add [Tree justin]

12

Chapter 1: Object-Oriented Programming with [incr Tcl]

jane add [Tree vanessal

jane add [Tree troy]
We have shortened things a bit. The Tree command returns the name of each
new Tr ee object. We capture the name with square brackets and pass it directly
to the add method.

Generating Object Names

If you are creating a lot of objects, you may not want to think of a name for
each one. Sometimes you don’t care what the name is, as long as it is unique.
Remember, each object must have a unique name to identify it. [INCR TcL] will
generate a name for you if #aut o is included as all or part of the object name.
For example, we could add 10 more children to the j ane node like this:
for {set i O} {$ < 10} {incr i} {
jane add [Tree #aut 0]

}
Each time an object is created, [INCR TcCL] replaces #aut o with an automatically
generated name like treel?. If you use a name like “x#aut oy”, you will get a
name like “xtreel7y”. The #aut o part is composed of the class name (starting
with alower-case |etter) and a unique number.

If we use the Tr ee class together with M sual Rep, we can write a procedure to
draw any tree on a canvas widget. We simply traverse the tree, and at each
node, we create a M sual Rep object and tell it to draw itself on the canvas. Of
course, we aso draw some lines on the canvas connecting each parent to its chil-
dren. We will be creating a lot of M sual Rep objects, so having automatically
generated names will come in handy. A complete code example is in the file
itcl/treeftreel.itcl, but the drawing part appears in Example 1-4.

Example 1-4 A recursive procedure draws the tree onto a canvas widget.

proc draw node {canvas obj x y wdth} {

set kids [$obj contents]

if {[Ilength $kids] == 1} {
set x0 $x
set delx 0

} else{
set x0 [expr $x-0.5*wi dt h]
set del x [expr 1.0*$wi dth/([Ilength $kids]-1)]

}

set yO [expr $y+50]

foreach o $kids {
$canvas create line $x $y $x0 $y0 -width 2
draw node $canvas $o $x0 $y0 [expr 0. 5*$del x]
set x0 [expr $x0+$del x]

}
set visual [M sual Rep #auto $canvas defaul t $obj]
$vi sual draw $x $y

13

Tcl/Tk Tools

Example 1-4 A recursive procedure draws the tree onto a canvas widget.
}

canvas .canv -w dth 400 -height 200 -background white
pack . canv

draw node . canv henry 190 50 200

We create the canvas and pack it, and then we call draw node to draw the tree
starting at node henry. Inside dr aw node, we use the cont ent s method to get
a list of children for the current node. If there is only one child, we draw it
directly below the current node. Otherwise, we divide up the available screen
width and place the children starting at the x-coordinate $x0, with $del x pixels
between them. We draw a line down to each child’s position, and we draw the
child by calling dr aw node recursively. This will draw not only the child, but
all of the children below it as well. We finish up by creating a i sual Rep for
the current node. The default argument says to use the default (diamond)
icon, and the $obj argument sets the title string to the object name. We need to
tell this M sual Rep to draw itself on the canvas, so we capture its automatically
generated name in the vi sual variable, and we use this as a pointer to the
object.

A Real Application

We can use our Tree class to build a real application, like a file browser that
helps the user find wasted disk space. The Unix du utility reports the disk usage
for a series of directories, given a starting point in the file system. Its output is
along list of sizes and directory names that looks like this:

$du-b/usr/local/itcl
29928 Jusr/local/itcl/lib/tcl7.4

36343 /usr/local/itcl/nman/ nanl
812848 /usr/local/itcl/nman/ nran3
1416632 /usr/local /itcl/nan/ nann
2274019 /usr/local/itcl/man
11648898 /usr/local /itcl

The - b option says that directory sizes should be reported in bytes.

It is much easier to understand this output if we present it hierarchically, as
shown in Figure1-5. If we are looking at the /usr/local/itcl directory, for
example, we can see that it has four subdirectories, and of these, bin is the
biggest. We could double-click on this directory to see alisting of its contents,
or double-click on BACK UP to move back to the parent directory.

We can use atree to organize the output from the du command. Each node of
the tree would represent one directory. It would have a parent node for its

14

Chapterl: Object-Oriented Programming with [incr Tcl]

= |5
pirectory: [ustocaiic] |
<~ BACK UP N
2274019 pusr/local/fitclfman
100981 fusr/local/itcl/include
3382643 susr/local/itcl/bin
2853306 susr/local/itcl/lib
J il

Figure 1-5 A hierarchical browser for the “du” utility.

parent directory and a list of child nodes for its subdirectories. The simple
Tree class shown in Example 1-3 will handle this, but each node must also
store the name and the size of the directory that it represents.

We can modify the Tree class to keep track of a name and a value for each node
as shown in Example 1-5.

Examplel-5 Tree class updated to store name/value pairs.

class Tree {
vari abl e nane ""
variabl e value ""
vari abl e parent ""
variable children ""

constructor {n v} {
set nanme $n
set val ue $v

destructor {
cl ear

nethod add {obj} {
$obj parent $this
| append chi | dren $obj

nethod clear {}
if {$children !=""} {
eval del ete object $children

}
set children ""

}
net hod parent {pobj} {
set parent $pobj

nethod get {{option -value}} {
swtch -- $option {
-nane { return $nane }
-value { return $val ue }
-parent { return $parent }

15

Tcl/Tk Tools

Example 1-5 Tree class updated to store name/value pairs.
error "bad option \"$option\""

}
net hod contents {} {
return $children

}

We simply add nane and val ue variables to the class. We also define a
constructor, so that the name and the value are set when each object is created.
These are required arguments, so when we create a Tr ee node, the command
must look something like this:

Tree henry /usr/local /itcl 8619141

Actually, the name and value strings could be anything, but in this example, we
are using nane to store the directory name, and val ue to store the directory size.

We have also added a destructor to the Tree so that when any node is
destroyed, it clearsits list of children. This causes the children to be destroyed,
and their destructors cause their children to be destroyed, and so on. So
destroying any node causes an entire sub-tree to be recursively destroyed.

If we are moving up and down the tree and we reach a certain node, we will
probably want to find out its name and its value. Remember, variables like
nane and val ue are kept hidden within an object. We can't access them
directly. We can tell the object to do something only by calling one of its
methods. In this case, we invent a method called get that will give us access to
the necessary information. If we have a Tr ee node called henry, we might use
its get method like this:

puts "directory: [henry get -nane]"

puts " size: [henry get -value]"
The get method itself is defined in Example 1-5. Its argument list looks a little
strange, but it is the standard Tcl syntax for an optional argument. The outer set
of braces represents the argument list, and the inner set represents one argu-
ment: its name is option, and its default value (if it is not specified) is
“-val ue”. Soif we simply want the value, we can call the method without any
arguments, like this:

puts " size: [henry get]"

The get method merely looks at its option flag and returns the appropriate
information. We use a Tcl swi t ch command to handle the various cases. Since
the opti on flag will start with a “-", we are careful to include the “--" argu-
ment in the sw t ch command. Thistells the switch that the very next argument
isthe string to match against, not an option for the sw t ch command itself.

16

Chapter 1: Object-Oriented Programming with [incr Tcl]

With a new and improvedr ee class in hand, we return to building a browser
for the Unixdu utility. If you are not used to working with tree data structures,
this code may seem complicated. But keep in mind that it is the example
itself—not[INCR TcL]—that adds the complexity. If you don't believe me, try
solving this same problem withoukicr TcL]!

We create a procedure callget _usage to load the disk usage information for
any directory. This is shown in Examles.

Example 1-6 Disk usage informationisstoredin atree.

set root ""

proc get_usage {dir} {
gl obal root
if {$root !'=""}

del ete obj ect $root

}

set parentDr [file dirnane $dir]
set root [Tree #auto $parentDr ""]
set hiers($parentOr) $root

set info [split [exec du -b $dir] \n]
set last [expr [Ilength $info]-1]

for {set i $last} {$ >=0} {incr i -1} {
set line [lindex $info $i]

if {[scan $line {%l 9%} size nang] = 2} {
set hiers($name) [Tree #auto $nane $si ze]

set parentDr [file dirnane $nane]
set parent $hiers($parentDir)
$parent add $hi er s($nane)

}

return $root

}

We simply pass it the name of a directory, and it runsdthgprogram and
creates a tree to store its output. We use thexed command to execute the

du program, and we split its output into a list of lines. We traverse backward
through this list, starting at the root directory, and working our way downward
through the file hierarchy because tthe program puts the parent directories
after their children in its output. Wscan each line to pick out the directory
name and size, ignoring any lines have the wrong format. We create a new
Tr ee object to represent each directory. We don't really care about the name of
the Tr ee object itself, and we don’t want to make up names like “henry” and
“jane”, so we uséfaut o to get automatically generated names. Once &aah

node has been created, we add it into the node for its parent directory.

Finding the node for the parent directory is a little tricky. We can use the Tcl
“file di rnane” command to get the name of the parent directory, but we must
figure out whatTree object represents this directory. We could scan through

17

Tcl/Tk Tools

the entire tree looking for it, but that would be horribly slow. Instead, we create
a lookup table using an array called hi ers that maps a directory name to its
corresponding Tree object. As we create each object, we are careful to store it
in this array so it can be found later when its children are created. Figure 1-6
shows the array and how the values relate to the directory structure we started

with.

varlabler oot : treel

treel

tree2
array hi ers:
[usr/ | ocal treel - tree3
lusr/local/itcl tree2 I

lusr/local/itcl/bin tree3d —) I
/usr/local/itcl/lib | tree4 k]
/usr/local/itcl/man | tree5

Figure 1-6 Finding directoriesin a tree of disk usage information.

Since we traverse backward through the du output, parent Tree nodes will
always be created and entered into the hi ers array before their child nodes.
The only exception is the parent for the very first node. It will not appear in the
output from du, so we have to create it ourselves to get everything started. We
call this the root node, and we save its name in a global variable called r oot .
The next time we call get usage, we can destroy the old tree simply by
destroying the root node, and then start a new tree by creating a new root node.

We can put all of this together in an application like the one shown in Figure 1-
5. A complete example appears in the file itcl/tree/tree2.itcl, so | will not show
al of the code here. But it works something like this. When the user types a
directory name at the top of this application, we call the procedure get usage
to execute du and build a tree containing the output. We then call another proce-
dure show usage to display the root object in a listbox. The code for
show usage appears in Example 1-7.

We start by clearing the listbox and clearing any elements that might have been
selected. If this node has a parent, we add the BACK UP element at the top of
the listbox. Double-clicking on this element will invoke show usage for the
parent directory, so you can move back up in the hierarchy. We use the

18

Chapter 1: Object-Oriented Programming with [incr Tcl]

Example 1-7 The contents of any Tree node can be displayed in a listbox.

proc show usage {obj} {
gl obal root I box

catch {unset | box}
.display.lbox delete O end
.di splay. | box selection clear 0 end

set counter O

if {[$obj get -parent] !=""} {
.display.lbox insert end " < BAXK W
set | box($counter) [$obj get -parent]
i ncr count er

foreach kid [$obj contents] {
set nane [$kid get -nane]
set size [$kid get -val ue]
.display.lbox insert end [fornat "9®d %50s" $si ze $nang]
set | box($counter) $kid
i ncr count er

}
}

cont ent s method to scan through the list of child nodes, and for each of these
nodes, we add an element showing the directory size and its name. Double-
clicking on any of these elements will invoke show usage for their node, so
you can move down in the hierarchy. We use a constant-width font for the
listbox, and we format each line with the Tcl fornat command, to make sure
that size and name fields align properly as two columns.

Notice that as we create each element, we are careful to build an array called
| box which maps the element number to a Tr ee node. Later on when we get a
double-click, we can use this array to figure out which Tr ee node to show. We
simply add a binding to the listbox like this:

bi nd . di spl ay. | box <Doubl e- Butt onPress- 1> {
set index [.display.lbox nearest %]
show usage $l box($i ndex)
br eak

}

When the double-click occurs, the % field is replaced with the y-coordinate of
the mouse pointer, and the listbox near est operation returns the number of the
element nearest this position. We convert this to the corresponding Tr ee object
using the | box array, and then use show usage to display the information for
that node. Normally, the double-click would also be handled as another ordi-
nary button press event, but we are careful to avoid this by breaking out of any
further event processing.

Without the Tree class, this application would have been considerably more
difficult to write. [INCR TcL] solves the problem by providing a way to create
new data structures. Data structures are encapsulated with a well-defined set of

19

Tcl/Tk Tools

methods to manipulate them. This naturally supports the creation of libraries.
A generic component like the Tr ee class can be written once, and reused again
and again in many different applications.

| nterface versus | mplementation

As classes get more complicated, and as method bodies get longer, the class
definition becomes more difficult to read. Finding important information, like
the method names and argument lists, is like looking for a needle in a haystack
of [INCR TcL] code. But a method body does not have to be included with the
method declaration. Class definitions are much easier to read if the bodies are
defined elsewhere, using the body command. For example, our Tr ee class can
be rewritten as shown in Example 1-8.

Example 1-8 Separating the Tree class interface fromits implementation.

class Tree {
variabl e nane ""
vari abl e val ue ""
variabl e parent ""
variabl e children ""

constructor {n v} {
set nane $n
set val ue $v

destructor {
cl ear

net hod add {obj}

net hod clear {}

net hod parent {pobj}

net hod get {{option -val ue}}
net hod contents {}

}

body Tree::add {obj} {
$obj parent $this
| append chi | dren $obj

body Tree::clear {} {
if {$children!=""} {
eval del ete obj ect $chil dren

}
set children ""

body Tree::parent {pobj} {
set parent $pobj

body Tree::get {{option -value}} {
swtch -- $option {
-nane { return $nane }
-value { return $value }
-parent { return $parent }

20

Chapter 1: Object-Oriented Programming with [incr Tcl]

Example 1-8 Separating the Tree class interface fromitsimplementation.

}
error "bad option \"$option\""

}
body Tree::contents {} {
return $children

Since the body commands appear outside of the class definition, we cannot use
simple method names like add. Remember, we could have other classes that
also have an add method. Outside of the class, we must use a full name like
Tree: : add to identify the method. A class name followed by “: : " charactersis
called a scope qualifier. You can add this to any method name or variable name
to clear up ambiguities.

The class definition establishes once and for al what methods are available, and
how they are used. Whatever arguments you give when you declare a method,
you must use the same arguments later when you define the method body. For
example, when we declared the Tree: : add method, we said that it takes one
argument named obj . Later, when we defined the body, we used the same argu-
ment list. When we declared the Tr ee: : cont ent s method, we gave it a null
argument list. Again, when we defined the body, we repeated the null argument
list. If you make a mistake and the argument lists do not match, the body
command will report the error.

It turns out that the argument lists don’t have to match letter for letter, but they
must match in meaning. The argument names can change, but the argument
lists must have the same number of required arguments, and all optional argu-
ments must have the same default values. For example, when we declared the
Tree:: get method, we said that it has one argument named opti on with a
default value “-val ue”. When we define the body we must still have one argu-
ment with adefault value “- val ue”, but its name could be anything, like this:

body Tree::get {{new -val ue}} {
swtch -- $new {

}
}
If you use the special args argument when you declare a method, you can
replace it with other arguments when you define the method body. The args
argument represents variable argument lists, so it acts like a wildcard when the
argument lists are compared by the body command.

If you want to completely suspend this consistency check, you can simply leave
the argument list off when you declare the method in the class definition. The
body command will have no argument list to compare against, so it will use
whatever argument list you giveit.

21

Tcl/Tk Tools

Since the constructor and destructor declarations have a dlightly different
syntax, their bodies must be included in the class definition. However, you can
declare them with null bodies, and redefine the bodies later using the body
command. If you do this, the argument list for the constructor must match what-
ever appears in the class definition, and the argument list for the destructor must
aways benull.

The cl ass command defines the interface for a class, and subsequent body
commands define the implementation. Separating the interface from the imple-
mentation not only makes the code easier to read, but as we will see below, it
al so supports interactive devel opment.

Protection Levels: Public and Private

Usually, the class methods are the public part of an object, and the class vari-
ables are kept hidden inside. But what if you want to keep a method hidden for
internal use? In our Tree class, for example, the par ent method is used inter-
nally to tell a child that it has a new parent. If it is exposed, someone using the
Tree class might be tempted to call it, and they could destroy the integrity of
the tree. Or consider the opposite problem: What if you want to allow access
to avariable? In our Tree class, the nane and val ue variables are kept hidden
within an object. We added aget method so that someone using the class could
access these values, but there is a better way to handle this.

You can use the publ i ¢ and pri vat e commands to set the protection level for
each member in the class definition. For example, we can use these commands

in our Tr ee class as shown in Example 1-9.
Example 1-9 Adding protection levels to the Tree class.
class Tree {

public variabl e nane ""

public variable val ue ""

private variable parent ""
private variabl e children ""

constructor {args} {
eval configure $args

destructor {
cl ear

publ i ¢ met hod add {obj }
public nethod clear {}
private nethod parent {pobj}

publ i ¢ et hod back {}
public nethod contents {}

22

Chapter 1: Object-Oriented Programming with [incr Tcl]

Any member can be accessed by methods within the same class, but only the
public members are available to someone using the class. Since we declared the
par ent method to be private, it will not be visible to anyone outside of the class.

Each class has built-in conf i gur e and cget methods that mimic the behavior of
Tk widgets. The confi gure method provides access to an object’s attributes,
and the cget method returns the current value for a particular attribute. Any
variable declared to be public is treated as an attribute that can be accessed with
these methods. Just by declaring the nane and val ue variables to be public, for
example, we can say:

Tree henry

henry configure -nane "Henry Fonda" -val ue "great actor"

puts " nane: [henry cget -nang]"

puts "val ue: [henry cget -val ue]"
Just like Tk, the attribute names have a leading “-” sign. So if the variable is
called nane, the attribute is - nane.

You can aso set the attributes when you create an object, as long as you define
the constructor as shown in Example 1-9. For example, we can say:

Tree henry -nane "Henry Fonda' -val ue "great actor"

The extra arguments are captured by the ar gs argument and passed along to the
confi gure method in the constructor. The eval command is needed to make
sure that the ar gs list is not treated as a single argument, but as a list of option/
value pairs. It is agood idea to write your constructor like this. It mimics the
norma Tk behavior, and it lets someone using the class set some of the
attributes, and leave others with a default value.

Now that we know about the built-in cget method, our get method is obsolete.
We have removed it from the class definition in Example 1-9, in favor of aback
method that can be used to query the parent for a particular node.

Since anyone can change a public variable by configuring it, we need a way to
guard against bad values that might cause errors. And sometimes when an
option changes, we need to do something to update the object. Public variables
can have some extra code associated with them to handle these things. When-
ever the value is configured, the code checks for errors and brings the object up
to date. As an example, suppose we add a -sort option to the Tr ee class, to
indicate how the contents of each node should be sorted. Whenever the - sort
option is set, the code associated with it could reorder the child nodes. We
could update the Tr ee class to handle sorting as shown in Example 1-10.

We add a -sort option simply by adding a public variable called sort. Its
initial value is"", which means that by default, sorting is turned off. We can

23

Tcl/Tk Tools

Example 1-10 Tree classwith a -sort option.

class Tree {
public variabl e nane ""
public variable val ue ""

public variable sort ""
private variable |astSort ""

private variable parent ""
private variable children ""

constructor {args} {
eval configure $args

destructor {
cl ear

publi ¢ met hod add {obj}
public nethod clear {}
private nethod parent {pobj}

publ i ¢ met hod back {}
public nethod contents {}
private nethod reorder {}

body Tree::add {obj} {
$obj parent $this
| append chi | dren $obj
set lastSort "

}

body Tree::contents {} {
r eor der
return $children

body Tree::reorder {} {
if {$sort != $lastSort} {
set children [Isort -command $sort $chil dren]

}
set |lastSort $sort

configbody Tree::sort {
r eor der

add some code to this variable in the class definition, right after its default
vaue. Or we can define it later with a configbody command. The
conf i gbody command is just like the body command, but it takes two argu-
ments: the name of the variable, and the body of code. There is no argument
list for avariable, as you would have for a method. In this example, we use the
confi gbody command near the end to define the code for the sort variable.
Whenever the -sort option is configured, we call the reorder method to
reorder the nodes.

24

Chapter 1: Object-Oriented Programming with [incr Tcl]

If there are alot of nodes, reordering them can be expensive. So we try to avoid
sorting whenever possible. We have a variable called | ast Sort that keeps
track of the last value for the - sort option, which is the name of some sorting
procedure, as we'll see below. We can call the r eor der method as often as we
want, but it will reorder the nodes only if the - sort option has really changed.

We also set things up so that the nodes will be reordered properly if a new node
is added. We could just reorder the list each time a node is added, but that
would be expensive. Instead, we reorder the list when someone tries to query it
viathe cont ent s method. Most of the time, the list will already be sorted, and
the reorder method will do nothing. Whenever we add a node in the add
method, we reset the value of | ast Sort to"", so that the next call to content s
will actually reorder the nodes.

The conf i gur e method automatically guards against errors that occur when an
option isset. For example, if we say:

Tree henry

henry configure -sort bogus_sort_proc -val ue 1
the conf i gure method finds the public variable sort and sets it to the value
bogus_sort _proc. Then it looks for code associated with this variable and
executes it. In this case, it calls the reor der method to reorder the nodes using
the procedure bogus_sort _proc. If this causes an error, the variable is auto-
matically reset to its previous value, and the configure command aborts,
returning an error message. Otherwise, it continues on with the next option, in
this case handling the - val ue option.

Let's take a look at how the -sort option is actually used. In the reorder
method, the sort value is given to the Tcl | sort command to do the actual
sorting. The | sort command treats this as a comparison function. As it is
sorting the list, it calls this function again and again, two elements at atime, and
checks the result. The function should return “+1" if the first element is greater
than the second, “-1” if the first is less than the second, and “0” if they are
equal. Thel sort command orders the two elements accordingly.

For example, if we want an alphabetical listing of Tr ee objects, we could write
afunction like this to compare the - nane options:

proc cnp_tree nanes {obj 1 obj 2} {

set val 1 [$obj 1 cget -nang]

set val 2 [$obj 2 cget - naneg]

return [string conpare $val 1 $val 2]
}

and we could tell a particular Tree object like henry to use this:

henry configure -sort cnp_tree_nanes

25

Tcl/Tk Tools

Its children would then be listed aphabetically. If we wanted a value-ordered
list, we could write a function like cnp_t ree_val ues to compare the -val ue
attributes, and use that function as the - sort option.

We can put al of this together in a new and improved du browser, as shown in
Figure 1-7. A complete code example appears in the file itcl/tree/treeb.itc) but
it works like this. When the user clicks on a radiobutton to change the sorting
option, we configure the - sort option for the node being displayed, query its
children, and update the listbox.

= =

Directory: || fustflacaliite] |

Sort: 4 By Name - By Size

= |

<- BACK UP
3382643 jusr/local/itcl/bin
100981 fusr/local/itcl/include
2853306 fusr/local/itcl/lib
2274019 pusr/local/fitclfman

R
:

Figure 1-7 An improved “du” browser with radiobuttons to control sorting.

Common ¥riables and Pocedues

Sometimes it is necessary to have variables that do not belong to any particular
object, but are shared among al objects in the class. In C++, they are referred
to as static data memberdn [INCR TcL], they are called common variables

We can see the need for this in the following example. Suppose we improve
our du application to have a graphical display like the one shown in Figure 1-8.
Each file name has an icon next to it. We could use a canvas widget in place of
alistbox, and draw each entry on the canvas with a M sual Rep object, as we did
in Example 1-2.

In this example, we will take things one step further. We set up the browser so
that when you click on afile, it becomes selected. It is highlighted with a gray
rectangle, and its usage information is displayed in a label at the bottom of the
application.

We can fix up our M sual Rep class to do most of the work for us. We will add
sel ect and desel ect methods, so that each M sual Rep object will know
whether or not it is selected, and will highlight itself accordingly. A complete

26

Chapterl: Object-Oriented Programming with [incr Tcl]

|

||

Directory: "fusn’localfitcl

Sort: 4 By Name - By Size

4 Back up S
(L3 fusrflocalfitclbin

(3 fusrflocalfitclfinclude
3 fusrflocalfitciiib

(3 fusrflocalfitcliman

el

|| usrRocalfitcimin: 3382 kb

Figure 1-8 An improved “du” browser with a graphical display.

code example appears in the file itcl/tree/tree6.itc] but the M sual Rep class
itself appearsin Example 1-11.

Examplel-11 An improved VisualRep class with select/deselect methods.

i nage create photo defaultlcon -file default.gif

class M sual Rep {

}

public variabl e i con "defaul tcon"
public variable title ""

private variabl e canvas ""

constructor {cwn args} {
set canvas $cw n
if {![info exists sel ect ed(j s($canvas)]} {
set sel ect ed(pj s($canvas) "

}
eval configure $args

destructor {
desel ect
$canvas del ete $this

public nethod draw {ul Var nidVar}
public nethod sel ect {}
public nethod desel ect {}

publ i c nethod canvas {args}
private common sel ect edChj s

public proc clear {canv}
public proc sel ected {canv}

We have made a lot of improvements on the M sual Rep class presented in
Example1-1. We still need to keep track of the canvas containing the M su-

27

Tcl/Tk Tools

al Rep, so we still have a private canvas variable. But we have added the
public variablesi conand titl e so that we can treat the icon image and the title
string as configuration options. We aso changed the constructor so that the
canvas widget must be specified, but everything else is optional. If we create a
M sual Rep object like this:

canvas . di spl ay. canv

M sual Rep vr1 .display.canv -title "/usr/local/lib"
we get the default icon with the title “/ usr/l ocal / I'i b". The constructor saves
the canvas name in the canvas variable, does something with the
sel ect ed(yj s array that we'll talk more about below, and then does the usual
“eval configure $args” to handle the configuration options.

We also changed the way we use the dr awmethod. We won't show the imple-
mentation here—you can check file tree/tree6.itcl for details—but thisis how it
works. Instead of a simple (x,y) coordinate, we pass in the names of two vari-
ables. These are used by the dr aw method, and then modified to return some
drawing information. The first argument is an array representing the upper-left
corner for the Vi sual Rep object. If we have a sual Rep object called vr 1 and
we want its upper-left corner at the coordinate (25,37), we might call the draw
method like this:

set ul(x) 25

set ul (y) 37

vrl draw ul midpt
Before it returns, the dr awmethod modifies the y coordinate in the ul array so
that it points to the next position, immediately below the M sual Rep object that
we have just drawn. This makes it easy to draw alist of M sual Rep objects on
the canvas, even if their icons are different sizes. The dr awmethod also stores
the x and y coordinates for the midpoint of the icon in the nidpt variable. This
will comein handy for another example that we'll see later in this chapter.

As we said before, we have also added sel ect and desel ect methods to
support file selection. When you click on a file in the browser, we call the
sel ect method for its M sual Rep. Thus, if you click on a file that has a
M sual Rep named vr 1, we call its sel ect method like this:

vrl sel ect

the object would be highlighted with a gray rectangle. If we call the desel ect
method like this:

vr1 desel ect

28

Chapter 1: Object-Oriented Programming with [incr Tcl]

it would go back to normal. In theory, we could select as many objects as we
want simply by calling their sel ect methods. This might be useful in a file
browser that allows many files to be moved, copied or deleted at once.

When multiple objects can be selected, we need to keep a list of dl the
M sual Rep objects that are selected. But each M sual Rep object keeps track of
itself, and knows nothing about other objects in the class. Somewhere we have
to keep a master list of selected objects. We want something like a global vari-
able, but we want to keep it protected within the class, where it is actually used.
In this case, we want a common variable.

We create a common variable called sel ect ed(j s, as shown near the bottom
of Example 1-11. We declare it to be private so that it can be accessed only
within the class. Instead of keeping one master list with al the M sual Rep
objects that are selected, we keep a separate list for each canvas. That way, we
can find out later what objects are selected on a particular canvas. To do this,
we treat the sel ect ed(bj s variable as an array, with a different slot for each
canvas. Whenever we create a M sual Rep object, we make sure that a slot
exists for its associated canvas, and if not, we create one. This is handled by
some code in the constructor.

We handle the selection of a M sual Rep object like this:

body M sual Rep::select {} {
$canvas itentonfigure $this-hilite -fill LightGay

if {[|search $sel ect ed(yj s($canvas) $this] < 0} {
| append sel ect ed(j s($canvas) $this

}
}

The first statement turns on the gray rectangle on the canvas. In the draw
method, we make an invisible rectangle tagged with the name $thi s-hilite,
so when we want it to appear, we ssimply change its fill color. Next, we check
to see if this object appears on the list of selected objects for its canvas. If not,
we add it to the list.

Notice that we can access the sel ect ed(j s variable without declaring it with
anything like the Tcl gl obal command. It has already been declared in the
class definition, so it is known by al methodsin the class.

We handle the de-selection like this:

body M sual Rep: : desel ect {} {
$canvas itentonfigure $this-hilite -fill ""

set i [lsearch $sel ect edj s($canvas) $this]

29

Tcl/Tk Tools

if {$i >=0} {
set sel ect edj s($canvas) [Irepl ace $sel ect edj s($canvas) $i $i]
}

}

We turn off the gray rectangle by making its fill color invisible. Then we find
the object on the list of selected objects, and we remove it from the list.

At this point, we know which M sual Rep objects are selected, but we till
haven't answered our question: What if someone using the class wants to get a
list of al the M sual Rep objects that are selected? Remember, the
sel ect ed(yj s variable is private. It cannot be accessed outside of the class.
We did this on purpose to prevent anyone el se from tampering with it.

One way to solve this problem is to add a method called sel ect ed which
returns a list of objects that are selected on a particular canvas. After al, a
method has access to things inside the class. This would work, but then each
time we wanted to use the method, we would need to find an object to talk to.
For example, we might ask an object named vr 1 like this:

set objlist [vrl selected .display.canv]

Thisis awkward, and there is a better way to handle it. We need a function that
belongs to the class as awhole. In C++, thisis called a static member function.
In [INCR TcL], it is called a procedure or proc. Class procedures are just like
ordinary Tcl procedures, but they reside within the class, so their names won’t
conflict with other proceduresin your application.

A procedure is declared with the proc command, as shown at the bottom of
Example1-11. In many respects, it looks like a method. But a procedure
belongs to the class as awhole. It doesn’'t know about any specific object, so it
doesn’t have access to instance variables like i con, titl e and canvas. It has
access only to common variables.

The advantage of using a procedure isthat it can be called like this:
set objlist [V sual Rep::sel ected . display. canv]

Since we are calling this from outside of the class, we have to use the full name
i sual Rep: : sel ected. But we do not have to talk to a specific object. In
effect, we are talking to the class as a whole, asking for the objects that are
selected on a particular canvas. The implementation of this procedure is fairly
trivial:

30

Chapter 1: Object-Oriented Programming with [incr Tcl]

body M sual Rep: : sel ected {canv} {
if {[info exists sel ect eddj s($canv)]} {
return $sel ect ed(j s($canv)
}

return ™"

}
We simply look for avalue in the sel ect ed(j s array, and return that list.

Procedures are also useful when you want to operate on several objects at once,
or perhaps on the class as awhole. For example, we can add a cl ear procedure
to deselect all of the M sual Rep objects on a particular canvas. We might use
the procedure like this:

M sual Rep: : cl ear .display.canv
and it isimplemented like this:

body M sual Rep:: cl ear {canv} {
if {[info exists sel ectedjs($canv)]} {
foreach obj $sel ect ed(j s($canv) {
$obj desel ect

}

}

It simply finds the list of objects that are selected on the canvas, and tells each
oneto deselect itsalf.

Inheritance

Object-oriented systems provide a way for one class to borrow functionality
from another. One class can inherit the characteristics of another, and add its
own unique features. The more generic class is called a base class, and the more
specialized class is called a derived class. This technique leads to a style of
programming-by-differences, and helps to organize code into cohesive units.
Without inheritance, object-oriented programming would be little more than a
data-centric view of the world.

Sngle Inheritance

We can use our Tree class to build a regular file browser like the one shown in
Figure 1-9. You enter a directory name at the top of the browser, and it lists the
files and directories at that location. Directories are displayed with a trailing “/”
character, and files are displayed along with their size in bytes. If you double-
click on a directory name, the browser displays that directory. If you double-
click on BACK UP, you go back to the parent directory.

31

Tcl/Tk Tools

= =
Directory: "fusn’localfitcl |

Sort: 4 By Name - By Size

<- BACK UP
jusr/localfitecl/lib/itcl2.0/
Jusr/localfitel/1libsitk2. 0y
fusr/local/itcl/lib/ividgets2. 0y
81884 fusr/localfitclylib/libitcl2.0.a
36728 susr/local/itcl/liby/libitk2.0.a
428186 susr/local/itcl/libylibtcl7.4.a
620118 susr/local/itclylibylibtkd.0.a
Jusr/localfitecl/1lib/tcl7. 4/
Jusr/localfitcl/1libytkd . 0/

= |

R
:

Figure 1-9 A simplefile browser built with the FileTree class.

We could build atree to represent all of the files on the file system and display
it in this browser, just like we did for the du application. But instead of
spending a lot of time to build a complete tree, we should start with a single
node. When the user asks for the contents of a directory, we will look for files
in that directory and add some nodes to the tree. With this scheme, we can
bring up the file browser quickly and populate the tree as we go aong.

We could add a little extra functionality to our Tree class to support the file
system queries, but having a generic Tree class is useful for many different
applications. Instead, it is better to create a separate F | eTr ee class to repre-
sent the file system, and have it inherit the basic tree behavior from Tree.
Inheritance relationships are often described as is-a relationships. If F | eTree
inherits from Tree, then a H | eTree is-a Tree, but with a more specialized
behavior. The relationship between these classes can be diagramed using the
OMT notation™ as shown in Figure 1-10.

Tree

* isa

|
FleTree

Figure 1-10 Diagram of the relationship between the Tree base class and its FileTree
specialization.

T James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lorensen, Ob-
ject-Oriented Modeling and Design, Prentice-Hall, 1991.

32

Chapter 1: Object-Oriented Programming with [incr Tcl]

The file itcl/treeltree7.itcl contains a complete code example for the file
browser, but the FH | eTr ee class is shown in Example 1-12. Thei nherit state-
ment brings in all of the characteristics from the base class Tree. Because of
this statement, the F | eTr ee automatically acts like a tree. It keeps track of its
parent and its children, and it has all of the usual Tr ee methods including add,
contents, back and clear. It aso has the configuration options - nane,
-valueand-sort.

Example 1-12 The FileTree classinherits from Tree.

class HleTree {
inherit Tree

public variable procreate ""

private variable file ""
private variable niine O

constructor {fnane args} {
if {I[file exists $fnang]} {
error "file not found: $f nang"

}
set file $f nane
eval configure $args

}

public nethod contents {}
private nethod popul ate {}

}

body FileTree::popul ate {} {
if {[filemine $file] I=
cl ear
foreach f [glob -noconplain $file/*] {
add [upl evel #0 $procreate $f]

$nii ne} {

set nine [file nmine $file]

}

body FileTree::contents {} {
popul at e
return [Tree:: contents]

Inthe F | eTr ee class, we redefine the cont ent s method. When you ask for the
contents of a F | eTree node, we invoke another method called popul at e
which automatically scans the file system and creates child nodes. After we
have populated the node, we use the usual Tree: : contents method to return
thelist of children.

Notice that we are careful to say Tree::contents. Whenever the base class
and the derived class both have a method with the same name, you need to
include a scope qualifier like this to avoid ambiguity. If you use a simple,
unqualified name like cont ent s, you will get the most-specific implementation
for the object. For a FleTree object, the name contents means

33

Tcl/Tk Tools

FleTree::contents. If you want some other version of the method, you
must use a qualified name like Tree: : cont ent s.

When an object gives you the most-specific implementation of a method, the
method is said to be virtual. This is a fundamental feature of object-oriented
programming. It letsyou treat al the objectsin a class the same way, but it lets
specialized objects react in their own specialized manner. For example, all
Tr ee objects have a cont ent s method that returns a list of child nodes. So you
can get the contents of either an ordinary Tree object or a F | eTr ee object.
When you get the contents of an ordinary Tr ee object, it simply returns a list of
object names. But when you get the contents of a F | eTr ee object, it will look
for files and automatically create the child nodes before returning their names.
You don't have to remember what kind of tree object you're talking to. You
simply call the cont ent s method, and each object does the right thing.

This is true even when you call a method from a base class context. Suppose
for a moment that we had defined the cl ear method in the Tr ee base class like
this:
body Tree::clear {} {
set obj s [contents]

if {$objs !=""} {
eval del ete object $objs

set children ""
}

Instead of using the chi | dren variable directly, we have used the contents
method to query the list of children. When you clear an ordinary Tr ee object, it
would use Tree: :contents to get the list of children. This simply returns
$chi | dren, so it looks as though nothing has changed. But when you clear a
H | eTr ee object, it would use Fi | eTree: : content s to get the list of children.
It would look for files and automatically create the child nodes, and then turn
right around and delete them. In this case, using the cont ent s method may be
adumb idea. But it does illustrate an important point: The methods that you
call in a base class use the specialized behaviors that you provide later on for
derived classes. Again, each object does the right thing depending on its type.

We set up the constructor so that you cannot create a H | eTr ee object without
saying what file or directory it represents. You might create a H | eTr ee object
likethis:

FileTree barney /usr/local/lib -nane "l ocal libraries"

The first argument (/usr/1 ocal /i b) is assigned to the f nane parameter. The
constructor makes sure that the file exists, and then copies the name to thefil e

Chapter 1: Object-Oriented Programming with [incr Tcl]

variable. If the fileis not found, the constructor returns an error, and the object
creation is aborted.

The remaining arguments (-nane "l ocal |ibraries") are treated as configu-
ration options. They are absorbed by the ar gs parameter, and they are applied
by calling the conf i gur e method at the bottom of the constructor. Remember,
aF |l eTreeisaTree, soit has options like - nane and - val ue.

When we query the contents of a F | eTr ee node, it is automatically populated.
The popul at e method treats the file name as a directory and uses the gl ob
command to query its contents. We create a new F | €Tr ee object for each file
in the directory and add it to the tree using the add method. Once a node has
been populated, we save the modification time for its file in the nti ne variable.
We can call popul at e as often as we like, but the node will not be re-populated
unless the modification time changes.

Each FH | eTr ee object populates itself by adding new F | eTr ee objects as child
nodes. WEe'll call this process procreation. We could create the offspring
directly within the popul at e method, but this would make it hard to use the
same FH | eTree in lots of different file browsers. For example, one file browser
might set the - val ue option on each Fi | €Tr ee object to store the size of the
file, so files could be sorted based on size. Another might set the - val ue option
to store the modification time, so files could be sorted by date. We want to
allow for both of these possibilities (and many more) when we create each
F | eTr ee object.

One solution is to add a procreation method to the F | eTree class. The
popul at e method would call this whenever it needs to create a FH | eTree
object. We could have lots of different derived classes that overload the procre-
ation method and create their offspring in different ways. This approach works
fine, but we would probably find ourselves creating lots of new classes simply
to override this one method.

Instead, let's think for a moment about the Tk widgets. You may have lots of
buttons in your application, but they all do different things. Each button has a
- command option that stores some code. When you push a button, its - cormand
code gets executed.

In the same manner, we can add a - procr eat e option to the F | eTree class.
Whenever a FH | eTree object needs to procreate, it calls whatever procedure
you specify with the - procr eat e option, passing it the file name for the child
object. This is what we do in the popul ate method, as you can see in
Example 1-12.

35

Tcl/Tk Tools

Whenever you have an option that contains code, you have to be careful how
you execute the code. We could use the eval command to execute the procre-
ation code, but it might be more than just a procedure name. For all we know, it
could be awhole script of code. If it sets any variables, we don’'t want to affect
variables inside the popul ate method by accident. Instead, we use
“upl evel #0" to evaluate the command at the globa scope, outside of the
F | eTree class. If it accidentally sets a variable like fi | e, it will be a global
variable called fi | e, and not the private variable fi | e that we can access inside
the popul at e method. We will explore scoping issues like this in more detail
later in this chapter. But for now, just remember to use “upl evel #0" to eval-
uate any code passed in through a configuration option.

We can tell a FH | eTree object like bar ney to procreate with a custom proce-
durelikethis:

barney configure -procreate create_node

When bar ney needs to procreate, it calls creat e _node with the child's file
name as an argument. Thisin turn createsa H | eTr ee object for thefile, config-
ures options like - nane, -val ue and -sort, and returns the name of the new
object. For example, we could use a procedure like this to set the file modifica-
tion time as the value for each node:

proc create_node {fnane} {
set obj [F|eTree #auto $f nane - nane "$f nane"]
$obj configure -value [file niine $f nang]
return $obj
}
We can use al of thisto build the file browser shown in Figure 1-9. Again, the
fileitcl/tree/tree?.itcl contains a complete code example, but the important parts
are shown in Example 1-13.

When you enter a directory name at the top of the browser, we cal the
| oad _dir procedure to build a new file tree. If there is an existing tree, we
destroy it by destroying its root node. Then, we create a new root object to
represent the tree. At some point, we use another procedure called show dir
(not shown here) to display the contents of this node in a listbox. When you
double-click on a directory, we call show di r for that node. When you double-
click on BACK UP, we call show dir for the parent node. Whenever we cal
show di r, it asks for the contents of a node, and the node populates itself as
needed.

The root object uses the creat e_node procedure to procreate. When its child
nodes are created, directory names are given a trailing “/”, and regular files are
given a value that represents their size. All child nodes are configured to

36

Chapter 1: Object-Oriented Programming with [incr Tcl]

procreate using the same creat e_node procedure, so each node expands the
same way.
Example 1-13 A simplefile browser built with the FileTree class.

set root ""
proc load dir {dir} {
gl obal root

if {$root '=""} {
del ete obj ect $root

set root [FileTree #auto $dir -procreate create node]
return $root

}

proc create node {fnane} {
if {[fileisdirectory $f nane]} {
set obj [FileTree #auto $f nane - nane "$f nane/ "]
} else{
set obj [FleTree #auto $f nane -nane $f nane]
$obj configure -value [file size $fnane]

$obj configure -procreate create_node

return $obj

Multiple Inheritance

Suppose we want to create a file browser with a graphical display like the one
shown in Figure 1-11.

= =

Directory: || fustflacaliite] |

= |

3 itel

3 bin

(3 include

- itelh

B itkh

B tclh

L tkh

-3 lib

-3 itciz.o
B init.itcl
B tclApplnit.c

T LT N /

4 File: [fusrlocalfitclincludesitclh

Figure 1-11 Afile browser with a graphical display.

We have al of the pieces that we need. We can use the FH | €Tr ee classto store
the file hierarchy, and the M sual Rep class to draw file elements on a canvas.

37

Tcl/Tk Tools

But how do we combine these elements together? One solution is to use inherit-
ance. We might create a class Vi sual H | €Tr ee to represent each file on the
display. We could say that M sual Fi | eTree is-a F | eTr ee, since it represents
anode in the file hierarchy, and M sual FH | eTr ee is-a M sual Rep, since it will
be drawn on a canvas. In this case, M sual F | €Tr ee needs to inherit from two
different base classes. This is called multiple inheritance. A diagram of these
relationshipsis shown in Figure 1-12.

Tree

A

FileTree M sual Rep

A A

| |
Vi sual A | eTree

Figure 1-12 Diagram of class relationships with multiple inheritance.

The file itcl/tree/tree8.itcl contains a complete code example for the file
browser, but the M sual F | eTr ee classitself is shown in Example 1-14.

Example 1-14 VisualFileTree class used for the file browser shown in Figure 1-11.

class Msual F |l eTree {
inherit FHleTree M sual Rep

public variable state "cl osed"
public variabl e sel ectconmand ""

constructor {file cwn args} {
FileTree::constructor $file
M sual Rep: : constructor $cw n

eval configure $args

public nethod sel ect {}
public nethod toggl e {}

public nethod draw {ul Var nidVar}
public nethod refresh {}

}

body M sual Fi | eTree: :select {} {
M sual Rep: : cl ear $canvas
M sual Rep: : sel ect
regsub -all {%} $sel ectconmand $this cnd
upl evel #0 $cru
}

body M sual F | eTree: :toggl e {} {
if {$state = "open"} {
set state "cl osed"
} else{

38

Chapter 1: Object-Oriented Programming with [incr Tcl]

Example 1-14 VisualFileTree class used for the file browser shown in Figure 1-11.

set state "open"

refresh

configbody Visual FleTree::state {

if {$state != "open" && $state != "closed'} {
error "bad value \"$state\": shoul d be open or cl osed"

refresh

body M sual Fi | eTree: :draw {ul Var midvar} {

}

upvar $ul Var ul
upvar $mdvar md

M sual Rep: :draw ul md
$canvas bind $this <ButtonPress-1> "$this sel ect”
$canvas bind $this <Doubl e-ButtonPress-1> "$this toggl e"

set Ir(x) [expr $ul (x) + 2*($md(x)-$ul (x))]
set Ir(y) $ul(y)

if {$state = "open"} {
foreach obj [contents] {
$obj draw Ir nid2
set id [$canvas create line \
$md(x) $md(y) $md(x) $md2(y) $md2(x) $md2(y) \
-fill black]
$canvas | over $id

}éet ul (y) $ir(y)

body Vi sual FleTree::refresh {} {

}

set root $this
while {[$root back] !=""} {
set root [$root back]

set ol dcursor [$canvas cget -cursor]
$canvas configure -cursor watch
updat e

$canvas del ete all

set ul(x) 5

set ul(y) 5

$root draw ul nmd

set bbox [$canvas bbox all]

$canvas configure -cursor $ol dcursor -scrol | regi on $bbox

Each class can have only onei nherit statement, but it can declare several base
classes, which should be listed in their order of importance. First and foremost,
Msual FleTreeisaH |l eTree, butitis aso aV sual Rep. This means that
any methods or variables that are not defined in M sual F | eTr ee are found
first in H | eTree, and then in M sual Rep. When base classes have members
with the same name, their order in the inherit statement can affect the
behavior of the derived class.

39

Tcl/Tk Tools

Notice that we added a - st at e option to M sual FH | eTr ee, and we redefined
the draw method to handle it. When we draw a node that has - stat e set to
“open”, we also draw the file hierarchy underneath it. First, we cal
M sual Rep: : drawto draw the file name and its icon on the canvas. Then, if
this object isin the “open” state, we scan through the list of child nodes and tell
each one to draw itself in the space below. If achildisalsointhe “open” state,
it will tell its children to draw themselves, and so on.

It is easy to arrange things on the canvas. The dr awmethod does all of the hard
work. Asyou will recall from Example 1-11, we use the ul array to passin the
(x,y) coordinate for the upper-left corner of the icon. When we call
M sual Rep: : draw it draws only a file name and an icon, and it shifts ul (y)
down below them. When we call M sual H | €Tr ee: : dr aw it draws a file name
and an icon, and perhaps an entire file tree below it. But again, it shifts ul ()
down so we are ready to draw the next element.

The draw method also returns the midpoint of the icon via the mdvar argu-
ment. This makes it easy to draw the connecting lines between a parent icon
and each of the child icons. In the M sual FH | €Tree: : draw method, for
example, we capture the parent coordinate in the md array. When we call the
dr awmethod for the child, it returns the child coordinate in the m d2 array. We
then draw the lines connecting these two points.

As we draw each file entry, we add some bindings to it. If you click on afile,
we call the sel ect method to select it. If you double-click on afile, we call the
t oggl e method to toggle it between the “open” and “closed” states.

We redefined the sel ect method for a M sual H | €Tr ee object to support a
- sel ect coomand option. This is a lot like the - conmand option for a button
widget. It lets you do something specia each time a M sual H | eTr ee object is
selected. When we call the sel ect method, it first calls M sual Rep: : cl ear to
desclect any other files, and then cadls the base class method
M sual Rep: : sel ect to highlight the file. Finally, it executes the code stored in
the - sel ect conmand option. We use “upl evel #0" to execute this code at the
global scope, so it doesn’'t change any variables within the sel ect method by
accident.

If the - sel ect coomand code contains the string “ %", we use r egsub to replace
it with the name of the M sual FH | eTr ee object before the code is executed.
This is similar to the way the Tk bi nd command handles fields like “%” and
“o”". This feature lets us use the same -sel ect coomand for all of our
M sual FH | eTree objects, but each time it is executed, we know which object
was selected.

40

Chapterl: Object-Oriented Programming with [incr Tcl]

The t oggl e method toggles the - st at e option between open and cl osed, and
refreshes the drawing on the canvas. In effect, this opens or closes a folder in
thefile hierarchy.

The ref resh method should be called whenever anything changes that would
affect the drawing on the canvas. Whenever the - stat e option changes, for
instance, we need to refresh the drawing to expand or collapse the file tree at
that point. The configbody for the st at e variable first checks to see if the new
state is valid, and then calls refresh to update the drawing. The refresh
method searches up through the hierarchy to find the root of the tree. It clears
the canvas and then tells the root object to draw itself at the coordinate (5,5). If
the root is “open,” then its children will be drawn, and if they are “open,” their
children will be drawn, and so forth. The entire drawing is regenerated with
just onecal torefresh.

Protection Leels: Potected

So far, we have discussed two protection levels. Private class members can be
accessed only in the class where they are defined. Public members can be
accessed from any context. When one class inherits another, therefore, the
inherited members that are public can be accessed from the derived class
context. The private members are completely private to the base class.

Some members sit in the gray area between public and private. They need to be
accessed in derived classes, but they should not be exposed to anyone using the
class. For example, in the V sual Rep base class shown in Example 1-11, we
defined a canvas variable to store the name of the canvas used for drawing.
Since this is a private variable, a derived class like M sual F | eTr ee does not
have access to it. The methods shown in Examplel-14 like
M sual F | eTree: : drawand M sual F | €Tr ee: : sel ect will fail, claiming that
canvas is an undefined variable.

Like C++, [INCR TcL] provides a third level of protection that falls between
public and private. When members need to be shared with derived classes but
shielded from anyone using the class, they should be declared protected We
can fix the M sual Rep class to use a protected variable as shown in Example 1-
15.

Examplel-15 “Protected” members can be accessed in derived classes.

class M sual Rep {
public variable icon "defaul t"
public variable title ""

protected variabl e canvas ""

41

Tcl/Tk Tools

Examplel-15 “Protected” members can be accessed in derived classes.

}

class Msual FleTree {
inherit HleTree M sual Rep

publ i ¢ nethod sel ect {}

}

body M sual Fi | eTree: :sel ect {} {
M sual Rep: : cl ear $canvas
M sual Rep: : sel ect
regsub -all {9} $sel ectconmand $this cnd
upl evel #0 $cru

As arule, it is better to use public and private declarations for most of your
class members. Public members define the class interface, and private members
keep the implementation details well hidden. Protected members are useful
when you are creating a base class that is meant to be extended by derived
classes. A few methods and variables may need to be shared with derived
classes, but this should be kept to a minimum. Protected members expose
implementation details in the base class. If derived classes rely on these details,
they will need to be modified if the base class ever changes.

Constructos and Destructa

Each class can define one constructor and one destructor. However, a class can
inherit many other constructors and destructors from base classes.

When an object is created, all of its constructors are invoked in the following
manner. First, the arguments from the object creation command are passed to
the most-specific constructor. For example, in the command:

M sual F | eTree #auto /usr/local/lib .canv -icon dirlcon

the arguments “/usr/local/lib .canv -icon dirlcon” ae passed to
M sual F | eTree:: construct or. If any arguments need to be passed to a base
class constructor, the derived constructor should invoke it using a special piece
of code called an initialization statement This statement is sandwiched
between the constructor’'s argument list and its body. For example, the
M sual F | eTree class shown in Example 1-14 has an initialization statement
that looks like this:

FileTree::constructor $file
M sual Rep: : constructor $cw n

The fil e argument is passed to the F | eTree: : construct or, and the cw n
argument is passed to the M sual Rep: : const r uct or . The remaining arguments
are kept in the ar gs variable, and are dealt with later.

42

Chapter 1: Object-Oriented Programming with [incr Tcl]

After the initialization statement is executed, any base class constructors that
were not explicitly called are invoked without arguments. If there is no initial-
ization statement, all base class constructors are invoked without arguments.
This guarantees that all base classes are fully constructed before we enter the
body of the derived class constructor.

Each of the base class constructors invoke the constructors for their base classes
in a similar manner, so the entire construction process is recursive. By default,
an object is constructed from its least-specific to its most-specific class. If
you're not sure which is the least-specific and which is the most-specific class,
ask an object to report its heritage. If we had a M sual H | eTr ee object named
fred, we could query its heritage like this:

%fred info heritage

Visual FileTree FileTree Tree M sual Rep
This says that M sual F | eTr ee is the most-specific class and M sual Rep is the
least-specific. By default, the constructors will be called in the order that you
get by working backward through this list. Class M sual Rep would be
constructed first, followed by Tree, F | eTree, and M sual Fi | eTree. Our
initialization statement changes the default order by caling out
FH | eTree: : construct or before M sual Rep: : const ruct or .

Objects are destroyed in the opposite manner. Since there are no arguments for
the destructor, the scheme is a little simpler. The most-specific destructor is
caled firgt, followed by the next most-specific, and so on. Thisis the order that
you get by working forward through the heritage list. M sual F | eTr ee would
be destructed first, followed by F | eTr ee, Tr ee and M sual Rep.

Inheritance versus Composition

Inheritance is a way of sharing functionality. It merges one class into ancther,
so that when an object is created, it has characteristics from both classes. But in
addition to combining classes, we can also combine objects. One object can
contain another as a component part. This is referred to as a compositional or
has-a relationship.

For example, suppose we rewrite our Msual FleTree class so that a
M sual FleTree isa F | eTree, but has-a M sual Rep as a component part.
Figure 1-13 shows a diagram of this design.

The code for this Vi sual FH | eTr ee class is quite similar to Example 1-14, but
we have highlighted several important differences in bold type. Whenever we
create a M sual FH | eTree object, we create a separate M sual Rep object to
handle interactions with the canvas. We create this component in the

43

Tcl/Tk Tools

Tree
* isa
|
FleTree

A isa
| has-a
Msual FileTree K>— M sual Rep

Figure 1-13 VisualFileTree class has-a Visual Rep component.

Example 1-16 VisualFileTree class which brings in Visual Rep using composition instead
of inheritance.

class Msual FleTree {

}

inherit FleTree

public variable state "cl osed"
public variabl e sel ectconmand ""

public variable icon "" {
$vis configure -icon $icon

}
public variable title "" {

$vis configure -title $title
private variable vis ""

constructor {file cwn args} {
FileTree::constructor $file

set vis [Msual Rep #auto $cwin -icon $icon -title $title]
eval configure $args

destructor {

del ete object $vis
public nethod sel ect {}
public nethod toggl e {}

public nethod draw {ul Var nidVar}
public nethod refresh {}

body M sual Fi |l eTree: :sel ect {} {

M sual Rep: : cl ear [$vis canvas]

$vi s sel ect

regsub -all {%} $sel ectconmand $this cnd
upl evel #0 $cru

constructor, and save its name in the variable vi s. We delete this component in
the destructor, so that when aM sual F | €Tr ee object is deleted, its Vi sual Rep

44

Chapter 1: Object-Oriented Programming with [incr Tcl]

component is deleted as well. If we didn’t do this, ¥theual Rep components
would hang around indefinitely, and we would have a memory leak.

With inheritance, all of the public members from the base class are automati-
cally integrated into the derived class, becoming part of its interface. With
composition, nothing is automatic. If you need to access a method or a configu-
ration option on the component, you must write a “wrapper” in the containing
class. For example, thé sual Rep component hasi con and-titl e options

that control its appearance. If we want to be able teis®n and-titl e for

theM sual F | eTr ee object, we must explicitly add these variables, and include
configbody code to propagate any changes down tdi the&l Rep component.

With inheritance, we have access to protected data members defined in the base
class. With composition, we have access only to the public interface for the
component part. Since thé sual Rep is now a separate object, we cannot
access itzanvas variable from\i sual H | eTree. But we can call itganvas

method to query the name of its canvas. (We were smart enough to add this
back in Exampld-11, although we hardly mentioned it at the time.) We use
this in thesel ect method to clear othéi sual Rep objects on the same canvas
before selecting a new one.

Inheritance and composition are like two sides of the same coin. Sometimes
inheritance leads to a better solution, sometimes composition. Many problems
are solved equally well using either approach. Knowing whether to use inherit-
ance or composition is a matter of experience and judgement, but | can give you
a few simple guidelines here.

e Use inheritance to create layers of abstraction.

For example, the code forlisual F | €Tr ee is neatly abstracted into three
classes:M sual FH | eTree is-a F | eTree, whichis-a Tree. Now suppose

that we have a problem with thé sual H | eTree. We won’t have to
search through all of the code to find the bug. If the problem has to do with
the tree, we look in théree class. If it has to do with the file system, we
look in theF | eTr ee class. And so on.

* Use inheritance to build a framework for future enhancements.

We can extend our tree library at any point by adding new classes into the
hierarchy. For example, we might create a cMkdget Tree that is-a

Tree, but adds code to query the Tk widget hierarchy. We might create a
classSourceFi | eTree thatis-a FH | eTree, but adds methods to support
source code control.

45

Tcl/Tk Tools

* Use composition when you catch yourself making exceptions to the is-a
rule.

With inheritance, al of the public variables and all of the methods in the
base class apply to the derived class. For example, F | eTree is-a Tree, so
we can treat it exactly like any other Tree object. We can add nodes to it,
reorder the nodes, clear the nodes, and set the - nane, - val ue and - sort
options. If you catch yourself making exceptions to this, then you are no
longer talking about inheritance.

Suppose you're thinking that FH | eTr ee is like a Tr ee, except that you can’t
clear it, and it doesn’'t have the - val ue option. In that case, you should add
the tree behavior using composition instead of inheritance. You could say
that FH | eTr ee has-a Tr ee within it to maintain the actual data. The Tree
would be completely hidden, but you could wrap the methods and the
options that you want to expose.

» Use composition when the relationships between classes are dynamic.

Again, with inheritance FH | eTree is-a Tree, once and for al time. Sup-
pose you wanted to have F | eTr ee switch dynamically between a tree rep-
resentation and a flat list of files. In that case, you would be better off
using composition to support interchangeable parts. You could say that
F | eTree has-a Tr ee, or that FH | €Tr ee has-a Li st, depending on its mode
of operation.

« Use composition when a single object must have more than one part of the
same type.

When we first presented class M sual F | €Tr ee, for example, we said that
Vi sual H | eTree is-a M sual Rep, which appears on a canvas. But suppose
that you wanted a single M sual F | eTr ee object to appear on many differ-
ent canvases. You could support this using composition. You could say
that M sual FH | eTree has-a M sual Rep component for each canvas that it
appears on.

» Use composition to avoid deep inheritance hierarchies.

With inheritance, each class builds on the one before it. At first, this seems
like an exciting way to reuse code. But it can easily get out of hand. At
some point, it becomes impossible to remember all the details that build up
in a series of base classes. Most programmers reach their limit after some-

T C++ letsyou suppress certain things coming from a base class through private inheritance. Thisevil
feature is not supported by [INCR TcCL].

46

Chapter 1: Object-Oriented Programming with [incr Tcl]

thing like 5 levels of inheritance. If you trade off some of your inheritance
relationships for composition, you can keep your hierarchies smaller and
more manageable.

e If you can't decide between inheritance and composition, favor
composition.

Inheritance lets you reuse code, but it is white-box reuse. Each base class
is exposed—at least in part—to all of its derived classes. You can see this
in Example 1-15. The M sual F | eTr ee class relies on the canvas variable
coming from the M sual Rep base class. This introduces coupling between
the two classes and breaks encapsulation. |f we ever change the implemen-
tation of M sual Rep, we may haveto revisit M sual FH | eTr ee.

On the other hand, composition supports black-box reuse. The internal
workings of each object are completely hidden behind a well-defined inter-
face. In Example 1-16, we modified the M sual FH | eTree class to use a
M sual Rep component. Instead of relying on its internal canvas variable,
we used a well-defined method to interact with its canvas. Therefore,
M sual FH | eTr ee is completely shielded from any changes we might make
inside M sual Rep.

Neither inheritance nor composition should be used exclusively. Using only
one or the other is like using only half of the toolsin atool box. The choice of
tool should be based on the problem at hand. Redlistic designs have many
different classes with a mixture of both relationships.

Namespaces

A namespace is a collection of commands, variables and classes that is kept
apart from the usual global scope. It provides the extra packaging needed to
create reusable libraries that plug-and-play with one another.

For example, suppose we want to reuse our file browser code in other applice-
tions. We need to include our classes, along with procedures like | oad_di r and
creat e_node shown in Example 1-13. But if an application happens to have
procedures named | oad_di r or creat e_node, adding the file browser code will
break it. If an application already uses a globa variable named r oot , caling
thel oad_di r procedure will corrupt its value.

Name collisions like this make it difficult to construct large Tcl/Tk applica
tions. They cause strange errors that are difficult to debug, and they are a
barrier to code reuse. But when commands, variables and classes are packaged
in their own namespace, they are shielded from the rest of an application.
Libraries can be used freely, without fear of unwanted interactions.

47

Tcl/Tk Tools

Creating Namespaces

We can turn our file browser code into afile browser library by packaging it in
a namespace. A complete code example appears in the file itcl/tree/treelQ.itcl,
but the important parts are shown in Example 1-17. Variables and procedures
are added to a namespace in much the same way that they are added to a class.
Procedures are defined using the usual proc command. Variables are defined
using the vari abl e command, which may include an initialization value. These
are not instance variables like you would have in a class. These variables act
like ordinary “global” variables, but they reside within the namespace, and not
at the usual global scope. Defining a variable causes it to be created, but unlike
a class, the variable is not automatically available in the procedures in the
namespace. You must declare each variable with the Tcl gl obal command to
gain accesstoit.

Example 1-17 Namespace for the file browser library.

nanespace fil ebrowser {
variabl e roots

proc load dir {cwn dir {selcnd ""}} {
gl obal roots

if {[info exists roots($cwin)]} {
del ete obj ect $root s($cw n)

}

set roots($cwin) [create node $cw n $sel cnd $dir]
$root s($cwi n) configure -state open

$root s($cwi n) refresh

return $root s($cw n)

}

proc create _node {cwi n sel cnd fnane} {

}
proc cnp_tree {option obj 1 obj 2} {

}
}

Within the context of the namespace, commands and variables can be accessed
using simple names like | oad di r and root s. All of the procedures defined in
a namespace execute in that context, so within the body of | oad dir, we can
access things like cr eat e_node and r oot s without any extra syntax. In another
context, names must have an explicit namespace qualifier. For example, an
application could usethel oad_di r procedure like this:

filebrowser::load_dir .display.canv /usr/local/lib

This is just how we would call a class procedure, and the similarity is ho acci-
dent. A classis a namespace, but with a little extra functionality to create and
manage objects. Classes are also more rigid. Once the class interface is

48

Chapterl: Object-Oriented Programming with [incr Tcl]

defined, it cannot be modified unless the class is deleted. But a namespace can
be updated on-the-fly to create, redefine or delete commands and variables.

We can add another procedure to the fil ebr owser namespace with another
nanespace command, like this:

nanespace fil ebrowser {

proc all {} {
gl obal roots

return [array nanes roots]

}

This activates the fi | ebr owser context, and then executes the proc command
within it, defining the new procedure. Another way of creating the procedure is
to define it with an ordinary proc command, but include the namespace context
inits name:

proc filebrowser::all {} {

gl obal roots
return [array nanes roots]

}
The procedure can be deleted like this:

nanespace filebrowser {
renane all ""

}
or likethis:

renane filebrowser::all ""
An entire namespace can be deleted using the del et e command, likethis:
del et e nanespace fil ebr onser

This deletes al commands and variables in the namespace, and removes all
trace of the namespace itself.

The namespace containing a command or variable is part of the identity for that
command or variable. Elements with the same name in another namespace are
totally separate. Suppose we wrap our du browser in a namespace, as shown in
Example 1-18.

Examplel-18 Namespace for the “du” browser library.

nanespace di skusage {
variabl e roots

proc load dir {twn dir} {
gl obal roots

set parentDr [file dirnane $dir]

set roots($twin) [Tree ::#auto -nane $parentOr]
set hiers($parentDir) $roots($tw n)

49

Tcl/Tk Tools

Examplel-18 Namespace for the “du” browser library.

set info [split [exec du -b $dir] \n]
set last [expr [Ilength $info]-1]

for {set i $last} {$ >=0} {incr i -1} {

show dir $twin $root s($tw n)
N
proc showdir {twn obj} {
, o
proc add entry {twin line obj} {
;o
proc cnp_tree {obj1 obj 2} {

}
}

The di skusage namespace also contains a | oad di r command and a roots
variable, but they are completely separate from those in the fil ebr ownser
namespace. This is obvious when we try to use them. An application could
load a directory into the file browser like this:

filebrowser::load dir .display.canv /usr/local/lib
and display the usage information for a directory like this:
di skusage: :1oad dir .textwin /usr/local/lib

The explicit namespace qualifiers remove the ambiguity between these two
commands.

One namespace can contain another namespace inside it, so one library can
have its own private copy of another library. For example, we could include the
di skusage library withinthefi | ebr owser library like this:

nanespace fil ebrowser {
nanespace di skusage {
vari abl e roots
proc load dir {twn dir} {

.
}

Within the fil ebrowser namespace, the usage information for a directory
could be displayed as shown earlier:

50

Chapter 1: Object-Oriented Programming with [incr Tcl]

nanespace filebrowser {
di skusage: :1oad dir .textwn /usr/local/lib

}
Outside of fi | ebr ower, the complete namespace path must be specified:

fil ebrowser::diskusage::load dir .textwn /usr/local/lib

Every interpreter has a global namespace called “: : " which contains al of the
other namespaces. It also contains the usual Tcl/Tk commands and global vari-
ables. Each Tcl/Tk application starts off in this namespace, which | call the
global context. When you define other namespaces and call their procedures,
the context changes.

Name Resolution

Qualified names are like file names in the Unix file system, except that a “: :”
separator is used instead of “/”. Any name that starts with “: : ” istreated as an
absolute reference from the global namespace. For example, the command

c:filebrowser::diskusage::load_dir .textwin /usr/local/lib

refers to the load dir command in the di skusage namespace, in the
fil ebr onser namespace, in the global namespace.

If a name does not have a leading “::”, it is treated relative to the current
namespace context. Lookup starts in the current namespace, then continues
along a search path. Each namespace has an import list that defines its search
path. When a namespace is added to the import list, all of the commands and
variablesin that namespace can be accessed with simple names.

For example, we could import the fil ebrowser namespace into the global
namespace like this:

inport add fil ebrowser
We could then use the | oad_di r command in the global namespace without an
explicit quaifier, likethis:

load_dir .display.canv /usr/local/lib

Thel oad di r command is not found directly in the global namespace, but reso-
lution continues along the import path to the fi | ebr onser namespace, where
thefil ebrowser: :1 oad_di r command isfound.

It is okay to import other namespaces that have the same command or variable
names. We could import the di skusage namespace, even though it also has a
| oad_dir procedure. The first command or variable found along the import
path is the one that gets used.

51

Tcl/Tk Tools

If you have any questions regarding name resolution, they can be answered by
using the “i nf o whi ch” command. This command returns the fully qualified
name for any command, variable or namespace in the current context. In this
example, the command:

i nfo which -command | oad dir

would return the fully qualified name: : fil ebrowser::load dir.

By default, each namespace imports its parent, so commands and variables in
the global namespace are automatically accessible. Other import relationships
should be used sparingly. After dl, if the global namespace imported all of the
others, we would be back to one big pot of commands and variables, and there
wouldn’t be much point to having namespaces.

Using Objects Outside of Their Namespace

If you create an object within a namespace, you’'ll have trouble referring to it
outside of the namespace. Suppose you create a M sual F | eTr ee object within
thefi | ebr owser namespace like this:

nanespace fil ebrowser {
Visual FleTree fred /usr/local /lib .display.canv

}
and then you try to add a node to it in another namespace like this:

nanespace di skusage {
Visual FileTree wilna /usr/local /bin .display. canv
fred add w | na

}
This will fail. Since the fred object was created in the fil ebrowser
namespace, the f red command is local to that namespace. We will not be able
to find a fred command in di skusage unless the fi | ebr owser namespace is
somewhere on itsimport path.

Usually, this is a good thing. Namespaces are doing their job of keeping the
two packages separate, and protecting the elements inside them. But from time
to time, you will want to share objects between packages. This problem all has
to do with naming, and it can be solved through proper naming too.

One solution is to use the full name of an object when you are referring to it in
another namespace. For example, we could say:
nanespace di skusage {

Visual FHleTree wilma /usr/local /bin .displ ay. canv
c:filebrowser::fred add w | na

52

Chapter 1: Object-Oriented Programming with [incr Tcl]

You may have noticed that an object’s t hi s variable reports the full name of
the object, including its namespace path. Thisis the reason. If you use $this
is a command, you will be able to find the object from any context. When you
use the full name, you leave nothing to chance in command resol ution.

Another solution is to create the object in some namespace that all of your pack-

ages naturally import. For example, all namespaces import the global “::”

namespace. Y ou can create an object in the global namespace like this:
nanespace fil ebrowser {

upl evel #0 Misual FHleTree fred /usr/local/lib .display.canv
}

or likethis:

nanespace fil ebrowser {
nanespace :: { Msual FleTree fred /usr/local/lib .display.canv }

}
or likethis:

nanespace fil ebrowser {
Visual FileTree ::fred /usr/local/lib .display. canv

}
In the first case, we use the “upl evel #0” command to transition to the o call
frame, which is the global context, and we create the object there. In the second
case, we use the namespace command to get the same effect. In the third case,
we execute the M sual H | eTree command in the fi | ebr owser namespace, but
we give the object a name that belongs to the global namespace. The effect is
the same. We create an object named f r ed that we can access from the global
namespace, and therefore, we can access it from any namespace in the
application.

Instead of putting an object all the way out in the global namespace, you may
want to put it in a more restricted namespace that only certain packages have
accessto. Remember, namespaces can be nested, and each namespace automati-
cally imports things from its parent. We could wrap the fi | ebrowser and the
di skusage namespace in another namespace called fil estuff, for example,
and put all of the shared objectsinfil est uff:

nanmespace filestuff {
nanespace fil ebrowser {

Msual HleTree ::filestuff::fred /usr/local/lib .display.canv

53

Tcl/Tk Tools

nanespace di skusage {

Visual FleTree ::filestuff::wlma /usr/local/bin .display.canv
fred add w | na

}

That way, these objects can still be shared acrossfi | ebr owser and di skusage,
but they won’t interfere with any other packages.

Sometimes it is easy to forget that other classes need access to an object. When
the Tree class adds an object to a tree, for example, it needs to talk to that
object to set its parent. If al of our Tree objects are sitting in the fi | est uf f
namespace, but the Tree class itself is sitting one level up in the global
namespace, we will again have praoblems. As much as possible, keep al of the
code related to a package together in the same namespace. If the Tree classis
needed only for the filebrowser package, put it in the fil ebrowser
namespace. If it needs to be shared across both the fil ebrowser and the
di skusage packages, put it above them inthefi | est uf f namespace.

Classes can be defined within a namespace like this:

nanespace filestuff {
class Tree {

}

class HleTree {
}
}
or like this:

class filestuff::Tree {

}

class filestuff::FleTree {

}

In either case, the classes are completely contained within the fil est uff
namespace, so if an application has another Tr ee class, it will not interfere with
the one in the fil est uf f namespace. More importantly, since the Tree class
now resides within filestuff, it automatically has access to the objects in
filestuff.

Chapter 1: Object-Oriented Programming with [incr Tcl]

Protection Levels

Just as you can have public, private and protected elements in a class, you can
have public, private and protected elements in a namespace. This helps to docu-
ment your interface, so that someone using your library knows which variables
and procedures they can access, and which ones they should leave alone. For
example, look at the filebrowser library shown in Example 1-19. It is obvious
that | oad_di r procedure is the only thing that you need to use to access a file
browser. Everything elseisprivatetothefi | ebr onser namespace.

Example 1-19 File browser library with public/private declarations.

nanespace fil ebrowser {
private variabl e roots

public proc load dir {cwn dir {selcnd ""}} {
gl obal roots

if {[info exists roots($cwin)]} {
del ete obj ect $root s($cw n)

}

set roots($cwin) [create node $cwin $sel cnd $dir]
$root s($cwin) configure -state open

$root s($cwi n) refresh

return $root s($cw n)

}

private proc create node {cwin sel cnd fnane} {

}
private proc cnp_tree {option obj 1 obj 2} {

}
}

If you don’t specify a protection level, everything is public by default, including
your variables. This makes namespaces backward-compatible with the rest of
Tcl/Tk, but it aso makes them different from classes. In classes, methods are
public by default, but variables are protected.

Namespaces are aso alittle different when it comes to protected elements. Ina
class, protected elements can be accessed in any derived class. But there is no
“derived” namespace. The closest equivalent is a nested namespace. If you
create a protected element in one namespace, you can access the element in any
of the other namespaces nested within it. Y ou might create a protected variable
in a namespace like filestuff and share it among the namespaces like
fil ebrowser and di skusage nested withinit.

On the other hand, a private element is completely private to the namespace that
containsit. If you create a private variableinfil est uf f, it will not show upin
any other context, including nested namespaces like fil ebrowser and
di skusage.

55

Tcl/Tk Tools

Using Classes and Namespaces

There are some strong similarities between classes and namespaces, but they
play different roles in your application. Classes are data structures. They let
you create objects to represent the data in your application. For example, we
used M sual F | eTr ee objects to represent each of the files in our file browser.
On the other hand, namespaces are a way of organizing things. We used the
fil ebrowser namespace to wrap up the variables and procedures for our file
browser library. There is one variable r oot s and one procedure | cad dir for
the file browser, but instead of floating around at the global scope, they are
grouped together in thefi | ebr owser namespace.

You can use hamespaces to organize classes. For example, we grouped Tr ee,
F leTree and i sual H | eTree into the fi | est uf f namespace. Again, instead
of floating around at the global scope, these classes reside with the rest of the
file browser library, where they are needed.

You can also use namespaces to organize other namespaces. For example, we
grouped the fil ebronser namespace and the di skusage namespace into the
same fil est uf f namespace. We can add the fil estuff library to any of our
applications, and access the separate fil ebrowser and di skusage utilities
within it.

Scoped Commands and Variables

Classes and namespaces are really good at protecting the elements within them.
But suppose you want something to be private or protected, but there is one
other class—or perhaps one other object—that needs to have access to it. This
may be a completely separate class with no inheritance relationship, so we can’t
rely on “protected” access to solve the problem. And we don’t want to open
things up for “public” access. In C++, you can declare certain classes and func-
tions as friends, thereby granting them special access privileges. In [INCR TCL],
we handle this in a different manner, but the effect is the same.

You can see the problem more clearly in the following example. Suppose we
have a f ol der: : creat e procedure that creates a checkbutton with an associ-
ated file folder icon. We might use this procedure like this:

set counter O

foreach dir {/usr/nan /usr/local / nan /usr/ X1l man} {
set nane ".dir[incr counter]"
folder::create $nane $dir
pack $nane -fill x

56

Chapter 1: Object-Oriented Programming with [incr Tcl]

to create the checkbuttons shown in Figure 1-14. When you toggle one of these
checkbuttons, it changes the indicator box, and it also opens or closes the folder
icon.

Ai namesp.itcl iJ
= W fusriman

= W fusrflocaliman
103 i fusridiiiman ||

==

Figure 1-14 Some checkbuttons created by folder::create.

The f ol der: : creat e procedure is shown in Example 1-20. Each time we call
it, we create a frame with a label and a checkbutton. Each checkbutton needs a
variable to keep track of its state. |f we use an ordinary global variable, it might
conflict with other variables in the application. Instead, we create a nodes vari-
able inside the f ol der namespace, and we make it private so that no one else
can tamper with it. We treat this variable as an array, and we give each folder
assembly a different slot within it. Whenever the checkbutton is invoked, it
togglesthis variable and callsther edi spl ay procedure to update the icon.

Example 1-20 Using the code and scope commands to share command and variable
references.

nanespace fol der {
private variabl e i mages
set inmages(open) [inage create photo -file dirl. gif]
set inages(cl osed) [inage create photo -file dir2 gif]

private variabl e nodes

public proc create {win name} {
frame $wn
| abel $wi n.icon
pack $win.icon -side left

checkbutton $w n.toggl e -text $nane \
-onval ue "open" -of fval ue "cl osed" \
-variabl e [scope nodes($w n)] \
-comnmand [code redisplay $w n]

pack $win.toggle -side left -fill x
$wi n. toggl e i nvoke
}

public proc get {wn} {
ol obal nodes
return $nodes($w n)

private proc redisplay {wn} {
gl obal nodes i nages
set state $nodes($w n)
) $win.icon configure -i mage $i nages($st at e)
}

57

Tcl/Tk Tools

The checkbutton is clearly a key player in the fol der library. We want it to
have access to the nodes variable and to the redi spl ay procedure, but we also
want to keep these things private. No one else should really be using them.
Unless we do something special, the checkbutton will be treated as an outsider
and it will be denied access to these elements.

The problem is that options like - conmand and - vari abl e are being set inside
the fol der namespace, but they are not evaluated until much later in the
program. It is not until you click on a checkbutton that it toggles the variable
and invokes the command. This happens in another context, long after we have
left thef ol der: : creat e procedure.

There are two commands that let you export part of a namespace to a friend.
The scope command lets you export a variable reference, and the code
command lets you export a code fragment. Both of these commands are used
on a case-by-case basis. When we create the checkbutton and set the -vari -
abl e option, for example, we enclosed the nodes variable in the scope
command. This gives the checkbutton access to just this variable.” If we set
the -vari abl e option to a different variable name, it will lose access to the
nodes variable. Similarly, when we set the - conmand option, we enclosed the
code fragment in the code command. This lets the checkbutton execute the
redi spl ay command. But if we set the - coomand option to something else,
again, it will lose accessto redi spl ay.

The code and scope commands work by capturing the namespace context.
They preserve it in such a way that it can be revived again later. So when the
checkbutton needs to access its variable, it actually jumps back into the f ol der
namespace and looks for the nodes variable. When the checkbutton needs to
invoke its command, again, it jumps back into the f ol der namespace and looks
for the redi spl ay command. Since it accesses things from within the f ol der
namespace, it by-passes the usual protection levels. In effect, we have given the
checkbutton a“back door” into the namespace.

You can see how this works if you query back the actual - conmand or -vari -
abl e string that the checkbutton is using. For example, we created the
checkbutton with a command like this:

checkbutton $win.toggle ... -command [code redisplay $w n]
But if we query back the - cormand string, it will look like this:

@cope ::folder {redisplay .dirl}

t Actualy, tojust oneslot in the array.

58

Chapter 1: Object-Oriented Programming with [incr Tcl]

This string is the result of the code command, and is called a scoped value. Itis
really just a list with three elements. the @cope keyword, a namespace
context, and a value string. If this string is executed as a command, it automati-
cally revives the : : fol der namespace, and then executes the code fragment
“redi spl ay .dirl” inthat context.

Note that the code command does not execute the code itself. 1t merely formats
the command so that it can be executed later. We can think of [code ...] asa
new way of quoting Tcl command strings.

When the code command has multiple arguments, they are formatted as a Tcl
list and the resulting string becomes the “value’ part of the scoped value. For
example, if you execute the following command in the f ol der namespace:

set cnu [code $win.toggl e configure -text "enpty fol der"]
it produces a scoped value like this:

@cope ::folder {.dirl.toggl e configure -text {enpty fol der}}
Notice how the string “empty folder” is preserved as a single list element. If it
were not, the command would fail when it is later executed.
The code command can also be used to wrap up an entire command script like
this:

bi nd $wi n. i con <ButtonPress-1> [code "
$wi n.toggl e flash
$wi n. toggl e i nvoke
"]
In this case, we combined two commands into one argument. There are no
extra arguments, so the code paragraph simply becomes the “value’ part of the
scoped value that is produced.

The scope command works the same way as the code command, except that it
takes only one argument, the variable name. For example, we created the check-
button like this:

checkbutton $win.toggle ... -variable [scope nodes($w n)]
But if we query back the - val ue string, it will look like this:
@cope ::fol der nodes(.dir1l)

This entire string represents a single variable name. If we try to get or set this
variable, the @cope directive shifts us into the f ol der namespace, and looks
for avariable named nodes in that context.

59

Tcl/Tk Tools

If you forget to use the code and scope commands, you'll get the normal Tk
behavior—your commands and variables will be handled in the global context.
For example, if we created the checkbutton like this:
checkbutton $w n.toggl e -text $nane \

-onval ue "open" -of fval ue "cl osed" \

-variabl e nodes($w n) \

-command "redi spl ay $w n"
then it would look for a variable named nodes in the global namespace, and it
would try to execute a command called redi spl ay in the global context. In
some cases this is okay, but more often than not you will need to use the code
and scope commands to get things working properly.

Y ou should use the code and scope commands whenever you are handing off a
reference to something inside of a namespace. Use the code command with
configuration options like - command, -xscrol | cormand, -yscrol | conmand,
etc., and with Tk commands like bi nd, after and fil eevent. Use the scope
command with options like -variable and -textvariabl e, and with Tk
commandslike“t kwai t vari abl e”.

But athough you should use these commands, you should not abuse them.
They undermine a key feature of object-oriented programming: encapsulation.
If you use these commands to break into a class or a namespace where you
don’'t belong, you will pay for it later. At some point, details inside the class or
the namespace may change, and your code will break miserably.

| nteractive Devel opment

[INCR TcL] has many features that support debugging and interactive develop-
ment. Each class has a built-in i nf o method that returns information about an
object. So you can query things like an object’s class or its list of methods on
the fly. This is not possible in C++, but it is quite natural in a dynamic
language like Tcl.

Suppose we have defined classes like Tree and F | eTree, and we create a
H | eTr ee abject by typing the following command at the “% prompt:

%F | eTree henry /usr/local -procreate "F | eTree #auto"
henry

We get the result henr y which tells us that an object was created successfully.

If someone hands us this object and we want to determine its class, we can use
the“i nfo cl ass” query:

%henry info class
FleTree

60

Chapter 1: Object-Oriented Programming with [incr Tcl]

This says that henry was created as a H | eTree object, so its most-specific
classisFH 1l eTree. You can get alist of al the classes that henry belongs to
using the “i nfo heritage” query:

%henry info heritage

FileTree Tree
This says that first and foremost, henry is a F | €Tree, but it is also a Tree.
The classes are visited in this order whenever a method or a variable reference
needs to be resolved.

When you want to know if an object belongs to a certain class, you can check
its heritage. You can also use the built-in i sa method to check for base
classes. You givei sa a class hame, and it returns non-zero if the class can be
found in the object’s heritage. For example:

%henry isa Tree

1

%henry isa M sual Rep
0

This says that henr y belongsto class Tr ee, but not to class M sual Rep.

The “i nfo function” query returns the list of class methods and procs. This
includes the built-in methods like conf i gur e, cget and i sa aswell:
%henry info function
FileTree::popul ate FleTree::contents FleTree::constructor Tree::configure
Tree::reorder Tree::cget Tree::isa Tree::constructor Tree::destructor
Tree::add Tree::back Tree::parent Tree::contents Tree::clear
Each function is reported with its full name, like Tree: : add. This helps clarify
things if you inherit methods from a base class. You can retrieve more detailed
information if you ask for a particular function:

%henry info function contents
public nethod F |eTree::contents {} {
popul at e
return [Tree::contents]
}
The “info variabl € query returns the list of variables, which includes all
instance variables and common variables defined in the class, as well as the
built-in t hi s variable:
%henry info variabl e
FileTree::nminme FleTree::file FleTree::this FleTree::procreate
Tree::lastSort Tree::sort Tree::children Tree::val ue Tree::nane Tree:: parent
Again, you can retrieve more detailed information if you ask for a particular
variable:

61

Tcl/Tk Tools

%henry info variable ntine

private variable FleTree::mine 0 O
The last two elements represent the initial value and the current value of the
variable. In thiscase, they are both 0. But suppose we query the contents of the
filetreelike this:

%henry contents
fileTreeO fileTreel fileTree2 fileTree3 fileTreed fil eTree5 fil eTreeb
fileTree7 fileTree8 fileTree9 fileTreell fileTreell fileTreel? fil eTreel3
fileTreeld fil eTreel5
The populate method creates a series of child nodes, and saves the modification
time for this directory in the i ne variable, as a reminder that the file system
has been checked. If we query nti ne again, we can see that it has changed:
%henry info variable ntine
private variable FHleTree::nine 0 845584013
You can obtain other high-level information via the usual Tcl i nf o command.
You can ask for the list of classesin the current namespace like this:

%i nfo cl asses
M sual FleTree FleTree Tree M sual Rep

and for thelist of objectsin the current namespace like this:

%info objects
fileTreell fileTree2 fileTree7 fileTree9 fil eTreel2 fileTreel fil eTree6
fileTreel5 henry fileTreel3 fileTree3 fil eTreeld fil eTree0l fil eTreeb
fileTree8 fileTreell fil eTreed
This introspection facility is extremely useful for debugging, and it could
support the construction of a class browser or an interactive development
environment.

Asyou are testing your code and finding bugs, you may want to fix thingsin a
class. You can use the body command to redefine the body of any method or
proc. You can aso use the confi gbody command to change the configuration
code for apublic variable.

This is particularly easy to do in the “t cl - node” of the Emacs editor. You
simply load an [INCR TcL] script into Emacs, and tell Emacs to run it. Asyou
are testing it and finding bugs, you can make changes to your script and test
them out immediately. You don't have to shut down and start over. Bodies can
be changed on the fly. You simply highlight a new body or conf i gbody defini-
tion and tell Emacsto send it off to the test program.

If you don’'t use Emacs, you can keep your body definitions in a separate file,
and you can use the Tcl source command to load them into a test program
again and again, as bugs are found and corrected.

62

Chapter 1: Object-Oriented Programming with [incr Tcl]

Although the bodies may change, the class interface cannot be defined more
than once. This prevents collisions that would otherwise occur if two devel-
opers chose the same class name by accident. But you can delete a class like
this:

delete class Tree

This deletes al objects that belong to the class, all derived classes which depend
on this class, and then deletes the class itself. At that point, you can source in
your script to redefine the class, and continue debugging.

Autoloading

Tcl provides a way to create libraries of procedures that can be loaded as
needed in an application. This facility is called autoloading, and it is supported
by [INCR TcL] aswell.

To use aclass library that has been set up for autoloading, you simply add the
name of the directory containing the library to the aut o_pat h variable:

| append auto_path /usr/local /oreilly/itcl/lib
Thefirst timethat a classis referenced in acommand like this:
Tree henry -nane "Henry Fonda"

the class definition is loaded automatically. The autoloading mechanism
searches each directory in the aut 0_pat h list for a specia tclindex file. This
file contains a list of commands defined in the directory, along with the script
file that should be loaded to define each command. When a command like
Tree is found in one of the tclindex files, it is automatically loaded, and the
command is executed. The next time that this command is needed, it is ready to
use.

To create an autoloadable class library, you ssmply create a directory containing
all of the code for the library. Put each class definition in a separate file. These
files typically have the extension “.itcl” or “.itk”, but any naming convention
can be used. Finaly, generate a tclindex file for the directory using the
aut o_nki ndex command like this:

auto_nkindex /usr/local/oreillylitcl/lib *.itcl

Thisscans all of the files matching the pattern “*.itcl” in the directory /usr/local/
oreilly/itcl/lib and creates a tclindex file in that directory. Once the index fileis
in place, the library is ready to use. Of course, the index file should be regener-
ated whenever the source code for the library changes.

63

Tcl/Tk Tools

Adding C code tpINCRTCL] Classes

With a little extra C code, we can extend the Tcl/Tk system to have new
commands and capabilities.T Thisis easy to do, and it is one area where Tcl/Tk
outshines other packages. C code can aso be integrated into [INCR TcCL]
classes, to implement the bodies of class methods and procs.

For example, suppose we write a C implementation for the add method in our
Tree class, shown in Example 1-21. Instead of specifying the body as a Tcl
script, we use the name @r ee- add. The leading “@ sign indicates that this is
the symbolic name for a C procedure.

Examplel-21 Tree class with a C implementation for the “add” method.

class Tree {
variabl e parent ""
variable children ""

nethod add {obj} @ree-add

nethod clear {} {
if {$children!=""} {
eval del ete object $children

}
set children ""

}
net hod parent {pobj} {
set parent $pobj

net hod contents {} {
return $children

}

Somewhere down in the C code for our w sh executable, we have a Tcl-style
command handler for the add method. We must give the command handler a
symbolic name by registering it with the It cl _Regi st er C procedure. We do
thisin the Tcl _Appl ni t procedure, which is called automatically each time the
W sh executable starts up. You can find the Tcl _Appl ni t procedure in the stan-
dard Tcl/Tk distribution, in a file called tclApplnit.c (for building tcl sh) or
tkApplnit.c (for building w sh). Near the bottom of this procedure, we add a
few lines of code likethis:

if (Itcl _RegisterQinterp, "tree-add", Tree_AddQuml) != TAL_ K {

return TAL_BRRR

}
This gives the symbolic name “t ree- add” to the C procedure Tree AddOn.
This procedure will be called to handle any class method or class proc that has
the body “ @r ee- add”.

t For details, see John K. Ousterhout, Tcl and the Tk Toolkiddison-Wesley, 1994.

64

Chapter 1: Object-Oriented Programming with [incr Tcl]

Example 1-22 shows the implementation for the Tree_AddQw procedure. It
takes the usua arguments for a Tcl-style command handler: The first argument
is required but not used; i nterp is the interpreter handling a Tcl command;
ar gc is the number of arguments on the Tcl command line; and ar gv is the list
of Tcl argument strings.

Example 1-22 Implementation for the Tree_ AddCmd handler.

ncl ude <tcl.h>

Int
Tree_AddQwl(durmy, interp, argc, argv)

}

dientData dummy; /* unused */

Tcl _Interp *interp; /* current interpreter */
int argc; /* nunier of argunents */
char **argv; /* argunent strings */
char *val;

Tcl _C&ring buffer;

if (argc '=2) {
Tcl _AppendResul t (interp, "wong # args: should be \"",
argv[0], " tree(pj\"", (char*)N.LL);
return TOL_BRRR

/*
* Build a coomand string like "tree(hj parent $this" and
*/ execute it.
Tcl _C&ringlnit(&uffer);
val = Tcl _GetVar(interp, "this", TAL_LEAE ERR MG ;
if (val = NLL) {
Tcl _D&tringFree(&uffer);
return TAL_BRRR

!

Tcl _C&ri ngAppendH enent (&buffer, argv[1]);
Tcl D& ri ngAppendH enent (&buffer, "parent™);
Tcl _D& ringAppendH enent (&buffer, val);

val = Tcl _D&ringVal ue(&buffer);

if (Tcl _Bval (interp,val) !'= TAL &K {
Tcl _D&tringFree(&uffer);
return TAL_BRRR

!
Tcl _Reset Resul t (interp);

/*
* Add the specified object to the "children" list.
*/

val = Tcl _SetVar(interp, “children", argv[1],
TOL LEAVE BRR MBG | TCL LI ST_ELEMENT | TQL APPEND VALLE) ;

if (val = NLL) {
Tcl _D&tringFree(&uffer);
return TAL_BRRR

Tel _D&ringFree(&uffer);
return TAL K

This procedure has to mimic our add method. It takes the name of another Tr ee
object, and adds it to the list of children for the current node. Whenever

65

Tcl/Tk Tools

Tree_AddQm is called, therefore, we should have two argument strings: the
command name “add” (stored in argv[Q]), and the name of the child object
(storedinargv[1]). We first check to make sure that thisis true, and if not, we
immediately return an error.

Next, we build the command string “$obj parent $thi s” in a dynamic string
buffer. This command notifies the child that it has a new parent. We query the
value of the thi s variable using Tcl _Get Var. We build the command string in
aTcl _D&ring buffer, and then use Tcl _Eval to execute the command.

The name of the child object is then appended to the children list using
Tcl _Set Var.

This implementation is identical to the Tcl version shown in Example 1-3,
although it requires many more C language statements to perform the same
task. In this case, the result is no better. The C version is not much faster, and
the Tcl version was considerably easier to write.

But the interesting part of this example is the interface between the C code and
the [INCR TcL] class. When the command handler is executed, class variables
can be accessed as ordinary variables. Class methods can be invoked as ordi-
nary commands. [INCR TcL] handles this automatically by setting up the object
context before the handler is invoked. Because of this, we were able to access
the chi | dr en variable and the built-in t hi s variable with ordinary Tcl _Get Var
and Tcl _Set Var calls.

Therefore, a single class can have some parts written in C code, and others
writtenin Tcl. The Tcl parts can be migrated to C for better performance as the
need arises.

Tcl isan excellent “glue’ language. It stitches C code blocks together with Tcl
statements to form applications. [INCR TcL] takes the glue to a higher-level.
Bits of Tcl and C code can be mixed together to create classes. These high-
level building blocks provide better support for building larger applications.

66

Chapter 1: Object-Oriented Programming with [incr Tcl]

ummary
Extension: [incr Tcl] - Object-Oriented Programming for Tcl
Author: Michael J. McLennan
Bell Labs Innovations for Lucent Technologies
mmclennan@Il ucent.com
Other Jim Ingham
Contributors: Lee Bernhard

Platforms
Supported:

Web Site:

Mailing List:
(bug reports)

...and many others listed on the web site

All major Unix platforms

Linux

Windows 95 (release itcl2.2 and beyond)
Macintosh (release itcl2.2 and beyond)

http://ww tcltk. conitcl

nmail -s "subscribe" itcl-request @cltk.com
to subscribe to the mailing list

mai | itcl @cltk.com
to send mail

67

Tcl/Tk Tools

Quick Reference

Classes

cl ass cl asshane {
i nherit based ass ?based ass. .. ?

constructor args ?init? body
destruct or body

net hod nane ?args? ?body?
proc nane ?args? ?body?

variabl e var Name ?init? ?confi gBody?
cormon var Nane ?i nit?

set varNane ?val ue?
array option ?arg arg ...?

public conmand ?arg arg ...?
protected coomand ?arg arg ...?
private coomand ?arg arg ...?

body

conf i gbody

del ete

info

Objects
cl assNane

68

Defines anew class of objects.

cl assNane: : function args body
Redefines the body for a class method or proc.

cl assNane: : var Nane body

Redefines the body of configuration code for apublic variable
or amega-widget option.

cl ass nane ?nane... "7
Deletes a class definition and all objectsin the class

cl asses ?pattern?

Returns alist of all classes, or alist of classes whose names
match pattern.

obj Nane ?arg arg ...?
Creates an object that belongs to class className.

Chapter 1: Object-Oriented Programming with [incr Tcl]

obj Nane

del ete

info

Namespaces

nethod ?arg arg ...?
Invokes a method to manipulate an object.

obj ect obj Nane ?obj Nane. .. ?
Deletes one or more objects.

objects ?-class cl assNane? ?-isa cl asshane?
?pattern?

Returnsalist of al objects, or alist of objectsin acertain class
className, whose names match pattern.

nanespace nanespaceNane {
vari abl e var Nane ?val ue?
proc cndNane args body

private coomand ?arg arg ...?
protected conmand ?arg arg ...?
public conmand ?arg arg ...?

command ?arg arg ...?

nanespaceNane: :
nanespaceNane: :

code

del ete

Finds an existing namespace or creates a new namespace and
executes a body of commandsin that context. Commandslike
proc andvari abl e create Tcl commandsand variablesthat are
local to that namespace context.

cniNane ?arg arg ...?

Invokes a procedure that belongs to another namespace.
command ?arg arg ...?

Formats a code fragment so it can be used as a callback in an-

other namespace context.

nanespace nanespaceNane ?nanespaceMNane. . . ?
Deletes a namespace and everything init.

69

Tcl/Tk Tools

i npor t

info

info

info

info

info

scope

70

add nane ?nane...? ?-where pos...?
al ?nane?

list ?inportlList?

renove nane ?nane... 7?7

Changes the import list for a namespace.

cont ext
Returns the current namespace context.

nanespace al | ?pattern?
nanespace chil dren ?nane?
nanespace parent ?nane?

Returns information about the namespace hierarchy.

nanespace qualifiers string
nanespace tail string

Parses strings with : : namespace qualifiers.

protecti on ?-command? ?-vari abl e? nane

Returns the protection level (public/protected/private) for a
command or variable.

vhi ch ?-command? ?-vari abl €? ?- nanespace? nane

Searchesfor acommand, variable or namespace and returnsits
fully-qualified name.

string

Formats a variable name so it can be accessed in another
namespace context.

In this Chapter:

» Overview

» Smple Example

* Inheritance and
Composition

* Building
Applications with

Mega-Widgets Buildi Nng
Mega-Widgets
with [incr TK]

Tk lets you create objects like buttons, labels,
entries, and so forth, but it is not truly object-
oriented. You can't create a new widget class like
Hot Button and have it inherit its basic behavior
from class Butt on. So you redly can't extend the

% Tk widget set unless you tear apart its C code and
add some of your own.

More Than Chrome | [\cR Tk] lets you create brand new widgets, using

the norma Tk widgets as component parts. These

mega-widgets look and act like ordinary Tk widgets, but you can create them

without writing any C code. Instead, you write an [INCR TcL] class to handle
each new type of mega-widget.

If you read Chapter XXX on the [INCR WIDGETS] library, you can see what
great results you'll get using [INCR TK]. [INCR WIDGETS] has more than 30 new
widget classes including F | esel ect i onbox, Panedw ndow Canvaspri nt box,
oti onmenu and Gonbobox, and they were al built with the [INCR TK]
framework.

You can understand the essence of a mega-widget simply by looking at one of
these widgets. For example, the Spi ni nt widget shown in Figure 2-1 is created
likethis:

spinint .s -labeltext "Repeat:" -width 5 -range {1 10}
pack .s

It has an entry component that holds a numeric value, and a pair of buttons for
adjusting that value. Whenever you create a Spi nint widget, all of these

71

Tcl/Tk Tools

internal components are created and packed automatically. When you set the
-l abel t ext option, a label appears. You can set the - range option to control
the range of integer values. If you use the arrow buttons and bump the number
beyond this range, it will wrap around to the other end of the scale.

| abel entry
e e
Repeat: IE i

P | <«— downarrow

Figure 2-1 A Spinint mega-widget has many component parts.

A Spi ni nt can be configured like a normal Tk widget. It has many internal
components, but they all work together as one widget. All of their configura
tion options are merged together into a single list called the master option list.
When you set master configuration options like this:

.s configure -background tan -text background white

the effects propagate down to al of the internal components. Setting the
- backgr ound option changes the background of the hul I , | abel , upar r owand
downar r ow components. Setting the -t ext background option changes the
background of the entry component.

A Soi nint also has options to control the layout of its components. You can
rearrange the buttons like this:

.s configure -arroworient horizontal

and reposition the labdl like this:
.s configure -Iabel pos nw

Y ou can even query the current option settings like this:
set bg [.s cget -background]

Of course, you can add all of these settings to the options database, so that
Soi ni nt widgets will have these values by default:

option add *Spi ni nt . background tan

option add *Spi ni nt. t ext Background whi te

option add *Spinint.arrowQdient horizontal

option add *Spinint. | abel Pos nw
A Spi ni nt widget has a well-defined set of operations or methods to manipu-
lateit. You canload a new integer into the text arealike this:

72

Chapter 2: Building Mega-Widgets with [incr Tk]

.s clear
.s insert 0 "10"

and you can programmatically bump up the value like this:
.S up

When you destroy the widget:
destroy .s

all of itsinternal components are destroyed automatically.

Mega-widgets have all of the characteristics that we would expect from a Tk
widget. But since they do not require any C code or X library programming,
they are considerably easier to implement.

Overview

To understand [INCR TK], you have to understand how a mega-widget handles
its component parts and their configuration options. In this section, we'll
explore [INCR TK] from a conceptual standpoint. Later on, we'll look at real
code examples.

Class Hierarchy

To create a new type of mega-widget, you simply derive anew [INCR TcL] class
from one of the existing [INCR TK] base classes. The [INCR TK] class hierarchy
is shown in Figure 2-2. All of these classes reside in the i t k namespace, so
they will not interfere with the rest of your application.

There are basically two different kinds of mega-widgets, so there are two [INCR
TK] base classes that you use to build them. If you want a mega-widget to pop
up in its own toplevel window, then have it inherit from i tk: : Topl evel . This
lets you build dialog widgets like the F | esel ecti ondi al og, Messagedi al og,
and CGanvasprintdi al og in the [INCR WIDGETS] library. Otherwise, if you
want a mega-widget to sit inside of some other toplevel window, then have it
inherit from the itk::Wdget class. This lets you build things like the
ot i onnenu, Gonbobox and Panedw ndowin the [INCR WIDGETS] library.

Suppose we were starting from scratch to create the Spi ni nt class. Spi ni nt
widgets are the kind that sit inside of other toplevel windows, so we should use
thei tk:: Wdget class as a starting point.

Bothitk:: Wdget anditk:: Topl evel inherit the basic mega-widget behavior
fromitk:: Archetype. This class keeps track of the mega-widget components
and their configuration options.

73

Tcl/Tk Tools

[incr Tk] i tk:: Archetype

I |
i tk:: Wdget i tk:: Topl evel

Conbobox

|
Messagedi al og

Figure 2-2 Mega-widgets are created by extending one of the base classes in [incr Tk].

Class Definition

If we wanted to implement the Spi ni nt widget, we would write a class defini-
tion that looks something like the one shown in Figure 2-31

Notice that we use a class hame like Spi ni nt that starts with a capital letter.
Thisisarulein Tk. For the time being, you can assume that we also have to
create mega-widgets with a capitalized command like this:

Spinint .s -labeltext "Repeat:" -width 5 -range {1 10}
Later on, | will show you how to get around this.

Inside the class definition, we start off with ani nherit statement that bringsin
theitk::Wdget base class. Aswe will see below, this automatically gives us
a container for the mega-widget called the hull. We write a constructor to
create all of the component widgets and pack them into the hull. Instead of
including the actual code, we simply illustrated this process in the constructor
shown in Figure 2-3.

Notice that the constructor uses the ar gs argument to handle any configuration
options that might be specified when awidget is created, like this for example:

Sinint .s -labeltext "Nunber of Copies:" -background red

t The Spi ni nt classin the [INCR WIDGETS] library is a little more complicated, but this example
will give you the basic idea.

74

Chapter 2: Building Mega-Widgets with [incr Tk]

class Spinint {
inherit itk::Wdget

constructor {args} {

f 3 f '
Repeat: 3

T

eval itk initialize $args
}

public nethod clear {}
public nethod insert {index val ue}

public nethod up {}
publ i c nethod down {}
}

Figure 2-3 Conceptual view of Spinint mega-widget class.

But instead of handling these arguments with:
eval configure $args

aswe would for an ordinary [INCR TcCL] class, we use:
eval itk initialize $args

Youmust call itk_initializeinstead of confi gure for all of your [INCR TK]
mega-widgets. Thisis a protected method that belongs to the i tk: : Ar chet ype
base class. It not only applies the configuration changes, but it also makes sure
that all mega-widget options are properly initialized. If you forget to call it for
a particular class, some of the configuration options may be missing whenever
you create a mega-widget of that class.

Near the bottom of the class definition, we include some methods to handle the
operations for this mega-widget. As | said before, you can load a new vaue
into a Spi ni nt widget likethis:

.s clear
.s insert 0 "10"

So we have a method cl ear to clear the entry, and a method i nsert to insert
some new text. We also have a method called up to increment the value, and a
method called down to decrement it. We can add more operations to the
Soi ni nt class simply by defining more methods.

75

Tcl/Tk Tools

Notice that we didn’t define a destructor. The itk:: Archetype base class
keeps track of the component widgets and destroys them for you when the
mega-widget is destroyed. You won't need a destructor unless you have to
close afile or delete some other object when the mega-widget is destroyed.

Mega-Widget Construction

Let's take a moment to see what happens when a mega-widget is constructed.
For example, suppose we create a i ni nt widget like this:

Sinint .s -labeltext "Sarting Page:" -range {1 67}

When [INCR TcL] sees this command, it creates an object named . s in class
Soi ni nt, and calls its constructor with the remaining arguments. But before it
can actually run the Spinint:: constructor, all of the base classes must be
fully constructed. This processisillustrated in Figure 2-4.

Sinint .s -labeltext "Sarting Page:" -range {1 67}

itk::Archetype::constructor

create component list
create master option list i

¥

i tk::Wdget::constructor o |

- backgr ound
s . H . -cursor
initidizei t k_i nteri or ttededdtoddddodd — E

create hull component

Spi nint::constructor
create label component
create entry component
create uparrow component
create downarrow component

o ———] ————

-arroworient
- backgr ound
-borderw dth

- cursor

Figure 2-4 Construction of a Spinint mega-widget.

The constructor for the least-specific class i t k: : Archet ype is called first. It
initializes some internal variables that keep track of the component widgets and
their configuration options. Next, the i tk:: \Wdget constructor is called. It
creates the hull frame that acts as a container for the component widgets. The
name of this frame widget is stored in a protected variable called
itk interior. We will use this name later on as the root for component
widget names. Finally, the Spi ni nt constructor is called. It creates the | abel ,
ent ry and upar r owand downar r owcomponents, and packs them into the hull.

76

Chapter 2: Building Mega-Widgets with [incr Tk]

As each component is created, its configuration options are merged into a
master list of options for the mega-widget. We will see precisely how this is
done in the next section. But we end up with a mega-widget that has an overall
list of configuration options. Near the end of the Spi ni nt constructor, we call
itk initializetofinaizethelist and apply any configuration changes.

Creating Component Widgets

Let's look inside the constructor now and see how we create each of the mega
widget components. Normally, when we create a Tk widget, we use a smple
command like this:

| abel .s.lab

This says that we have a frame called . s and we want to put a label named | ab
inside it. For a mega-widget, we can’'t hard-code the name of the containing
frame. It will be different for each widget that gets created. If we create a
Soi ni nt named . s, it will have a hull named . s, and the label should be called
.S.lab. Butif we create a Spi ni nt named . f 0o. bar, it will have a hull named
.foo. bar, and the label should be called .foo. bar.lab. Instead of hard-
coding the name of a frame, we use the name in the itk interior variable,
likethis:

label $itk_interior.lab

We aso have to do something special to let the mega-widget know that thisis a
component. We wrap the widget creation command inside an i t K_conponent
command like the one shown in Figure 2-5.

symbolic name
¢ for component

itk_conponent add | abel { ‘
el : code used to create
label $itk interior.lab 4— the component

} { Possihilities:
keep -backgr ound how tointegrate/ keep
keep -foreground <4— itsconfiguration renane
keep - cur sor options usual

} ——ignore

Figure 2-5 Syntax of the itk_component command.

This command executes the code that you give it to create the component, and
saves the name of the resulting widget. It stores this name in a protected array
called i t k_conponent, using the symbolic name as an index. When you want
to refer to the component later on, you can look it up in this array using its

7

Tcl/Tk Tools

symbolic name. For example, in Figure2-5 we created a label with the
symbolic name | abel . We can pack this component using its symbolic name,
likethis:

pack $itk_conponent (| abel) -side |eft

The expression $i t k_conponent (1 abel) expands to a real widget path name
like .s.lab or .foo.bar.lab. We can use this in any of the methods in the
i ni nt classto refer to the label component.

You can aso use symbolic component names outside of the mega-widget class,
but you do it alittle differently. Theitk: : Archet ype class provides a method
called conponent that you can use to access components. If you call this
method without any arguments:

%Spinint .s

.S

%.s conponent

hul| |abel entry uparrow downar row
it returns a list of symbolic component names. Y ou can also use this method to
reach inside the mega-widget and talk directly to a particular component. For
example, we might configure the label to have a sunken border like this:

.s conponent |abel configure -borderwidth 2 -relief sunken

Using symbolic names insulates you from the details inside of a mega-widget
class. Suppose we decide next week to rearrange the components, and we
change the name of the actual label widget from $itk interior.lab to
$itk interior.box.l1. Codeinsidetheclasslike:

pack $itk_conponent (| abel) -side |eft
and code outside the class like:

.s conponent | abel configure -borderwidth 2 -relief sunken
will not have to change, since we used the symbolic name in both places.
The i tk_conponent command does one other important thing. As you add
each component, its configuration options are merged into the master list of
options for the mega-widget. When you set a master option on the mega
widget, it affectsall of theinternal components. When you set the master - back-

ground option, for example, the change is propagated to the - backgr ound
option of the internal components, so the entire background changes all at once.

You can control precisely how the options are merged into the master list by
using a series of commands at the end of the i t k_conponent command. We
will explain all of the possibilities in greater detail below, but in Figure 2-5 we

78

Chapter 2: Building Mega-Widgets with [incr Tk]

used the keep command to merge the -background, -foreground and
-cursor optionsfor the label into the master list.

All of the master configuration options are kept in a protected array called
itk_option. You can use thisin any of the methods to get the current value
for a configuration option. It will save you acall to the usual cget method. For
example, if we were in some method like Spi ni nt: ;i nsert, we could find out
the current background color using either of these commands:

set bg [cget -background] ;#alittle slow

set bg $itk_option(-background) ;# better
But if you want to change an option, you can’t just set the value in this array.
Y ou must always call the conf i gur e method, as shown below:

set itk _option(-background) red ;# error! color does not change

confi gure -background red # ok
As you can see, there is a close relationship between the itk _conponent
command, and the i t k_conponent and i tk_opti on arrays. Whenever you add
anew component, its symbolic name is added to the i t k_conponent array, and
its configuration options are merged into the i tk_opti on array. This relation-
ship is summarized in Figure 2-6.

i tk_conponent add Iabell {

label $itk interior.lab
A
keep - background
4|: keep -foreground
keep -cursor
}
Variable Description Example
itk_interior container for all .S
componentsin this
mega-widget
L itk _option array mapping i tk_option(-background) <« gray
option names i tk_option(-cursor) "
to option values itk_option(-foreground) <« black
—» i tk_conponent array mapping i tk_conponent (| abel) «.s.lab

symbolic names
to real widget names

Figure 2-6 How the itk_component command ties in with class variables.

79

Tcl/Tk Tools

Keeping Configwation Options

Each mega-widget has a master list of configuration options. When you set a
master option, it affects all of the internal components that are tied to that
option. For example, if we have a Spi ni nt mega-widget named . s and we
configure its master - backgr ound option:

.s configure -background green

the change is automatically propagated down to the hul I, | abel , upar r ow, and
downar r owcomponents. In effect, the overall background turns green with one
simple command. Thisiswhat you would naively expect, since a mega-widget
is supposed to work like any other Tk widget. But [INCR TK] has specia
machinery under the hood that allows this to take place.

When you create a component widget, you can specify how its configuration
options should be merged into the master list. One possibility is to add compo-
nent options to the master list using the keep command. When you keep an
option, it appears on the master list with the same name. For example, in
Figure 2-7 we show two different Soi ni nt components being created. The
| abel component keeps its - backgr ound, - f or egr ound and - cur sor options,
so these options are added directly to the master list. The entry component
keeps these same options, and keeps the - bor der wi dt h option as well.

-arroworient

- background -
- borderw dth

i tk_conponent add |abel { (S - backgr ound

label $itk interior.lab

- cursor
- cursor

M

keep - background
keep -foreground
keep -cursor

itk_conponent add entry {

H

entry $itk_interior.ent

keep
keep
keep
keep

- backgr ound
-foreground
- cur sor

- bor derwi dt h

-foreground -

- f oreground

-arroworient
- backgr ound
- borderw dth
- cursor
- foreground

Figure 2-7 Keeping component options on the master option list.

80

Chapter2: Building MegaWidgets with [incr TK]

When we configure a master option for the mega-widget, the change is propa-
gated down to all of the components that kept the option. This processis shown
in Figure 2-8.

.s configure -background tan -borderw dth 2

-arroworient

- backgr ound
- borderw dth
- cursor

- backgr ound
-borderwi dth
- cursor

- f oreground

<- f or egr ound

o ———

fla

- background
- borderw dth

-cursor

- foreground

Figure 2-8 Configuration changes are propagated down to component widgets.

When we configure the - backgr ound option, both the label and the entry are
updated, but when we configure - borderw dt h, only the entry is updated.
Since we did not keep - bor der wi dt h for the label, it is not affected by a change
in border width.

Y ou must include a keep statement for each of the component options that you
want to access on the master list. The rest of the component options will be
ignored by default. It isusualy a good idea to keep options like - backgr ound,
-foreground, -font and -cursor, which should be synchronized across all
components in the mega-widget. Options like -t ext or - conmand, which are
different for different components, should be ignored.

Renaming Configation Options

Suppose you want to keep an option on the master list, but you want to giveit a
different name. For example, suppose you want to have an option named - t ext -

backgr ound for the Spi ni nt mega-widget that changes the background color of
the entry component. Having a separate option like this would let you highlight
the entry field with a contrasting color, so that it stands out from the rest of the
mega-widget. We want to keep the - backgr ound option for the entry compo-
nent, but we want to tie it to a master option with the name - t ext backgr ound.
We can handle this with ar enane command like the one shown in Figure 2-9.

81

Tcl/Tk Tools

itk_conponent add entry {
entry $itk interior.ent
A
renane -background -t ext background t ext Background Background
keep -foreground
keep -cursor
keep -borderw dth

= -
N3 - background = -arroworient
I — — — % borderwidth- -t ext backgr ound
-cursor - backgr ound
-foreground = - borderw dth
- cursor
- f oreground
e ni ittt 1
1: Repeat: s :
Voo d .

Figure 2-9 Renaming component options on the master option list.

We could create another component and rename its - backgr ound option to
-t ext background as well. If we did, then both of these components would be
controlled by the master -t ext background option. We could even create a
component and rename its - f or egr ound option to -t ext background. Again,
any change to a master option like - t ext backgr ound is propagated down to all
of the component options that are tied to it, regardless of their original names.

When you rename an option, you need to specify three different names for the
option: an option name for the confi gure command, along with a resource
name and a resource class for the options database. In Figure 2-9, we renamed
the entry’s - background option, giving it the name -t ext background, the
resource name t ext Backgr ound, and the resource class Background. Each of
these names can be used as follows.

We can use the option name to configure the entry part of a Spi ni nt mega
widget like this:

.s configure -textbackground white

We can use the resource name in the options database to give all of our
i ni nt mega-widgets this value by default:

option add *Spini nt.textBackground white

Instead of setting a specific resource like t ext Backgr ound, we could set a more
general resource class like Backgr ound:

82

Chapter2: Building MegaWidgets with [incr TK]

option add *Spi ni nt. Background bl ue

This affects all of the options in class Backgr ound, including both the regular
- backgr ound option and the -t ext backgr ound option. In this case, we set
both background colors to blue.

“Usual” Configuration Options

If you have to write keep and r enane statements for each component that you
create, it becomes a chore. You will find yourself typing the same statements
again and again. For a label component, you always keep the - backgr ound,
-foreground, -font and - cursor options. For a button component, you keep
these same options, along with - act i vebackgr ound, - act i vef or egr ound and
- di sabl edf or egr ound.

Fortunately, the keep and r enane statements are optional. If you don’'t include
them, each widget class has a default set of keep and r enane statements to fall
back on. These defaults are included in the [INCR TK] library directory, and
they are called the usual option-handling codeYou can change the “usual”
code or even add “usua” code for new widget classes, aswe' Il see later on.

You can ask for the “usual” options one of two ways, as shown in Figure 2-10.
You can either include the usual command in the option-handling commands
passed to i t k_conponent , or you can leave off the option-handling commands
entirely. Asyou can see, the second way makes your code look much simpler.

i tk_conponent add | abel { ————— -
label $itk_ interior.lab i Repeat: - background 7 Jarrovori ent
1 t === —~& bordervidth - backgr ound
usual _cursor _\ - borderwi dt h
} - or egr ound -—\% -cursor
—P(- f or egr ound
or
i tk_conponent add | abel { :" """"" 3
label $itk_interior.lab f I
............. 4
}

Figure 2-10 Adding a component with the “usual” option-handling code.

Having the usual command is useful if you want to have most of the “usual”
options, but with a few changes. For example, suppose we are adding the entry
component to a Spi ni nt. We can get al of the “usual” options, but then over-
ride how the - backgr ound option is handled. We can rename the - backgr ound
option to - t ext backgr ound like this:

83

Tcl/Tk Tools

itk_conponent add entry {
entry $itk_ interior.ent

i

usual
renane -background -text background text Background Background

}
This is much better than the code shown in Figure 2-9. There are many entry
widget options like -i nsert backgr ound and - sel ect backgr ound that we had
ignored earlier. The “usual” code for an entry handles these properly, without
any extrawork.

Ignoring Configuation Options

In addition to the keep, renane and usual commands, you can aso ask for
certain options to be ignored using the i gnor e command. In most cases, thisis
not really needed. If you include any option-handling code at al, it will start by
assuming that all options are ignored unless you explicitly keep or renane
them. But thei gnor e command is useful when you want to override something
in the “usual” code.

Suppose the “usual” option-handling code keeps an option like - f or egr ound,
and you really want that option to be ignored for a particular component. You
can use the usual command to bring in the “usual” code, and then ignore a
particular option like this:
itk_conponent add entry {
entry $itk_ interior.ent

i

usual
i gnore -foreground

Setting Wdget Defaults

Aswe saw earlier, you can establish a default value for any mega-widget option
using the options database. For example, suppose we are creating an applica-
tion, and we set the following resources:

option add *Spi ni nt . background bl ue

option add *Spini nt.textBackground white
The “*Spi ni nt” part says that these values apply to all Spi ni nt widgets in the
application, regardless of their name or where they appear in the window hier-
archy. The “. background” and “.text Background” parts access specific
resources on each Spi ni nt widget.

84

Chapter 2: Building Mega-Widgets with [incr Tk]

Remember, a master option like - backgr ound may be tied to many component
widgets that kept or renamed that option. In this case, the - backgr ound option
of a Spinint is tied to the - background option of the hul I, | abel , up and
down components. The default value for the Spi ni nt background is automati-
cally propagated down to each of these components.

As a mega-widget designer, it is your responsibility to make sure that all of the
options in your mega-widget have good default values. It's a good idea to
include settings like these just above each mega-widget class:

option add *Spi ni nt. t ext Backgr ound whi te w dget Def aul t

option add *Spi nint.range "0 100" w dget Def aul t

option add *Spinint.arrowdient horizontal w dgetDefaul t

option add *Spi nint. | abel Pos nw w dget Def aul t
All of these settings are given the lowest priority w dget Def aul t, so that you
can override them later on. You might add other option statements to
customize a particular application. On Unix platforms, the user might add
similar resource settings to a .Xdefaults or .Xresources file.

If you don’t provide a default value for an option, then itsinitial value is taken
from the component that first created the option. For example, we did not
include a default value for the backgr ound resource in the statements above. |If
there is no other setting for background in the application, then the default
value will be taken from the hul | component, which was the first to keep the
- backgr ound option. The hul | is aframe, and its default background is prob-
ably gray, so the default background for the Spi ni nt will also be gray. Many
times, the default values that come from components work quite well. But
when they do not, you should set the default explicitly with an option
Statement.

Smple Example

Now that we understand how the components fit into a mega-widget, we can
see how everything works in a real example. In the previous chapter, we saw
how [INCR TcL] classes could be used to build afile browser. We wrote classes
to handle the file tree and its visual representation. We even wrote a few proce-
dures so that we could install afile tree on any canvas widget.

Now we can take this idea one step further. Instead of grafting our file tree onto
an external canvas, we can wrap the canvas and the file tree code into a
F | evi ener mega-widget. When we are done, we will be able to create a
H | evi ever likethis:

85

Tcl/Tk Tools

Fi | evi ewer .viewer -background LightS ateB ue -troughcol or NavyB ue
pack .viewer -expand yes -fill both -pady 4 -pady 4

and have it display afiletreelike this:
.viewer display /usr/local/lib

This will create a widget that looks like the one shown in Figure 2-11. It has a
canvas to display the file tree, and a built-in scrollbar to handle scrolling. If you
click on a file or a folder, it becomes selected with a gray rectangle. If you
double-click on afolder, it expands or collapses the file hierarchy beneath it.

] it r
3 bin

(3 include

B itclh

B itkh

B tclh

LB tkh

-3 lib

|03 iteiz.0

3 itkz.0

(3 iwidgets2.0
—D libitcl2.0.a

Figure 2-11 Fileviewer mega-widget.

Now, we'll writethe R | evi ewer class.

Fileviewer Construction

A complete code example appears in the file itcl/itk/fileviewer1.itk, but the
Fi | evi ewer classitself is shown below in Example 2-1.

Example 2-1 Class definition for the Fileviewer mega-widget.

option add *FH | eviewer.wdth 2i w dget Def aul t
option add *H | evi ewer. hei ght 3i w dget Def aul t

class FHleviewer {
inherit itk::Wdget

constructor {args} {
i tk_conponent add scrol | bar {
scrol | bar $itk_interior.sbar -orient vertical \
-command [code $itk_interior.canv yview

}
pack $itk conponent (scrollbar) -side right -fill y

i tk_conponent add di splay {
canvas $itk_interior.canv -borderwdth 2 \
-relief sunken -background white \
-yscrol | command [code $itk_interior.sbar set]
o
keep -cursor -height -wdth
keep -highlightcol or -highlightthickness
renane - hi ghl'i ght background - background background Background

86

Chapter 2: Building Mega-Widgets with [incr Tk]

Example 2-1 Class definition for the Fileviewer mega-widget.

}
pack $itk_conponent (di splay) -side | eft -expand yes -fill both
eval itk initialize $args

private variabl e root ""
public nethod display {dir}

private nethod createNode {dir}
) private proc cnpTree {option obj 1 obj 2}
We start off by inheriting the basic mega-widget behavior from i tk: : VWdget .
This means that the FH | evi ener will be the kind of widget that sits inside of
another toplevel window, so we can use a H | evi ener component in many
different styles of file selection dialogs.

In the constructor, we create the components within each H | evi ewer, and pack
them into the hull. We create a scrollbar component named scr ol | bar like this:

itk_conponent add scrol | bar {
scrol | bar $itk_interior.sbar -orient vertical \
-command [code $itk_interior.canv yview

}
Aswe saw in Figure 2-6, we use $i tk_i nteri or asthe root of the component
widget name. If we create a H |l evi ewer megawidget named .fv, then
$itk interior will alsobe. fv, and the scrollbar will be named . fv. shar.

Since we didn’t include any keep or r enane statements, we will get the “usual”
option-handling code for scrollbars. Thisautomatically adds options like - back-
ground and -troughcol or to the master options for a FHleviewer. The
“usual” code ignores options like -orient and - command that are probably
unique to each scrollbar component. We really don't want anyone using a
H | evi ener to change these options. We just set them once and for all when
the scrollbar isfirst created.

Notice that we used the code command to wrap up the code for the - cormand
option. Thisisn't absolutely necessary, but it is a good idea for the reasons that
we discussed in the previous chapter. If you do something like this:

i tk_conponent add scrol | bar {

scrol | bar $itk_interior.sbar -orient vertical \
-command "$i tk_interior.canv yvi ew

}
it will still work, but the scrollbar command will take longer to execute. Each
time it tries to talk to the canvas widget, it will start looking for it in the global
namespace. Since the canvas is created in the F | evi ewer constructor, its

87

Tcl/Tk Tools

access command is buried inside of the FH | evi ewer namespace, and it will take
alittle longer to find." The code command wraps up the scrollbar command so
that when it is needed later on, it will be executed right in the H | evi ewer
namespace, so the canvas will be found immediately. Whenever you are config-
uring a component widget, you should always use a code command to wrap up
code fragments for options like - coomand or - yscrol | conmand. Likewise, you
should also use a scope command to wrap up variable names for options like
-vari abl e.

Once the scrollbar has been created, we can use its symbolic name in the
i tk_conponent array to refer to it later on. For example, we pack the scrollbar
likethis:

pack $itk_conponent (scrollbar) -side right -fill y

We create a canvas component called di spl ay in asimilar manner. But instead
of getting the “usual” configuration options, we include explicit keep and
r enane statements to merge its options into the master list:

i tk_conponent add di spl ay {
canvas $itk_interior.canv -borderwdth 2 \
-relief sunken -background white \
-yscrol | coomand [code $itk interior.sbhar set]

M keep -cursor -height -wdth
keep -highlightcol or -highlightthickness
renane - hi ghl i ght background -background background Background
}
You can list al of the optionsin a single keep statement, or you can include lots
of different keep statements. In this case, we used two different keep state-
ments to make the code more readable. We did not keep the - backgr ound,
-borderwidth or -relief options. We simply fix their values when the
canvas is created. If you configure the - backgr ound option of a F | evi ewer,
the rest of the widget will change, but the canvas background is not tied in, so it
will always remain white.

Notice that we renamed the - hi ghl i ght backgr ound option to - backgr ound.
Whenever we configure the master - backgr ound option, the - hi ghl i ght back-
ground option on the canvas component will be updated as well. If you don’t
do this, you will see a problem as soon as you change the master - backgr ound
option. Most of the background will change, but the focus highlight rings
inside the mega-widget will remain a different color. This rename trick fixes

T If thiswere an ordinary object, it wouldn’t befound at all. But thereis some special codein the Tcl
unknown proc that finds widgets no matter where they are in the namespace hierarchy.

88

Chapter 2: Building Mega-Widgets with [incr Tk]

the problem. It is such agood trick that it is part of the “usua” option-handling
code that you normally get by default.

Fileviewer Methods

The F | eviewer class in Example2-1 has one public method. If we have
created a H | evi ewer named . vi ewer, we can tell it to display a certain direc-
tory by calling the di spl ay method:

.vi ewer display /hone/ nmt

The creat eNode method and the cnpTree proc are there only to help the
di spl ay method, so we make them private. We'll see how they are used in a
moment.

A F | evi ener mega-widget works just like the file browser that we created in
Example 1-14. If you have forgotten all about M sual F | eTr ee objects and
how we built the file browser, you should take a moment to remind yourself.

The implementation for the Hleviewer::display method is shown in
Example 2-2.
Example 2-2 Implementation for the Fileviewer::display method.

body Fileviewer::display {dir} {
if {$root '=""} {
del ete obj ect $root

set root [createNode $dir]
$root configure -state open
$root refresh

}

Each Fi | evi ener maintains a tree of M sual H | €Tr ee objects that represent
the files on its display. We use the private root variable to store the name of
the root object for the tree. Whenever we call the di spl ay method, we destroy
the existing file tree by destroying the root node, and then we start a new file
tree by creating a new root node. We configure the root node to the “open”
state, so that when it draws itself, it will display other files and folders below it.
Finally, we tell the root node to refresh itself, and it draws the entire file tree
onto the canvas.

Whenever we need to create a M sual H | €Tr ee node for the H | evi ewer, we
call the cr eat eNode method, giving it the name of the file that we want to repre-
sent. Theimplementation of this method is shown in Example 2-3.

We start by creating a M sual FH | eTree object. Remember, its constructor
demands two arguments: the file that it represents, and the canvas that will
display it. We use the di spl ay component that we created for this F | evi ener

89

Tcl/Tk Tools

Example 2-3 Implementation for the Fileviewer::createNode method.

body Fileviewver::createNode {fnane} {
set obj [Msual FleTree ::#auto $f nane $i tk_conponent (di spl ay)]

$obj configure -nane $f nane \
-sort [code cnpTree -nane] \
-procreate [code $this creat eNode]

if {[fileisdirectory $fnane]} {
$obj configure -icon dirlcon
} elseif {[file executabl e $f nane]} {
$obj configure -icon prograntcon
} else{
$obj configure -icon filelcon

}
$obj configure -title [file tail %fnane]

return $obj

}

as the display canvas. We get the real window path name for this component
from the itk _conponent array, and we pass it into the M sual FH | eTree
constructor. We create the M sual H | eTr ee object with the name “: : #aut 0"
so we will get an automatically generated name like “: : vi sual FH | eTr eel2".
As | discussed earlier in the section “Using Objects Outside of Their
Namespace” in Chapter 1, this puts the object in the global namespace, so we
can share it with other classes like Tr ee that will need to accessit.

We configure the - nane and - sort options so that all files will be sorted alpha-
betically by name. We use the Fileviewer::cnpTree procedure as the
comparison function for | sort. If we were calling this procedure right now in
the context of H | evi ewer, we could use a simple command like cnpTr ee.
But we are giving this command to a completely separate M sual FH | eTree
object, and it will be used later in the Tr ee: : reor der method. In that context,
there is no command called cnpTree. Therefore, we cannot use a ssmple
command like “cnpTree -nane”. We must wrap it up with the code command
like “[code cnpTree -nane]”. Roughly trandated, this means that the
F leviewer is telling the M sual Fi | eTree object: “When you need to
compare two M sual FH | eTree objects later on, come back to the current
(F I evi ewer) context and call the cnpTree procedure. Since we're friends,
I’'m giving you access to my namespace and letting you use my private
procedure.”

We also configure the - procreat e option so that al child M sual F | eTree
nodes are created by the F | evi ewer: : cr eat eNode method. Remember, we
start with a single root node and build the file tree gradually, as needed. When
you double-click on a folder in the display, you open it and ask it to display its
contents. If it hasn't already done so, the M sual F | eTr ee object will scan the
file system at that point, and automatically create child nodes for the files within

90

Chapter 2: Building Mega-Widgets with [incr Tk]

it. Whatever command we give for the - pr ocr eat e option will be executed by
the M sual H | eTr ee object in a completely different context. Again, we must
be careful to use the code command. But in this case, creat eNode is not just a
procedure, it is a method, so we must do something extra We use the
command “[code $this createNode]”. Roughly translated, the F | evi ener
is telling the M sual F | €Tr ee object: “When you need to create a node later
on, talk to me. My name is $thi s, and you can use my cr eat eNode method.
Thisis usually a private method, but since we're friends, I’'m letting you back in
to the current (F | evi ewer) namespace, and you can access cr eat eNode from
there.”

Near the end of the creat eNode method, we configure the M sual FH | eTree
object to display the file name and an icon that indicates whether the file is a
directory, a program or an ordinary file. When we are done configuring the
object, we return its name as the result of the cr eat eNode method.

Each node uses the Fil evi ewer: : cnpTree procedure when sorting its child
nodes. This is a standard | sort -style procedure. It takes the names of two
M sual F | eTr ee objects, compares them, and returns “+1" if the first goes after
the second, “- 1" if the first goes before the second, and “0” if the order does not
matter. The implementation of the cnpTr ee procedure is shown in Example 2-4.

Example 2-4 Implementation for the Fileviewer::cmpTree procedure.

body Fileviewer::cnpTree {option obj 1 obj 2} {
set val 1 [$obj 1 cget $option]
set val 2 [$obj 2 cget $option]
if {$vall < $val 2} {
return -1
} elseif {$vall > $val 2} {
return 1

return O

}

We have made this procedure general enough that we can use it to sort based on
any option of the M sual FH | eTree object. If we want an alphabetical listing,
we use - nane for the opti on argument.Jr If we want to sort based on file size,
we use -val ue for the opti on argument, and we set the - val ue option to the
file size when each M sual H | eTr ee object is created.

Fileviewer Creation Command

You create a H | evi ewer widget like any other [INCR TcL] object—by using
the class name as a command:

t Thisiswhat we didinthecr eat eNode procedure shown above.

91

Tcl/Tk Tools

Fi | evi ewer .viewer -background tan

Unfortunately, al of the other Tk widget commands have lower case letters. |If
we want to follow the Tk convention, we should really have a command called
filevi ewer tocreateaH | evi ener widget.

Y ou might wonder: Why not just change the class name to fil evi ewer? We
could do this, but Tk has a convention that all widget class names start with a
capital letter. You should follow this same convention in [INCR TK]. If you
don't, you'll have trouble accessing defaults in the options database, and you'll
have trouble with class bindings.

We simply need to add afi | evi ewer procedure that acts as an aias to the real
Fi | evi ener command, like this:

proc fileviewer {pathNane args} {
upl evel Fleviewer $pathNane $args

}
This procedure takes a window path name and any option settings, and passes
them aong to the F | evi ener command. Notice that pat hNane is a required
argument, so if you forget to specify a window path name, you'll get an error.
We use the upl evel command so that the widget is created in the context of the
caller. After al, the caller wants ownership of whatever widget we create. If
we didn’t do this, the widget would be created in the namespace that contains
thefi | evi ewner proc, and in some cases, this can catise problems.

Defining Nev Configuation Options

So far, all of the configuration options for a mega-widget like F | evi ener have
been added by keeping or renaming options from its component widgets. But
what if you want to add a brand-new option that doesn’'t belong to any of the
components?

For example, suppose we want to add a -sel ect coomand option to the
F leviewer. Thisis something like the - cormand option for a Tk button. It
lets you configure each FH | evi ewer to do something special whenever you
select anodeinitsfiletree.

As a trivial example, we could create a H | evi ewer that prints out a message
when each fileis selected, like this:

T Suppose we put the fil evi ewer proc in a namespace called utilities. Without the
upl evel command, the Fi | evi ewer widgets that it creates would have their access commands
addedtotheuti | i ti es namespace. Thiswould makeit harder to access these widgets, and there-
fore slow down the application.

92

Chapter 2: Building Mega-Widgets with [incr Tk]

fileviewer .fv -sel ectcormand {puts "sel ected file: %"}

pack .fv
We will set things up so that any % fields in the command string will be
replaced with the name of the selected file. This mimics the Tk bi nd command,
and it makes it easy to know which file was selected whenever the command is
executed.

Having this feature opens the door for more interesting applications. We might
use it to create an image browser for a drawing program. Whenever you click
on afile in a recognized image format like GIF, TIFF or JPEG, the selection
command could load a thumbnail image that you could preview before clicking
OK.

The - sel ect command option is not kept or renamed from a component widget.
It is a brand-new option that we are adding to the F | evi ewer class itself. If
this were an ordinary [INCR TcL] class, we would add a configuration option by
defining a public variable. You can do this for a mega-widget too, but if you
do, the option won't be tied into the options database properly. Remember,
public variables have one name, but each widget option has three names. an
option name, aresource name, and a resource class.

Instead, when you define an option in a mega-widget class, you should use the
“itk_option define” command with the syntax shown in Figure2-12.

option name

resource name
resource class

default value
l_ config body

itk_option define -sel ectcoomand sel ect Gormand Gonmand " {...}

Figure 2-12 Syntax of the “ itk_option defineg’ command.

Believe it or not, this looks a lot like a public variable declaration. It includes
the three names for the option, an initial value, and some code that should be
executed whenever the option is configured. Like a public variable, the configu-
ration code is optional, and you can specify it outside of the class definition
using aconf i gbody command.

We can add the - sel ect cormand option to the FH | evi ewer class as shown in
Example 2-5. You can find the complete code example in the file itcl/itk/
fileviewer2.itk. We have also added a sel ect method to the F | evi ewer class.

93

Tcl/Tk Tools

We'll see in a moment how the -sel ect coomand option and the sel ect
method work together.
Example 2-5 Adding the * -selectcommand” option to the Fileviewer mega-widget.
class FHleviewer {

inherit itk::Wdget

constructor {args} {

}

itk_option define -sel ectconmand sel ect Cormand Gormand ""
private variable root ""

public nethod display {dir}
publ i c nethod sel ect {node}

private nethod createNode {dir}
private proc cnpTree {option obj 1 obj 2}

body Fileviewer::select {node} {
set nane [$node cget - nane]
regsub -al | {9} $itk_option(-selectcommand) $nane cnu
upl evel #0 $cru

Notice that the “itk option define” statement appears outside of the
constructor, at the level of the class definition. Again, think of it as a public
variable declaration. It defines something about the class.

The - sel ect conmand option has the resource name sel ect Gonmand and the
resource class Gormand in the options database. Whenever a F | evi ewer
widget is created, the options database is used to determine the initial value for
this option. If a value cannot be found for either of these names, the default
value (in this case, the null string) is used as alast resort.

Whenever afile is selected on the canvas, we'll call the sel ect method shown
in Example 2-5, giving it the name of the M sual F | eTree object that was
selected. This method replaces all “%" fields in the - sel ect conmand code
with the name of the selected file, and executes the resulting command. We are
careful to use “upl evel #0" instead of eval to evaluate the code. That way,
the code is executed in the global context, and if it uses any variables, they will
be global variables.

Y ou might wonder how we know when a file has been selected. As you will
recall from Example 1-14, each M sual F | eTr ee object has its own - sel ect -
conmand option that is executed whenever a file is selected. We simply tell
each M sual F | eTree node to call the F | evi ener: : sel ect method when a

94

Chapter 2: Building Mega-Widgets with [incr Tk]

node is selected. We do this when each M sual F | €Tr ee node is created, as
shown in Example 2-6.

Example 2-6 VisualFileTree nodes notify the Fileviewer of any selections.

body Fileviewver::createNode {fnane} {
set obj [Msual FleTree ::#auto $f nane $i tk_conponent (di spl ay)]

$obj configure -nane $f nane \
-sort [code cnpTree -nane] \
-procreate [code $this createNode] \
-sel ect coomand [code $this sel ect %)

}

When you click on afile, the entire chain of events unfolds like this. Y our click
triggers a binding associated with the file, which causes the M sual F | eTree
object to execute its - sel ect conmand option. This, in turn, calls the sel ect
method of the Fileviewer, which executes its own - sel ect conmand option. In
effect, we have used the primitive - sel ect cormand on each M sual F | eTree
object to support a high-level - sel ect command for the entire F | evi ewer .

As another example of a brand-new option, suppose we add a -scrol | bar
option to the F | evi ener, to control the scrollbar. This option might have
three values. If it is on, the scrollbar is visible. If it is of f, the scrollbar is
hidden. If it is aut o, the scrollbar appears automatically whenever the file tree
istoo long to fit on the canvas.

Example 2-7 shows the F | evi ewer class with a-scrol | bar option. You can
find a complete code example in the file itcl/itk/fileviewer 3.itk.
Example 2-7 Adding the“ -scrollbar” option to the Fileviewer mega-widget.

class FHleviewer {
inherit itk::Wdget

constructor {args} {

}

itk_option define -sel ectconmand sel ect Cormand Cormand ""

itk _option define -scrollbar scrollbar Scrollbar "on" {
switch -- $itk_option(-scrollbar) {
on - off - auto {
fixScrol | bar

}
default {
error "bad val ue \"$i tk_option(-scol | bar)\""

}
}

private variable root ""

public nethod display {dir}
publ i c nethod sel ect {node}

95

Tcl/Tk Tools

Example 2-7 Adding the“ -scrollbar” option to the Fileviewer mega-widget.
private nethod creat eNode {dir}
private proc cnpTree {option obj 1 obj 2}

private nethod fixScrollbar {args}
private variable shvisible 1

In this case, we have added some configuration code after the default “on”
value. Whenever the confi gure method modifies this option, it will execute
this bit of code to check the new value and bring the widget up to date. In this
case, we check the value of the - scrol | bar option to make sure that it is on or
of f or auto. You can aways find the current value for a configuration option
inthe itk option array. If the value looks good, we use the fi xScrol | bar
method to update the scrollbar accordingly. If it does not have one of the
allowed values, we signal an error, and the conf i gur e method sets the option
back to its previous value, and then aborts with an error.

We must also call fixScrol | bar whenever any conditions change that might
affect the scrollbar. Suppose the scrollbar is in aut o mode. |f we shorten the
widget, we might need to put up the scrollbar. If we lengthen the widget, we
might need to take it down. If we double-click on afile and expand or collapse
the file tree, again, we might need to fix the scrollbar. All of these conditions
trigger a change in the view associated with the canvas. To handle them, we
must make sure that fixScrol | bar gets called whenever the view changes.
We do this by hijacking the normal communication between the canvas and the
scrollbar, as shown in Example 2-8.
Example 2-8 Using fixScrollbar to handle changes in the canvas view.
class Hleviewer {

inherit itk::Wdget

constructor {args} {

iii(_conponent add display {
canvas $itk_interior.canv -borderwidth 2\

-relief sunken -background white \
-yscrol | coomand [code $this fixScrollbar]

M

}
pack $itk _conponent (di splay) -side | eft -expand yes -fill both
eval itk initialize $args

}

Each time the view changes, the canvas calls its - yscr ol | cormand to notify the
scrollbar. In this case, it calls our fixScrol | bar method instead, which checks
to see if the scrollbar should be visible, and updates it accordingly. The
fixScrol | bar method then passes any arguments through to the scrollbar, so
the normal canvas/scrollbar communication is not interrupted.

96

Chapter 2: Building Mega-Widgets with [incr Tk]

ThefixScrol | bar method isimplemented as shown in Example 2-9.
Example 2-9 Implementation for the Fileviewer::fixScrollbar method.

body Fileviewer::fixScrollbar {args} {
swtch $itk option(-scrollbar) {
on { set sbstate 1}
off { set sbhstate 0}

auto {
if {[$itk _conponent (display) yview = "0 1"} {
set sbstate 0
} else {
set sbstate 1

}

}
if {$sbstate != $sbvisible} {
if {$sbstate} {
pack $itk _conponent (scrollbar) -side right -fill y
} else {
pack forget $itk_conponent (scroll bar)

set sbvisible $sbstate

if {$args !=""} {
eval $itk _conponent (scrollbar) set $args

}

First, we check the -scrol | bar option and determine whether or not the
scrollbar should be visible, saving the result in the variable sbstate. If the
scrollbar is on or of f, the answer is obvious. But if it is aut 0, we must check
the current view on the di spl ay canvas. If the entire canvasis visible, then the
view is“0 1", and the scrollbar is not needed.

We then consult the shvi si bl e variable defined in Example 2-7 to see if the
scrollbar is currently visible. If the scrollbar needs to be put up, it is packed
into the hull. If it needs to be taken down, then the “pack forget” command is
used to unpack it.

Finally, we pass any extra arguments on to the set method of the scrollbar
component. Normally, there are no arguments, and this does nothing. But
having this feature lets the fi xScrol | bar method be used as the - yscr ol | com
nand for the canvas, without disrupting the norma communication between the
canvas and the scrollbar.

Defining “ Usual” Options

When you add a component to a mega-widget, you must keep, rename or ignore
its configuration options. As we saw earlier, each of the Tk widget classes has
a default set of keep and r enane statements to handle its configuration options

97

Tcl/Tk Tools

in the “usua” manner. Thereis even ausual statement to request the “usual”
option-handling code.

But what happens if you use a mega-widget as a component of a larger mega-
widget? What if you use a Fleviewer as a component within a larger
F | econfirm mega-widget? Again, you must keep, rename or ignore the
configuration options for the H | evi ener component. And what if someone
asks for the “usua” option-handling code for a H | evi ener component? It is
your job as the mega-widget designer to provide this.

The option-handling commands for a new widget class are defined with a usual
declaration, like the one shown in Example 2-10.

Example 2-10 Defining the “ usual” options for a Fileviewer component.

option add *FH leviewer.wdth 2i w dget Def aul t
option add *FH | evi ener. hei ght 3i w dget Def aul t
option add *FH | evi ever. scrol | bar auto w dget Def aul t

class Hleviewer {

}

usual Hleviewver {
keep -activebackground -acti vereli ef
keep -background - cursor
keep - hi ghlightcol or -highlightthickness
keep -t roughcol or

proc fileviewer {pathNane args} {
upl evel F leviever $pathNane $args

Here, the keep commands refer to the overall options for a H | evi ener mega-
widget. Suppose you use a Fil evi ener as a component in a H | econfirm
mega-widget, and you ask for the “usual” options. Each of the options shown
above would be kept in the H | econfi rmoption list. For example, if you set
the master - background option on a FH | econfirm it would propagate the
change to the - backgr ound option of its FH | evi ewer component, which in turn
would propagate the change to the - backgr ound option on its scrollbar and the
- hi ghl i ght backgr ound option on its canvas.

It is best to write the “usual” declaration at the last moment, after you have put
the finishing touches on a mega-widget class. You simply examine the master
configuration options one-by-one and decide if they should be kept, renamed or
ignored.

Only the most generic options should be kept or renamed in the “usual” declara-
tion for a widget class. If we had two F | evi ener components within a
H | econfi rmmega-widget, both of them might be tied to the F | econfirm
option list in the “usual” way. Which options should they have in common?

98

Chapter 2: Building Mega-Widgets with [incr Tk]

Options like -background, -foreground, -cursor and -font are al good
candidates for the keep command. On the other hand, options like -t ext,
- bi t map and - command are usually unique to each component, so options like
these should be ignored.

Inheritance and Composition

Mega-widgets can be used to build even larger mega-widgets. Like the Tk
widgets, mega-widgets support composition. One mega-widget can be used as
a component within another. But mega-widgets also support inheritance. One
mega-widget class can inherit al of the characteristics of another, and add its
own specidizations. You are no longer limited to what a class like F | evi ewer
provides. You can derive another class from it and add your own enhance-
ments. So a mega-widget toolkit can be extended in a way that transcends the
standard Tk widgets.

In this section, we explore how inheritance and composition can be used to
build mega-widgets. These relationships become even more powerful when
combined.

Designing a Base Class

Suppose we plan to build many different kinds of confirmation windows. We
may build a Messageconfi rm mega-widget, which prompts the user with a
question and requests a Yes/No or OK/Cancel response. We may build a
H | econfi r mmega-widget, which gives the user a file browser to select afile,
and requests a Load/Cancel or Save/Cancel response.

Both of these mega-widgets have a common abstraction. They pop up in their
own toplevel window, they have OK/Cancel buttons at the bottom, and they
prevent the application from continuing until the user has responded. When
mega-widgets share a common abstraction like this, we can design a mega
widget base class to handle it. In this case, we will create a base class called
Gonf i r mwhich provides the basic functionality for a confirmation dialog.

A Gonfirmmega-widget looks like the one shown in Figure 2-13. It has an
empty area called the “contents’ frame at the top, which can be filled in with
messages, file browsers, or whatever information is being confirmed. A sepa
rator line sits between this frame and the OK and Cancel buttons at the bottom
of the dialog. This dialog always pops up on the center of the desktop, and it
locks out the rest of the application until the user has pressed either OK or
Cancel.

99

Tcl/Tk Tools

"contents" frame

y | 0K I Cancel i

Figure 2-13 Generic Confirm mega-widget.

The class definition for a Gonfi rmmega-widget is shown in Example 2-11. A
complete code example appearsin the file itcl/itk/confirm.itk.
Example 2-11 The class definition for a Confirm mega-widget.

class @nfirm{
inherit itk:: Topl evel

constructor {args} {

i tk_conponent add contents {

frame $itk_interior.contents
}
pack $itk_conponent (contents) -expand yes -fill both -padx 4 -pady 4
i tk_conponent add separator {

frame $itk_interior.sep -height 2\

-borderwidth 1 -relief sunken

}
pack $itk_conponent (separator) -fill x -padx 8

private itk _conponent add controls {
frane $itk_interior.cntl

}
pack $itk_conponent (controls) -fill x -padx 4 -pady 8
i tk_conponent add ok {
button $i tk_conponent (control s).ok -text "K' \
-command [code $this dismss 1]
}
pack $itk_conponent (ok) -side left -expand yes
i tk_conponent add cancel {
button $i t k_conponent (control s).cancel -text "Cancel " \
-command [code $this dismss 0]
}
pack $itk_conponent (cancel) -side | eft -expand yes
wmnwi t hdraw $i t k_conponent (hul I')
wmngroup $itk_conponent (hul l) .
wm protocol $i tk_conponent (hul) \
VIV DELETE WNDOW[code $thi s di sniss]

after idle [code $this centernScreen]
set itk_interior $itk_conponent(contents)

eval itk initialize $args
}

private conmon responses

100

Chapter 2: Building Mega-Widgets with [incr Tk]

Example 2-11 The class definition for a Confirm mega-widget.

public nethod confirm{}
public nethod di smss {{choi ce 0}}

protected nethod center hScreen {}

The Gonfirm class inherits from the itk:: Topl evel base class, so each
Gonfi rmwidget pops up with its own toplevel window. We create a frame
component called content s to represent the “contents’ area at the top of the
window. We use another frame component called separ at or to act as a sepa-
rator line, and we add two button components called ok and cancel at the
bottom of the window. Note that the ok and cancel components sit inside of a
frame component called control s. This frame was added simply to help with
packing.

When you have a component like control s that is not an important part of the
mega-widget, you can keep it hidden. You simply include a protected or
pri vat e declaration in front of thei t k_conponent command. Thisisthe same
protected or private command that you would normally use in a namespace
to restrict access to a variable or procedure. It simply executes whatever
command you give it, and it sets the protection level of any commands or vari-
ables created along the way. When a mega-widget component is marked as
protected or private, it can be used freely within the mega-widget class, but it
cannot be accessed through the built-in conponent method by anyone outside
of the class.

Once we have created al of the components, we do a few other things to
initialize the Gonfi rmwidget. Since this is a toplevel widget, we use the wm
command to tell the window manager how it should handle this window. We
ask the window manager to withdraw the window, so that it will be invisible
until it is needed. We group it with the main window of the application. Some
window managers use the group to iconify related windows when the main
application window isiconified. We also set the “delete” protocol, so that if the
window manager tries to delete the window, it will simply invoke the di sni ss
method, asif the user had pressed the Cancel button.

In all of these commands, we are talking to the window manager about a
specific toplevel window—the one that contains our Gonfi r m mega-widget.
Remember, the container for any mega-widget is a component called the hul |,
which in this case is created automatically by the i tk:: Topl evel base class.
The window manager won't understand a symbolic component name like hul | ,
so we giveit the real window path name stored ini t k_conponent (hul |).

101

Tcl/Tk Tools

When the Gonfirm megawidget appears, we want it to be centered on the
desktop. We have a method called cent er OnScr een that determines the overall
size of the dialog, and uses the “wm geonet ry” command to position it on the
desktop. You can find the implementation of this method in the file itcl/itk/
confirm.itk. The details are not particularly important. We should call this
method once, when the widget is first created. But we can't call it directly in
the constructor. At this point, we haven't finished building the Gonf i r mdialog.
As we'll see shortly, more widgets need to be created and packed into the
“contents’ frame. If we call center OhScreen too early, the dialog will be
centered based on its current size, and when more widgets are added, it will
appear to be off-center.

This situation arises from time to time—you want something to happen after
construction is complete. You can handle this quite easily with the Tk aft er
command. Normally, you give after a command and a certain time interval,
and the command is executed after that much time has elapsed. In this case, we
don't care exactly when centernScreen is caled, so instead of using a
specific time interval, we use the key word i dl e. Thistells after to execute
the command at the first opportunity when the application is idle and has
nothing better to do. Again, since the cent er hScr een method will be called
in another context, long after we have returned from the constructor, we are
careful to include the object name $t hi s, and to wrap the code fragment with
the code command.

As always, we finish the construction by calling itk initialize to initialize
the master option list and apply any option settings.
A onf i rmwidget can be created and packed with alabel like this:

confirm.ask

set wn [.ask conponent contents]

| abel $wi n. nessage -text "Do you really want to do this?"

pack $w n. nessage
Although we did not explicitly create options for the labels on the OK/Cancel
buttons, we can till change them like this:

.ask conponent ok configure -text "Yes"

.ask conponent cancel configure -text "No"
Sometimes it is better to access individua components like this, instead of
adding more options to the master option list. If a mega-widget has too many
options, it is difficult to learn and its performance suffers.

Whenever aconfirmation is needed, the conf i r mmethod can be used like this:

102

Chapter 2: Building Mega-Widgets with [incr Tk]

if {[.ask confirm} {
puts "go ahead"
} else {
puts "abort!"

}
The confirm method pops up the Gonfirm window, waits for the user's
response, and returns 1 for OK and O for Cancel. Theif statement checks the
result and prints an appropriate message.

The conf i rmmethod isimplemented as shown in Example 2-12.
Example 2-12 Implementation for the Confirm::confirm method.

body Gonfirm:confirm{}
wmn dei coni fy $i t k_conponent (hul I')
grab set $itk_conponent (hul|)
focus $itk_conponent (ok)

tkwait variabl e [scope responses($this)]

grab rel ease $itk_conponent (hul I')
wmnwi t hdraw $i t k_conponent (hul |')

return $responses($thi s)

}

First, we ask the window manager to pop up the window using the
“wmn dei coni fy” command, and we set a grab on the window. At this point, all
other windows in the application will be unresponsive, and the user is forced to
respond by pressing either OK or Cancel. The default focus is assigned to the
OK button, so the user can simply press the space bar to select OK.

The tkwait command stops the normal flow of execution until the user has
responded. In this case, we watch a particular variable that will change as soon
as the user presses either OK or Cancel. Each Gonfi r mwidget should have its
own variable for t kwai t . Normally, we would use an object variable for some-
thing like this, but there is no way to pass an object variable to a command like
tkwai t. The scope operator will capture the namespace context for a variable,
but not the object context. So the scope command works fine for common
class variables, but not for object variables. We can use the following trick to
get around this problem: We define a common array called r esponses, and we
assign each widget a slot with its name $this. Aslong as we wrap each slot
r esponses($t hi s) in the scope command, we have no trouble passing it along
totkwait.

Thanks to the - conmand option of the ok and cancel components, pressing OK
invokes the di sm ss method with the value 1, and pressing Cancel invokes the
di sm ss method with the value 0. The di smi ss method itself is quite trivial.
Its body is shown in Example 2-13.

103

Tcl/Tk Tools

Example 2-13 Implementation for the Confirm::dismiss method.

body Gonfirm:dismss {{choice 0}} {
set responses($this) $choi ce

It simply stores whatever value you give it in the r esponses array. But if we're
sitting at the t kwai t instruction in the confi r mmethod, thisis just what we're
looking for. Setting this variable causes t kwai t to return control, and execution
resumes within the conf i rmmethod. We release the grab, hide the dialog, and
return the user’s response.

The Gonfirmmega-widget is useful in its own right, but it can be even more
useful as the basis of other mega-widget classes. Derived classes like
Messageconf i rmand F | econfi rmcan inherit most of the basic functionality,
and simply add a few components into the cont ent s frame.

But how do derived classes know that they are supposed to use the cont ent s
frame? We usethe variableitk_interior totrack this. Intheitk:: Wdget or
i tk:: Topl evel base class, itk interior is set to the window path name of
the hul I component. In the Gonfi r mbase class, we create components in this
interior, and then change itk interior to the window path name of the
contents frame. Derived classes create components in this interior, and
perhaps change i tk_interior to their own innermost window. If al classes
use itk interior like this, making classes work together becomes a simple
matter of changing their i nherit statements.

Using Inheritance

We can continue with the example described above, using inheritance to create
a Messageconfirm megawidget like the one shown in Figure2-14. A
Messageconfirmis-a Gonfirm but it has an icon and a text message in the
cont ent s frame.

= Confirm

= BT

Figure 2-14 A Messageconfirm mega-widget.

The class definition for Messageconfirm is shown in Example2-14. A
complete code example appears in the file itcl/itk/messageconfirm.itk.

104

Chapter 2: Building Mega-Widgets with [incr Tk]

Example 2-14 Class definition for a Messageconfirm mega-widget.

cl ass Messageconfirm{
inherit Gonfirm

constructor {args} {
i tk_conponent add icon {
label $itk interior.icon -bitnap questhead
H{

usual
renane -bitnap -icon icon B tnap

}
pack $itk_conponent (i con) -side |eft

i tk_conponent add nessage {
| abel $itk_interior.nmesg -waplength 3i

usual
renane -text -nessage nessage Text

}
pack $itk_conponent (nessage) -side left -fill x

eval itk initialize $args
}
}

By inheriting from the Gonfirmclass, Messageconf i rmautomatically has its
own toplevel window with a contents frame, a separator line, and OK and
Cancel buttons. It has confi rmand di smss methods, and it automatically
comes up centered on the desktop.

It has the same basic configuration options too, but it does not inherit any
default settings from the base class. If you have defined some resource settings
for the Gonf i rmclass, like this:

option add *Qonfirmbackground bl ue w dget Def aul t
option add *Gonfirmforeground white w dget Def aul t

you will have to repeat those settings for the derived class:

option add *Messageconfirm background bl ue w dget Def aul t

option add *Messageconfirmforeground white w dget Def aul t
In its constructor, the Messageconf i rmadds an i con component, which repre-
sents the bitmap icon to the left of the message. We use the usual command in
the option-handling commands for this component to integrate most of its
options in the “usua” manner, but we rename the - bi t nap option, caling it
-icon in the master list. Thisis a better name for the option, since it indicates
which bitmap we are controlling.

The Messageconfirmalso adds a nessage component, which represents the
message label. Again, we use the usual command to integrate most of its
options, but we rename the -t ext option, calling it - nessage in the master list.

As aways, we create these two component widgets with the root name
$itk interior. But in this case, $itk interior contains the name of the

105

Tcl/Tk Tools

cont ent s frame that we created in the constructor for base class Gonfirm So
these new components automatically sit inside of the contents frame, as |
explained earlier.

We might create a Messageconf i r mwidget like this:

nmessageconfirm. check -background tonato -icon warning \
-nessage "[Do you real ly want to do this?"

and useit like this:

if {[.check confirm} {
puts "go ahead"
} else{
puts "abort!"
}
With asimplei nherit statement and just a few lines of code, we have created

avery useful widget.

Mixing Inheritance and Composition

Inheritance is a powerful technique, but so is composition. Many good designs
use both relationships. For example, suppose we create a H | econfi r mmega
widget like the one shown in Figure 2-15. A F | econfi rmis-a Gonfirm and
has-a H | evi ener component packed into the contents frame. It also has-a
entry component packed into the cont ent s frame. When the user selects afile,
its name is automatically loaded into the entry component. Of course, the user
can aso edit this name, or type an entirely different name into the entry
component.

[Selectfile |
3 itel

3 bin

(3 include

- itelh

B itkh

B tclh

L tkh

-3 lib

-3 itelz.o

3 itkz.0

(3 iwidgets2.0
— D libitcl2.0.a

Figure 2-15 A Fileconfirm mega-widget.

106

Chapter 2: Building Mega-Widgets with [incr Tk]

The class definition for Fileconfirm is shown in Example 2-15. A complete
code example appears in the file itcl/itk/fileconfirm.itk.

Example 2-15 Class definition for a Fileconfirm mega-widget.

class Fleconfirm{
inherit Gonfirm

constructor {args} {
i tk_conponent add fil eTree {
fileviewer $itk_interior.files \
-sel ect coomand [code $this sel ect 9]

}
pack $itk conponent (fileTree) -expand yes -fill both

i tk_conponent add fil eLabel {
label $itk_interior.flabel -text "File:"

}
pack $itk_conponent (fileLabel) -side |eft -padx 4

itk_conponent add fileEntry {
entry $itk_interior.fentry

}
pack $itk_conponent (fileEntry) -side left -expand yes -fill x

eval itk initialize $args
}

itk_option define -directory directory Orectory "" {
$i tk_conponent (fil eTree) display $itk_option(-directory)

public nethod get {} {
return [$i tk_conponent (fileEntry) get]

protected nethod sel ect {nane} {
$i tk_conponent (fil eEntry) delete O end
$i t k_conponent (fil eEntry) insert O $nane

}

Again, by inheriting from the Gonf i rmclass, FH | econfi r mautomatically hasits
own toplevel window with a contents frame, a separator line, and OK and
Cancel buttons. It has confirmand di smss methods, and it automatically
comes up centered on the desktop.

In its constructor, FH | econfi rmadds a F | evi ener component. It also adds a
File: label and an entry component at the bottom of the cont ent s frame. These
are three separate components, but they interact within the F | econf i rmin the
following manner. When the user selects a file, the H | evi ener executes its
- sel ect cormand code, which callsthe H | econfi rm: sel ect method with the
selected file name substituted in place of %. The sel ect method then loads the
file name into the entry component. Whatever name is sitting in the entry
component is treated as the officia file selection. At any point, you can use the
F | econfirm: get method to get the file name sitting in the entry component.

107

Tcl/Tk Tools

The -directory option controls the top-level directory in the H | econfirm
Whenever it is configured, it automatically invokes the di spl ay method of the
H | evi ewer to update the display.

We might create aF | econf i r mwidget like this:
fileconfirm.files -directory $env(HM)
and use it like this:

if {[.files confirm} {
puts "selected file: [.files get]"
} else{
puts "abort!"
}
We use the conf i rmmethod to pop up the dialog and wait for the user to select
afile and press OK or Cancel. If he pressed OK, we use the get method to get
the name of the selected file, and we print it out.

We leveraged the Gonfirmeclass with inheritance, and the F | evi ewer class
with composition. Together, these two techniques produce a complex widget
with just alittle extra code.

Reviving Options

Sometimes a derived class needs to override the way a base class handles its
configuration options. For example, suppose we want to define the -wi dt h and
-hei ght options of a F | evi ener widget so that they represent the overall
width and height, including the scrollbar. Previously, we kept the -w dt h and
-hei ght options from the canvas component, so the overall width was a little
bigger when the scrollbar was visible. Instead, we need to keep the - wi dt h and
- hei ght options from the hul I component. But the hul | component is created
intheitk: : Wdget base class, and we can’'t modify that code.

Options that belong to a base class component can be revived in a derived class
using the “itk_option add” command. You simply tell the mega-widget to
add an option that was previously ignored back into the master list. A complete
code example appears in the file itcl/itk/fileviewer4.itk, but the important parts
are shown in Example 2-16.

Example 2-16 Options can berevived using “ itk_option add” .

option add *FH leviewer.wdth 2i w dget Def aul t
option add *H | evi ener. hei ght 3i w dget Def aul t
option add *FH | evi ever. scrol | bar auto w dget Def aul t

class Hleviewer {
inherit itk::Wdget

constructor {args} {

108

Chapter 2: Building Mega-Widgets with [incr Tk]

Example 2-16 Options can be revived using “ itk_option add” .
itk _option add hul |.wdth hull. hei ght
iii(_conponent add display {
canvas $itk interior.canv -borderwidth 2 \

-relief sunken -background white \
-yscrol | coomand [code $this fixScrollbar] \
-width 1 -height 1

Mo

keep -cursor
keep -hi ghlightcol or -highlightthickness
renane - hi ghl i ght background - backgr ound background Backgr ound

}
pack $itk_conponent (di spl ay) -side | eft -expand yes -fill both
eval itk initialize $args

pack propagate $itk_conponent (hull) O
bi nd $i tk_conponent (di spl ay) <Gonfigure> [code $this fixScrollbar]

}

The “itk_option add” command is different from the “i tk_opti on defi ne”
command that we saw earlier. You use “itk _option define” as part of a
class definition to define a new configuration option. On the other hand, you
use“itk_option add” in the constructor (or in any other method) to reinstate a
configuration option that aready exists but was ignored by a base class. The
“itk_opti on add” command can appear anywhere in the constructor, but it is
normally included near the top. It should be called before itk_initialize,
since options like - w dt h and - hei ght might appear on the ar gs list.

Each option is referenced with a name like “component. option” if it comes
from a component, or with a name like “class: : option” if it comes from an
“itk_option define” command. In either case, option is the option name
without the leading “-” sign. In this example, we are reviving the -wi dt h and
- hei ght options of the hul | component, so we use the names hul | . wi dt h and
hul | . hei ght. FH | eviewer widgets will behave as if these options had been
kept when the component was first created.

Now that we have reinstated the -wi dt h and - hei ght options, we must make
sure that they work. Frames normally shrink-wrap themselves around their
contents, but we can use the “pack propagat e” command to disable this, so
the hull will retain whatever size is assigned to it. We aso set the width and
height of the canvas to be artificially small, but we pack it to expand into any
available space.

Suppressing Options

Options coming from a base class can be suppressed using the
“itk_option remove” command. But this command should be used carefully.

109

Tcl/Tk Tools

A derived class like F | evi ener should have al of the options defined in its
base class itk::\Wdget. After all, a F | eviewer is-a \Wdget. An option
should be suppressed in the base class only if it is being redefined in the derived
class.

For example, suppose we want to change the meaning of the - cur sor option in
the Fleviewer widget. We set things up previously so that when you
configure the master - cur sor option, it propagates the change down to all of
the components in the H | evi ener. Suppose instead that we want the - cur sor
option to affect only the di spl ay component. That way, we could assign a
special pointer for selecting files, but leave the scrollbar and the hull with their
appropriate default cursors.

To do this, we must keep the - cur sor option on the di spl ay component, but
avoid keeping it on the scrol | bar and hul | components. A complete code
example appears in the file itcl/itk/fileviewer5.itk, but the important parts are
shown below in Example 2-17.

Example 2-17 Options can be suppressed using “ itk_option remove” .

option add *FH | eviewer.w dth 2i w dget Def aul t

option add *FH | evi ewer. hei ght 3i w dget Def aul t

option add *H | evi ewer. scrol | bar auto w dget Def aul t
option add *FH | evi ewer. cursor center_ptr w dget Def aul t

class FHleviewver {
inherit itk::Wdget

constructor {args} {
itk _option add hul |.wdth hull. hei ght
itk_option renove hull . cursor

i tk_conponent add scrol | bar {
scrol lbar $itk_interior.sbar -orient vertical \
-conmand [code $itk_ interior.canv yview

usual
i gnore -cursor

eval itk initialize $args
conponent hul | configure -cursor ""

pack propagate $itk_conponent (hull) O
bi nd $i t k_conponent (di spl ay) <Configure> [code $this fixScroll bar]

}

Since we create the scrol | bar component in class F | evi ewer, we can simply
fix its option-handling code to suppress the - cursor option. We integrate its
options in the “usual” manner, but we specifically ignore its - cur sor option.
The hul | component, on the other hand, is created in the i tk:: \Wdget base
class, and we can't modify that code. Instead, we use the

110

Chapter 2: Building Mega-Widgets with [incr Tk]

“itk_option remove” command to disconnect itscursor option from the
master list. We create thde spl ay component just as we did before, keeping
its - cur sor option. Having done all this, we can configure the mastersor
option, and it will affect only thdi spl ay component.

We might even add a default cursor like this:
option add *F | eviewer. cursor center_ptr w dget Def aul t

Whenever we create a neli| evi ewer widget, its-cursor option will be
center ptr by default, so the file area will have a cursor that is more suitable
for selecting files.

At this point, the example should be finished. But there is one glitch that keeps
this example from working properly. Unfortunately, when you set a resource
on a class likdH | evi ewer, it affects not only the masté&t | evi ewer options,

but also the options on thieul | component that happen to have the same
name. We were careful to disconnect the hull from the mastesor option,

but unless we do something, the hull will think its default cursor should be
center_ptr. Even though it is not connected to the master option, it will acci-
dentally get the wrong default value.

We can counteract this problem by explicitly configuring okl component
in theH | evi ewer constructor like this:

conponent hul | configure -cursor "*

So the hull will indeed get the wrong default value, but we have explicitly set it
back to its default value, which is the null stringThis problem is rare. It
occurs only when you try to suppress one of the hull options- likesor,
-borderwidth or-relief, and yet you set a class resource in the options data-
base. It is easily fixed with an explicit configuration like the one shown above.

Building Applications with Mega-\dgets

Using mega-widgets as building blocks, applications come together with aston-
ishing speed. Consider thedget r ee application shown in Figura-16, which

is modeled after thhi er query program‘.t It provides a menu of Tcl/Tk appli-
cations that are currently running on the desktop. When you select a target
application, its widget hierarchy is loaded into the main viewer. You can
double-click on any widget in the tree to expand or collapse the tree at that
point. If you select a widget and press tenfigure button, you will get a

t In Tk, widgets with a null cursor inherit the cursor from their parent widget.
T David Richardson, “Interactively Configuring Tk-based ApplicatioRsgceedings of the Tcl/Tk
Workshop, New Orleans, LA, June 23-25, 1994.

111

Tcl/Tk Tools

panel showing its configuration options. You can change the settings in this
panel and immediately apply them to the target application. Thistool is a great
debugging aid. It lets you explore an unfamiliar Tk application and quickly
make changes to its appearance.

= widgetree |=
Application: tree?.itcl — |
O treefitcl
[control T T
dir = Configure: .display.lbox |=
3 get
[display -background [white Y
thox ~horderwidth [2
=¥ shar
i sort -cursor |
byname -exportselection 1
hysize ~font |-*-courier-bold-r-normal--
EA label
—foreground |Black
-height j1o
-highlighthackground |#d9d9d9
M Configure: | Jdisplay.lbox —highlightcolor |El|ack
! -highlightthickness |2 7l

Figure 2-16 The*“widgetree” application lets you explore any Tk application.

The wi dget r ee application was built with a handful of mega-widgets and about
100 lines of Tcl/Tk code. Most of the mega-widgets came off-the-shelf from
the [INCR WIDGETS] library, described in Chapter XXX. The application menu
is an ot i onnenu widget. The panel of configuration options is a D al og with
an internal Scrol | edf rane containing Ent ryfi el d widgets, which represent
the various configuration options.

We developed one customized mega-widget for this application: a
Wdget vi ener class to manage the widget tree. You can find the code for the
Wdget vi ewer class in the file itcl/widgetree/widgetviewer.itk. The details are
not all that important. As you might have noticed, the Wdget vi ener looks
suspiciously like a FH | evi ewer. It has adi spl ay component and a scrol | bar
component, and it stores its data using M sual \Wdget Tree objects. Like the
Vi sual F | eTree class, the M sual Wdget Tr ee class inherits from the Tree
and M sual Rep classes developed in the previous chapter. But instead of popu-
lating itself with nodes that represent files, each M sual \Wdget Tree object
populates itself with nodes that represent child widgets. When you expand a

112

Chapter 2: Building Mega-Widgets with [incr Tk]

\i sual Wdget Tree node on the display, you trigger a call to its contents
method and the node populates itself. It sends the “wi nfo children”
command to the target application, gets alist of child widgets, and creates other
M sual Wdget Tr ee objects to represent the children.

The wi dget r ee application has many different classes that al contribute to its
operation. You can find the code for this application in the file itcl/widgetree/
widgetree. Rather than present the code here, we will simply comment on the
way that these classes were used to structure the code.

The relationships between these classes are a mixture of inheritance and compo-
sition. They can be diagrammed using the OMT notation’ as shown in Figure 2-
17. A Wdgetvi ewer isaitk::Wdget, and it has-a M sual Wdget Tr ee root
object. A M sual Wdget Tree is both a Wdget Tree and a M sual Rep, and a
Wdget Treeis-a Tr ee.

[incr TK] i tk:: Archetype Tree
|
i tk:: Wdget Wdget Tree M sual Rep

L) —

Wdget vi ener [<>—————— M sual Wdget Tree

Figure 2-17 The*“ widgetree” application has many different classes working together.

The same application can be built without objects and mega-widgets, but it
requires more code, and the final result might not have as many finishing
touches. For example, the configuration options for our w dget r ee application
are presented on a scrollable form, in case the list is long. Nodes in the widget
tree can be expanded or collapsed, and a scrollbar comes and goes as heeded.
Many developers avoid writing extra code for features like these. With mega-
widgets, the code can be written once and reused again and again on future
projects. This makes Tcl/Tk even more effective for building large applications.

T James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lorensen, Ob-
ject-Oriented Modeling and Design, Prentice-Hall, 1991.

113

Tcl/Tk Tools

ummary
Extension: [incr TK] - Mega-Widget Framework
Author: Michael J. McLennan
Bell Labs Innovations for Lucent Technologies
mmclennan@Il ucent.com
Other Mark L. Ulferts
Contributors: Jim Ingham

Platforms
Supported:

Web Site:

Mailing List:
(bug reports)

...and many others listed on the web site

All major Unix platforms

Linux

Windows 95 (release itcl2.2 and beyond)
Macintosh (release itcl2.2 and beyond)

http://ww tcltk. conitk

nmail -s "subscribe" itcl-request @cltk.com
to subscribe to the mailing list

mai | itcl @cltk.com
to send mail

114

Chapter 2: Building Mega-Widgets with [incr Tk]

Quick Reference
Public Methods

The following methods are built into all mega-widgets. If you have created a
mega-widget with the Tk name pathName, you can access these methods as
follows:

pat hNane cget -option

Returns the current value for any mega-widget option. Works
just like the usual cget method in Tk.

pat hNane conponent ?syniol i cNane? ?comrmand arg arg ...?
Provides access to well-known components within a mega-
widget.

pat hNane configure ?-opti on? ?val ue -option value ...?

Used to query or set mega-widget options. Worksjust likethe
usua confi gur e method in Tk.

Protected Methods

The following methods are used within a mega-widget class as part of its
implementation:

i tk_conponent add syniol i cNane {
W dget pat hNane ?arg arg...?
}

or

i tk_conponent add synbol i cNane {
w dget pathNane ?arg arg...?
H
ignore -option ?-option -option ...?
keep -option ?-option -option ...?
renane -option -newNane resour ceNane resour ced ass
usual ?tag?

Creates awidget and registers it as a mega-widget compo-
nent. Theextrai gnor e, keep, r enane and usual commands
control how the configuration optionsfor this component are
merged into the master option list for the mega-widget.

115

Tcl/Tk Tools

itk option

itk option

itk option

itk initialize

add opt Nane ?opt Nane opt Nane. . . ?

where optNameiscomponent. option or className: : option.
Adds an option that was previously ignored back into the
master option list.

renove opt Nane ?opt Nane opt Nane. . . ?

where optNameiscomponent. option or className: : option.
Removes an option that was previously merged into the mas-
ter option list.

define -option resourceNane resourced ass init
?conf i gBody?
Defines a new configuration option for a mega-widget class.

?-option val ue -option value...?

Called when a mega-widget is constructed to initialize the
master option list.

Protected Variables

The following variables can be accessed within a mega-widget class:

i t k_conponent (syniol i cNane)

itk interior

Contains the Tk window path name for each component
named symbolicName.

Contains the name of the toplevel or frame within a mega-

widget which acts as a container for new components.

itk_option(-option)

116

Contains the current value for any configuration option.

Chapter 2: Building Mega-Widgets with [incr Tk]

Auxiliary Commands

The following commands are available outside of a mega-widget class. They
provide useful information about all Tk widgets:
usual tag ?commands?

Used to query or set “usua” option-handling commands for a
widget in class tag.

W nfo command w ndow

Returns the access command for any widget, including its
namespace qualifiers.

W nfo negaw dget w ndow

Returns the name of the mega-widget containing the widget
named window.

117

Tcl/Tk Tools

118

