

Unicode
Demystified

A Practical Programmer’s
Guide to the Encoding Standard

by Richard Gillam

Copyright ©2000–2002 by Richard T. Gillam. All rights reserved.

Pre-publication draft number 0.3.1

Tuesday, January 15, 2002

To Mark, Kathleen, Laura, Helena, Doug,
John F, John R, Markus, Bertrand, Alan, Eric,
and the rest of the old JTCSV Unicode crew,

without whom this book would not have been possible

and

To Ted and Joyce Gillam,
without whom the author would not have been possible

 v

Table of Contents

Table of Contents v

Preface xv
About this book xvi
How this book was produced xviii
The author’s journey xviii
Acknowledgements xix
A personal appeal xx

Unicode in Essence An Architectural
Overview of the Unicode Standard 1

CHAPTER 1 Language, Computers, and Unicode 3
What Unicode Is 6
What Unicode Isn’t 8
The challenge of representing text in computers 10
What This Book Does 14
How this book is organized 15

Section I: Unicode in Essence 15
Section II: Unicode in Depth 16
Section III: Unicode in Action 17

CHAPTER 2 A Brief History of Character Encoding 19
Prehistory 19

The telegraph and Morse code 20

 Table of Contents

vi Unicode Demystified

The teletypewriter and Baudot code 21
Other teletype and telegraphy codes 22
FIELDATA and ASCII 23
Hollerith and EBCDIC 24

Single-byte encoding systems 26
Eight-bit encoding schemes and the ISO 2022 model 27
ISO 8859 28
Other 8-bit encoding schemes 29

Character encoding terminology 30
Multiple-byte encoding systems 32

East Asian coded character sets 32
Character encoding schemes for East Asian coded character sets 33
Other East Asian encoding systems 36

ISO 10646 and Unicode 36
How the Unicode standard is maintained 41

CHAPTER 3 Architecture: Not Just a Pile of Code Charts 43
The Unicode Character-Glyph Model 44
Character positioning 47
The Principle of Unification 50

Alternate-glyph selection 53
Multiple Representations 54
Flavors of Unicode 56
Character Semantics 58
Unicode Versions and Unicode Technical Reports 60

Unicode Standard Annexes 60
Unicode Technical Standards 61
Unicode Technical Reports 61
Draft and Proposed Draft Technical Reports 61
Superseded Technical Reports 62
Unicode Versions 62
Unicode stability policies 63

Arrangement of the encoding space 64
Organization of the planes 64
The Basic Multilingual Plane 66
The Supplementary Planes 69
Non-Character code point values 72

Conforming to the standard 73
General 74
Producing text as output 75
Interpreting text from the outside world 75
Passing text through 76
Drawing text on the screen or other output devices 76
Comparing character strings 77
Summary 77

CHAPTER 4 Combining character sequences and Unicode
normalization 79

How Unicode non-spacing marks work 81

 A Practical Programmer’s Guide to the Encoding Standard vii

Dealing properly with combining character sequences 83
Canonical decompositions 84
Canonical accent ordering 85
Double diacritics 87
Compatibility decompositions 88
Singleton decompositions 90
Hangul 91
Unicode normalization forms 93
Grapheme clusters 94

CHAPTER 5 Character Properties and the Unicode Character
Database 99

Where to get the Unicode Character Database 99
The UNIDATA directory 100
UnicodeData.txt 103
PropList.txt 105
General character properties 107

Standard character names 107
Algorithmically-derived names 108
Control-character names 109
ISO 10646 comment 109
Block and Script 110

General Category 110
Letters 110
Marks 112
Numbers 112
Punctuation 113
Symbols 114
Separators 114
Miscellaneous 114

Other categories 115
Properties of letters 117

SpecialCasing.txt 117
CaseFolding.txt 119

Properties of digits, numerals, and mathematical symbols 119
Layout-related properties 120

Bidirectional layout 120
Mirroring 121
Atabic contextual shaping 122
East Asian width 122
Line breaking property 123

Normalization-related properties 124
Decomposition 124
Decomposition type 124
Combining class 126
Composition exclusion list 127
Normalization test file 127
Derived normalization properties 128
Grapheme-cluster-related properties 128

Unihan.txt 129

 Table of Contents

viii Unicode Demystified

CHAPTER 6 Unicode Storage and Serialization Formats 131
A historical note 132
UTF-32 133
UTF-16 and the surrogate mechanism 134
Endian-ness and the Byte Order Mark 136
UTF-8 138
CESU-8 141
UTF-EBCDIC 141
UTF-7 143
Standard Compression Scheme for Unicode 143
BOCU 146
Detecting Unicode storage formats 147

Unicode in Depth A Guided Tour of the
Character Repertoire 149

CHAPTER 7 Scripts of Europe 151
The Western alphabetic scripts 151
The Latin alphabet 153

The Latin-1 characters 155
The Latin Extended A block 155
The Latin Extended B block 157
The Latin Extended Additional block 158
The International Phonetic Alphabet 159

Diacritical marks 160
Isolated combining marks 164
Spacing modifier letters 165

The Greek alphabet 166
The Greek block 168
The Greek Extended block 169
The Coptic alphabet 169

The Cyrillic alphabet 170
The Cyrillic block 173
The Cyrillic Supplementary block 173

The Armenian alphabet 174
The Georgian alphabet 175

CHAPTER 8 Scripts of The Middle East 177
Bidirectional Text Layout 178
The Unicode Bidirectional Layout Algorithm 181

Inherent directionality 181
Neutrals 184
Numbers 185
The Left-to-Right and Right-to-Left Marks 186
The Explicit Embedding Characters 187

 A Practical Programmer’s Guide to the Encoding Standard ix

Mirroring characters 188
Line and Paragraph Boundaries 188

Bidirectional Text in a Text-Editing Environment 189
The Hebrew Alphabet 192

The Hebrew block 194
The Arabic Alphabet 194

The Arabic block 199
Joiners and non-joiners 199
The Arabic Presentation Forms B block 201
The Arabic Presentation Forms A block 202

The Syriac Alphabet 202
The Syriac block 204

The Thaana Script 205
The Thaana block 207

CHAPTER 9 Scripts of India and Southeast Asia 209
Devanagari 212

The Devanagari block 217
Bengali 221

The Bengali block 223
Gurmukhi 223

The Gurmukhi block 225
Gujarati 225

The Gujarati block 226
Oriya 226

The Oriya block 227
Tamil 227

The Tamil block 230
Telugu 230

The Telugu block 232
Kannada 232

The Kannada block 233
Malayalam 234

The Malayalam block 235
Sinhala 235

The Sinhala block 236
Thai 237

The Thai block 238
Lao 239

The Lao block 240
Khmer 241

The Khmer block 243
Myanmar 243

The Myanmar block 244
Tibetan 245

The Tibetan block 247
The Philippine Scripts 247

CHAPTER 10 Scripts of East Asia 251
The Han characters 252

 Table of Contents

x Unicode Demystified

Variant forms of Han characters 261
Han characters in Unicode 263

The CJK Unified Ideographs area 267
The CJK Unified Ideographs Extension A area 267
The CJK Unified Ideographs Extension B area 267
The CJK Compatibility Ideographs block 268
The CJK Compatibility Ideographs Supplement block 268
The Kangxi Radicals block 268
The CJK Radicals Supplement block 269

Indeographic description sequences 269
Bopomofo 274

The Bopomofo block 275
The Bopomofo Extended block 275

Japanese 275
The Hiragana block 281
The Katakana block 281
The Katakana Phonetic Extensions block 281
The Kanbun block 281

Korean 282
The Hangul Jamo block 284
The Hangul Compatibility Jamo block 285
The Hangul Syllables area 285

Halfwidth and fullwidth characters 286
The Halfwidth and Fullwidth Forms block 288

Vertical text layout 288
Ruby 292

The Interlinear Annotation characters 293
Yi 294

The Yi Syllables block 295
The Yi Radicals block 295

CHAPTER 11 Scripts from Other Parts of the World 297
Mongolian 298

The Mongolian block 300
Ethiopic 301

The Ethiopic block 303
Cherokee 303

The Cherokee block 304
Canadian Aboriginal Syllables 304

The Unified Canadian Aboriginal Syllabics block 305
Historical scripts 305

Runic 306
Ogham 307
Old Italic 307
Gothic 308
Deseret 309

CHAPTER 12 Numbers, Punctuation, Symbols, and Specials 311
Numbers 311

 A Practical Programmer’s Guide to the Encoding Standard xi

Western positional notation 312
Alphabetic numerals 313
Roman numerals 313
Han characters as numerals 314
Other numeration systems 317
Numeric presentation forms 319
National and nominal digit shapes 319

Punctuation 320
Script-specific punctuation 320
The General Punctuation block 322
The CJK Symbols and Punctuation block 323
Spaces 323
Dashes and hyphens 325
Quotation marks, apostrophes, and similar-looking characters 326
Paired punctuation 331
Dot leaders 332
Bullets and dots 332

Special characters 333
Line and paragraph separators 333
Segment and page separators 335
Control characters 336
Characters that control word wrapping 336
Characters that control glyph selection 339
The grapheme joiner 345
Bidirectional formatting characters 346
Deprecated characters 346
Interlinear annotation 347
The object-replacement character 348
The general substitution character 348
Tagging characters 349
Non-characters 351

Symbols used with numbers 351
Numeric punctuation 351
Currency symbols 352
Unit markers 353
Math symbols 353
Mathematical alphanueric symbols 356

Other symbols and miscellaneous characters 357
Musical notation 357
Braille 359
Other symbols 359
Presentation forms 360
Miscellaneous characters 361

Unicode in Action Implementing and Using
the Unicode Standard 363

CHAPTER 13 Techniques and Data Structures for Handling
Unicode Text 365

Useful data structures 366

 Table of Contents

xii Unicode Demystified

Testing for membership in a class 366
The inversion list 369
Performing set operations on inversion lists 370

Mapping single characters to other values 374
Inversion maps 375
The compact array 376
Two-level compact arrays 379

Mapping single characters to multiple values 380
Exception tables 381

Mapping multiple characters to other values 382
Exception tables and key closure 382
Tries as exception tables 385
Tries as the main lookup table 388

Single versus multiple tables 390

CHAPTER 14 Conversions and Transformations 393
Converting between Unicode encoding forms 394

Converting between UTF-16 and UTF-32 395
Converting between UTF-8 and UTF-32 397
Converting between UTF-8 and UTF-16 401
Implementing Unicode compression 401

Unicode normalization 408
Canonical decomposition 409
Compatibility decomposition 413
Canonical composition 414
Optimizing Unicode normalization 420
Testing Unicode normalization 420

Converting between Unicode and other standards 421
Getting conversion information 421
Converting between Unicode and single-byte encodings 422
Converting between Unicode and multi-byte encodings 422
Other types of conversion 422
Handling exceptional conditions 423
Dealing with differences in encoding philosophy 424
Choosing a converter 425
Line-break conversion 425

Case mapping and case folding 426
Case mapping on a single character 426
Case mapping on a string 427
Case folding 427

Transliteration 428

CHAPTER 15 Searching and Sorting 433
The basics of language-sensitive string comparison 433

Multi-level comparisons 436
Ignorable characters 438
French accent sorting 439
Contracting character sequences 440
Expanding characters 440
Context-sensitive weighting 441

 A Practical Programmer’s Guide to the Encoding Standard xiii

Putting it all together 441
Other processes and equivalences 442

Language-sensitive comparison on Unicode text 443
Unicode normalization 443
Reordering 444
A general implementation strategy 445
The Unicode Collation Algorithm 447
The default UCA sort order 449
Alternate weighting 451
Optimizations and enhancements 453

Language-insensitive string comparison 455
Sorting 457

Collation strength and secondary keys 457
Exposing sort keys 459
Minimizing sort key length 460

Searching 461
The Boyer-Moore algorithm 462
Using Boyer-Moore with Unicode 465
“Whole words” searches 466

Using Unicode with regular expressions 466

CHAPTER 16 Rendering and Editing 469
Line breaking 470

Line breaking properties 471
Implementing boundary analysis with pair tables 473
Implementing boundary analysis with state machines 474
Performing boundary analysis using a dictionary 476
A couple more thoughts about boundary analysis 477
Performing line breaking 477

Line layout 479
Glyph selection and positioning 483

Font technologies 483
Poor man’s glyph selection 485
Glyph selection and placement in AAT 487
Glyph selection and placement in OpenType 489
Special-purpose rendering technology 491
Compound and virtual fonts 491

Special text-editing considerations 492
Optimizing for editing performance 492
Accepting text input 496
Handling arrow keys 497
Handling discontiguous selection 499
Handling multiple-click selection 500

CHAPTER 17 Unicode and Other Technologies 503
Unicode and the Internet 503

The W3C character model 504
XML 506
HTML and HTTP 507
URLs and domain names 508
Mail and Usenet 509

Unicode and programming languages 512

 Table of Contents

xiv Unicode Demystified

The Unicode identifier guidelines 512
Java 512
C and C++ 513
Javascript and JScript 513
Visual Basic 513
Perl 514

Unicode and operating systems 514
Microsoft Windows 514
MacOS 515
Varieties of Unix 516

Unicode and databases 517
Conclusion 517

Glossary 519

Bibliography 591
The Unicode Standard 591
Other Standards Documents 593
Books and Magazine Articles 593
Unicode Conference papers 594
Other papers 594
Online resources 595

 xv

Preface

As the ecomonies of the world continue to become more connected together, and as the American
computer market becomes more and more saturated, computer-related businesses are looking more
and more to markets outside the United States to grow their businesses. At the same time, companies
in other industries are not only beginning to do the same thing (or, in fact, have been for a long time),
but are increasingly turning to computer technology, especially the Internet, to grow their businesses
and streamline their operations.

The convergence of these two trends means that it’s no longer just an English-only market for
computer software. More and more, computer software is being used not only by people outside the
United States or by people whose first language isn’t English, but by people who don’t speak English
at all. As a result, interest in software internationalization is growing in the software development
community.

A lot of things are involved in software internationalization: displaying text in the user’s native
language (and in different languages depending on the user), accepting input in the user’s native
language, altering window layouts to accommodate expansion or contraction of text or differences in
writing direction, displaying numeric values acording to local customs, indicating events in time
according to the local calendar systems, and so on.

This book isn’t about any of these things. It’s about something more basic, and which underlies most
of the issues listed above: representing written language in a computer. There are many different
ways to do this; in fact, there are several for just about every language that’s been represented in
computers. In fact, that’s the whole problem. Designing software that’s flexible enough to handle
data in multiple languages (at least multiple languages that use different writing systems) has
traditionally meant not just keeping track of the text, but also keeping track of which encoding
scheme is being used to represent it. And if you want to mix text in multiple writing systems, this
bookkeeping becomes more and more cumbersome.

 Table of Contents

xvi Unicode Demystified

The Unicode standard was designed specifically to solve this problem. It aims to be the universal
character encoding standard, providing unique, unambiguous representations for every character in
virtually every writing system and language in the world. The most recent version of Unicode
provides representations for over 90,000 characters.

Unicode has been around for twelve years now and is in its third major revision, adding support for
more languages with each revision. It has gained widespread support in the software community and
is now supported in a wide variety of operating systems, programming languages, and application
programs. Each of the semiannual International Unicode Conferences is better-attended than the
previous one, and the number of presenters and sessions at the Conferences grows correspondingly.

Representing text isn’t as straightforward as it appears at first glance: it’s not merely as simple as
picking out a bunch of characters and assigning numbers to them. First you have to decide what a
“character” is, which isn’t as obvious in many writing systems as it is in English. You have to
contend with things such as how to represent characters with diacrtical marks applied to them, how to
represent clusters of marks that represent syllables, when differently-shaped marks on the page are
different “characters” and when they’re just different ways of writing the same “character,” what
order to store the characters in when they don’t proceed in a straightforward manner from one side of
the page to the other (for example, some characters stack on top of each other, or you have two
parallel lines of characters, or the reading order of the text on the page zigzags around the line
because of differences in natural reading direction), and many similar issues.

The decisions you make on each of these issues for every character affect how various processes,
such as comparing strings or analyzing a string for word boundaries, are performed, making them
more complicated. In addition, the sheer number of different characters representable using the
Unicode standard make many processes on text more complicated.

For all of these reasons, the Unicode standard is a large, complicated affair. Unicode 3.0, the last
version published as a book, is 1,040 pages long. Even at this length, many of the explanations are
fairly concise and assume the reader already has some degree of familiarity with the problems to be
solved. It can be kind of intimidating.

The aim of this book is to provide an easier entrée into the world of Unicode. It arranges things in a
more pedagogical manner, takes more time to explain the various issues and how they’re solved, fills
in various pieces of background information, and adds implementation information and information
on what Unicode support is already out there. It is this author’s hope that this book will be a worthy
companion to the standard itself, and will provide the average programmer and the
internationalization specialist alike with all the information they need to effectively handle Unicode
in their software.

About this book

There are a few things you should keep in mind as you go through this book:

x� This book assumes the reader either is a professional computer programmer or is familiar with
most computer-programming concepts and terms. Most general computer-science jargon isn’t
defined or explained here.

 A Practical Programmer’s Guide to the Encoding Standard xvii

x� It’s helpful, but not essential, if the reader has some basic understanding of the basic concepts of
software internationalization. Many of those concepts are explained here, but if they’re not
central to one of the book’s topics, they’re not given a lot of time.

x� This book covers a lot of ground, and it isn’t intended as a comprehensive and definitive
reference for every single topic it discusses. In particular, I’m not repeating the entire text of the
Unicode standard here; the idea is to complement the standard, not replace it. In many cases, this
book will summarize a topic or attempt to explain it at a high level, leaving it to other documents
(typically the Unicode standard or one of its technical reports) to fill in all the details.

x� The Unicode standard changes rapidly. New versions come out yearly, and small changes, new
technical reports, and other things happen more quickly. In Unicode’s history, terminology has
changed, and this will probably continue to happen from time to time. In addition, there are a lot
of other technologies that use or depend on Unicode, and they are also constantly changing, and
I’m certainly not an expert on every single topic I discuss here. (In my darker moments, I’m not
sure I’m an expert on any of them!) I have made every effort I could to see to it that this book is
complete, accurate, and up to date, but I can’t guarantee I’ve succeeded in every detail. In fact, I
can almost guarantee you that there is information in here that is either outdated or just plain
wrong. But I have made every effort to make the proportion of such information in this book as
small as possible, and I pledge to continue, with each future version, to try to bring it closer to
being fully accurate.

x� At the time of this writing (January 2002), the newest version of Unicode, Unicode 3.2, was in
beta, and thus still in flux. The Unicode 3.2 spec is schedule to be finalized in March 2002, well
before this book actually hits the streets. With a few exceptions, I don’t expect major changes
between now and March, but they’re always possible, and therefore, the Unicode 3.2 information
in this book may wind up wrong in some details. I’ve tried to flag all the Unicode 3.2-specific
information here as being from Unicode 3.2, and I’ve tried to indicate the areas that I think are
still in the greatest amount of flux.

x� Sample code in this book is almost always in Java. This is partially because Java is the language I
personally use in my regular job, and thus the programming language I think in these days. But I
also chose Java because of its increasing importance and popularity in the programming world in
general and because Java code tends to be somewhat easier to understand than, say, C (or at least
no more difficult). Because of Java’s syntactic similarity to C and C++, I also hope the examples
will be reasonable accessible to C and C++ programmers who don’t also program in Java.

x� The sample code is provided for illustrative purposes only. I’ve gone to the trouble, at least with
the examples that can stand alone, to make sure the examples all compile, and I’ve tested them to
make sure I didn’t make any obvious stupid mistakes, but they haven’t been tested
comprehensively. They were also written with far more of an eye toward explaining a concept
than being directly usable in any particular context. Incorporate them into your code at your own
risk!

x� I’ve tried to define all the jargon the first time I use it or to indicate a full explanation is coming
later, but there’s also a glossary at the back you can refer to if you come across an unfamiliar term
that isn’t defined.

x� Numeric constants, especially numbers representing characters, are pretty much always shown in
hexadecimal notation. Hexadecimal numbers in the text are always written using the 0x notation
familiar to C and Java programmers.

x� Unicode code point values are shown using the standard Unicode notation, U+1234, where
“1234” is a hexadecimal number of from four to six digits. In many cases, a character is referred
to by both its Unicode code point value and its Unicode name: for example, “U+0041 LATIN
CAPITAL LETTER A.” Code unit values in one of the Unicode transformation formats are
shown using the 0x notation.

 Table of Contents

xviii Unicode Demystified

How this book was produced

All of the examples of text in non-Latin writing systems posed quite a challenge for the production
process. The bulk of this manuscript was written on a Power Macintosh G4/450 using Adobe
FrameMaker 6 running on MacOS 9. I did the original versions of the various diagrams in Microsoft
PowerPoint 98 on the Macintosh. But I discovered early on that FrameMaker on the Macintosh
couldn’t handle a lot of the characters I needed to be able to show in the book. I wound up writing
the whole thing with little placeholder notes to myself throughout describing what the examples were
supposed to look like.

FrameMaker was somewhat compatible with Apple’s WorldScript technology, enabling me to do
some of the example, but I quickly discovered Acrobat 3, which I was using at the time, wasn’t. It
crashed when I tried to created PDFs of chapters that included the non-Latin characters. Switching to
Windows didn’t prove much more fruitful: On both platforms, FrameMaker 6, Adobe Illustrator 9,
and Acrobat 3 and 4 were not Unicode compatible. The non-Latin characters would either turn into
garbage characters, not show up at all, or show up with very compromised quality.

Late in the process, I decided to switch to the one combination of software and platform I knew
would work: Microsoft Office 2000 on Windows 2000, which handles (with varying degrees of
difficulty) everything I needed to do. I converted the whole project from FrameMaker to Word and
spent a couple of months restoring all the missing examples to the text. (In a few cases where I
didn’t have suitable fonts at my disposal, or where Word didn’t product quite the results I wanted, I
either scanned pictures out of books or just left the placeholders in.) The last rounds of revisions
were done in Word on either the Mac or on a Windows machine, depending on where I was
physically at the time, and all the example text was done on the Windows machine.

This produced a manuscript of high-enough quality to get reviews from people, but didn’t really
produce anything we could typeset from. The work of converting the whole mess back to
FrameMaker, redrawing my diagrams in Illustrator, and coming up with another way to do the non-
Latin text examples fell to [name], who [finish the story after we’re far enough into production
to know how these problems were solved].

[Note to Ross and the AW production people: Is it customary to have a colophon on these
things? Because of the difficulty and importance of typesetting this particular material, I’m
thinking the normal information in a colophon should be included. Including it in the preface
might be difficult, however, as I can’t finish this section until at least some of the chapters have
been typeset. Should I leave this info here, move it to a real colophon at the back of the book,
or toss it?]

The author’s journey

Like many in the field, I fell into software internationalization by happenstance. I’ve always been
interested in language—written language in particular—and (of course) in computers. But my job
had never really dealt with this directly.

In the spring of 1995, that changed when I went to work for Taligent. Taligent, you may remember,
was the ill-fated joint venture between Apple Computer and IBM (later joined by Hewlett-Packard)
that was originally formed to create a new operating system for personal computers using state-of-
the-art object-oriented technology. The fruit of our labors, CommonPoint, turned out to be too little
too late, but it spawned a lot of technologies that found their places in other products.

 Preface

 A Practical Programmer’s Guide to the Encoding Standard xix

For a while there, Taligent enjoyed a cachet in the industry as the place where Apple and IBM had
sent many of their best and brightest. If you managed to get a job at Taligent, you had “made it.”

I almost didn’t “make it.” I had wanted to work at Taligent for some time and eventually got the
chance, but turned in a rather unimpressive interview performance (a couple coworkers kidded me
about that for years afterward) and wasn’t offered the job. About that same time, a friend of mine did
get a job there, and after the person who did get the job I interviewed for turned it down for family
reasons, my friend put in a good word for me and I got a second chance.

I probably would have taken almost any job there, but the specific opening was in the text and
internationalization group, and thus began my long association with Unicode.

One thing pretty much everybody who ever worked at Taligent will agree on is that working there
was a wonderful learning experience: an opportunity, as it were, to “sit at the feet of the masters.”
Personally, the Taligent experience made me into the programmer I am today. My C++ and OOD
skills improved dramatically, I became proficient in Java, and I went from knowing virtually nothing
about written language and software internationalization to… well, I’ll let you be the judge.

My team was eventually absorbed into IBM, and I enjoyed a little over two years as an IBMer before
deciding to move on in early 2000. During my time at Taligent/IBM, I worked on four different sets
of Unicode-related text handling routines: the text-editing frameworks in CommonPoint, various text-
storage and internationalization frameworks in IBM’s Open Class Library, various
internationalization facilities in Sun’s Java Class Library (which IBM wrote under contract to Sun),
and the libraries that eventually came to be known as the International Components for Unicode.

International Components for Unicode, or ICU, began life as an IBM developer-tools package based
on the Java internationalization libraries, but has since morphed into an open-soruce project and
taken on a life of its own. It’s gaining increasing popularity and showing up in more operating
systems and software packages, and it’s acquiring a reputation as a great demonstration of how to
implement the various features of the Unicode standard. I had the twin privileges of contributing
frameworks to Java and ICU and of working alongside those who developed the other frameworks
and learning from them. I got to watch the Unicode standard develop, work with some of those who
were developing it, occasionally rub shoulders with the others, and occasionally contrbute a tidbit or
two to the effort myself. It was a fantastic experience, and I hope that at least some of their expertise
rubbed off on me.

Acknowledgements

It’s been said that it takes a village to raise a child. Well, I don’t really know about that, but it
definitely takes a village to write a book like this. The person whose name is on the cover gets to
take the credit, but there’s an army of people who contribute to the content.

Acknowledgements sections have a bad tendency to sound like acceptance speeches at the Oscars
as the authors go on forever thanking everyone in sight. This set of acknowledgments will be no
different. If you’re bored or annoyed by that sort of thing, I recomend you skip to the next section
now. You have been warned.

 Acknowledgements

xx Unicode Demystified

Here goes: First and foremost, I’m indebted to the various wonderful and brilliant people I worked
with on the internationalization teams at Taligent and IBM: Mark Davis, Kathleen Wilson, Laura
Werner, Doug Felt, Helena Shih, John Fitzpatrick, Alan Liu, John Raley, Markus Scherer, Eric
Mader, Bertrand Damiba, Stephen Booth, Steven Loomis, Vladimir Weinstein, Judy Lin, Thomas
Scott, Brian Beck, John Jenkins, Deborah Goldsmith, Clayton Lewis, Chen-Lieh Huang, and
Norbert Schatz. Whatever I know about either Unicode or software internationalization I learned
from these people. I’d also like to thank the crew at Sun that we worked with: Brian Beck, Norbert
Lindenberg, Stuart Gill, and John O’Conner.

I’d also like to thank my managment and coworkers at Trilogy, particularly Robin Williamson,
Chris Hyams, Doug Spencer, Marc Surplus, Dave Griffith, John DeRegnaucourt, Bryon Jacob, and
Zach Roadhouse, for their understanding and support as I worked on this book, and especially for
letting me continue to participate in various Unicode-related activities, especially the conferences,
on company time and with company money.

Numerous people have helped me directly in my efforts to put this book together, by reviewing
parts of it and offering advice and corrections, by answering questions and giving advice, by
helping me put together example or letting me use examples they’d already put together, or simply
by offering an encouraging word or two. I’m tremendously indebted to all who helped out in these
ways: Jim Agenbroad, Matitiahu Allouche, Christian Cooke, John Cowan, Simon Cozens, Mark
Davis, Roy Daya, Andy Deitsch, Martin Dürst, Tom Emerson, Franklin Friedmann, David
Gallardo, Tim Greenwood, Jarkko Hietaniemi, Richard Ishida, John Jenkins, Kent Karlsson, Koji
Kodama, Alain LaBonté, Ken Lunde, Rick McGowan, John O’Conner, Chris Pratley, John Raley,
Jonathan Rosenne, Yair Sarig, Dave Thomas, and Garret Wilson. [Be sure to add the names of
anyone who sends me feedback between 12/31/01 and RTP.]

And of course I’d like to acknowledge all the people at Addison-Wesley who’ve had a hand in
putting this thing together: Ross Venables, my current editor; Julie DiNicola, my former editor;
John Fuller, the production manager; [name], who copy-edited the manuscript, [name], who had
the unenviable task of designing and typesetting the manuscript and cleaning up all my diagrams
and examples; [name], who put together the index; [name], who designed the cover; and Mike
Hendrickson, who oversaw the whole thing. I greatly appreciate their professionalism and their
patience in dealing with this first-time author.

And last but not least, I’d like to thank the family members and friends who’ve had to sit and listen
to me talk about this project for the last couple years: especially my parents, Ted and Joyce
Gillam; Leigh Anne and Ken Boynton, Ken Cancelosi, Kelly Bowers, Bruce Rittenhouse, and
many of the people listed above.

As always with these things, I couldn’t have done it without all these people. If this book is good,
they deserve the lion’s share of the credit. If it isn’t, I deserve the blame and owe them my
apologies.

A personal appeal

For a year and a half, I wrote a column on Java for C++ Report magazine, and for much of that
time, I wondered if anyone was actually reading the thing and what they thought of it. I would
occasionally get an email from a reader commenting on something I’d written, and I was always

 Preface

 A Practical Programmer’s Guide to the Encoding Standard xxi

grateful, whether the feedback was good or bad, because it meant someone was reading the thing
and took it seriously enough to let me know what they thought.

I’m hoping there will be more than one edition of this book, and I really want it to be as good as
possible. If you read it and find it less than helpful, I hope you won’t just throw it on a shelf
somewhere and grumble about the money you threw away on it. Please, if this book fails to
adequately answer your questions about Unicode, or if it wastes too much time answering
questions you don’t care about, I want to know. The more specific you can be about just what isn’t
doing it for you, the better. Please write me at rtgillam@concentric.net with your comments
and criticisms.

For that matter, if you like what you see here, I wouldn’t mind hearing from you either. God
knows, I can use the encouragement.

—R. T. G.
Austin, Teaxs
January 2002

S E C T I O N I

Unicode in Essence
An Architectural Overview of the

Unicode Standard

 3

CHAPTER 1 Language, Computers, and
Unicode

Words are amazing, marvelous things. They have the power both to build up and to tear down great
civilizations. Words make us who we are. Indeed, many have observed that our use of language is
what separates humankind from the rest of the animal kingdom. Humans have the capacity for
symbolic thought, the ability to think about and discuss things we cannot immediately see or touch.
Language is our chief symbolic system for doing this. Consider even a fairly simple concept such as
“There is water over the next hill.” Without language, this would be an extraordinarily difficult thing
to convey.

There’s been a lot of talk in recent years about “information.” We face an “information explosion”
and live in an “information age.” Maybe this is true, but when it comes right down to it, we are
creatures of information. And language is one of our main ways both of sharing information with one
another and, often, one of our main ways of processing information.

We often hear that we are in the midst of an “information revolution,” surrounded by new forms of
“information technology,” a phrase that didn’t even exist a generation or two ago. These days, the
term “information technology” is generally used to refer to technology that helps us perform one or
more of three basic processes: the storage and retrieval of information, the extraction of higher levels
of meaning from a collection of information, and the transmission of information over large
distances. The telegraph, and later the telephone, was a quantum leap in the last of these three
processes, and the digital computer in the first two, and these two technologies form the cornerstone
of the modern “information age.”

Yet by far the most important advance in information technology occurred many thousands of years
ago and can’t be credited with an inventor. That advance (like so many technological revolutions,
really a series of smaller advances) was written language. Think about it: before written language,
storing and retrieving information over a long period of time relied mostly on human memory, or on

 Language, Computers, and Unicode

4 Unicode Demystified

precursors of writing, such as making notches in sticks. Human memory is unreliable, and storage
and retrieval (or storage over a time longer than a single person’s lifetime) involved direct oral
contact between people. Notches in sticks and the like avoids this problem, but doesn’t allow for a
lot of nuance or depth in the information being stored. Likewise, transmission of information over a
long distance either also required memorization, or relied on things like drums or smoke signals that
also had limited range and bandwidth.

Writing made both of these processes vastly more powerful and reliable. It enabled storage of
information in dramatically greater concentrations and over dramatically longer time spans than was
ever thought possible, and made possible transmission of information over dramatically greater
distances, with greater nuance and fidelity, than had ever been thought possible.

In fact, most of today’s data processing and telecommunications technologies have written language
as their basis. Much of what we do with computers today is use them to store, retrieve, transmit,
produce, analyze, and print written language.

Information technology didn’t begin with the computer, and it didn’t begin with the telephone or
telegraph. It began with written language.

This is a book about how computers are used to store, retrieve, transmit, manipulate, and analyze
written language.

* * *

Language makes us who we are. The words we choose speak volumes about who we are and about
how we see the world and the people around us. They tell others who “our people” are: where we’re
from, what social class we belong to, possibly even who we’re related to.

The world is made up of hundreds of ethnic groups, who constantly do business with, create alliances
with, commingle with, and go to war with each other. And the whole concept of “ethnic group” is
rooted in language. Who “your people” are is rooted not only in which language you speak, but in
which language or languages your ancestors spoke. As a group’s subgroups become separated, the
languages the two subgroups speak will begin to diverge, eventually giving rise to multiple languages
that share a common heritage (for example, classical Latin diverging into modern Spanish and
French), and as different groups come into contact with each other, their respective languages will
change under each other’s influence (for example, much of modern english vocabulary was borrowed
in from French). Much about a group’s history is encoded in its language.

We live in a world of languages. There are some 6,000 to 7,000 different languages spoken in the
world today, each with countless dialects and regional variations1. We may be united by language,
but we’re divided by our languages.

And yet the world of computing is strangely homogeneous. For decades now, the language of
computing has been English. Specifically, American English. Thankfully, this is changing. One of the
things that information technology is increasingly making possible is contact between people in
different parts of the world. In particular, information technology is making it more and more

1 SIL International’s Ethnologue Web site (www.ethnologue.com) lists 6,800 “main” languages
and 41,000 variants and dialects.

 Language, Computers, and Unicode

 A Practical Programmer’s Guide to the Encoding Standard 5

possible to do business in different parts of the world. And as information technology invades more
and more of the world, people are increasingly becoming unwilling to speake the language of
information technology—they want information technology to speak their language.

This is a book about how all, or at least most, written languages—not just English or Western
European languages—can be used with information technology.

* * *

Language makes us who we are. Almost every human activity has its own language, a specialized
version of a normal human language adapted to the demands of discussing a particular activity. So
the language you speak also says much about what you do.

Every profession has its jargon, which is used both to provide a more precise method of discussing
the various aspects of the profession and to help tell “insiders” from “outsiders.” The information
technology industry has always had a reputation as one of the most jargon-laden professional groups
there is. This probably isn’t true, but it looks that way because of the way computers have come to
permeate our lives: now that non-computer people have to deal with computers, non-computer people
are having to deal with the language that computer people use.

In fact, it’s interesting to watch as the language of information technology starts to infect the
vernacular: “I don’t have the bandwidth to deal with that right now.” “Joe, can you spare some cycles
to talk to me?” And my personal favorite, from a TV commercial from a few years back: “No
shampoo helps download dandruff better.”

What’s interesting is that subspecialties within information technology each have their own jargon as
well that isn’t shared by computer people outside their subspecialty. In the same way that there’s
been a bit of culture clash as the language of computers enters the language of everyday life, there’s
been a bit of culture clash as the language of software internationalization enters the language of
general computing.

This is a good development, because it shows the increasing interest of the computing community in
developing computers, software, and other products that can deal with people in their native
languages. We’re slowly moving from (apologies to Henry Ford) “your native language, as long as
it’s English” to “your native language.” The challenge of writing one piece of software that can deal
with users in multiple human languages involves many different problems that need to be solved, and
each of those problems has its own terminology.

This is a book about some of that terminology.

* * *

One of the biggest problems to be dealt with in software internationalization is that the ways human
language have been traditionally represented inside computers don’t often lend themselves to many
human languages, and they lend themselves especially badly to multiple human languages at the same
time.

Over time, systems have been developed for representing quite a few different written languages in
computers, but each scheme is generally designed for only a single language, or at best a small

 Language, Computers, and Unicode

6 Unicode Demystified

collection of related languages, and these systems are mutually incompatible. Interpreting a series of
bits encoded with one standard using the rules of another yields gibberish, so software that handles
multiple languages has traditionally had to do a lot of extra bookkeeping to keep track of the various
different systems used to encode the characters of those languages. This is difficult to do well, and
few pieces of software attempt it, leading to a Balkanization of computer software and the data it
manipulates.

Unicode solves this problem by providing a unified representation for the characters in the various
written languages. By providing a unique bit pattern for every single character, you eliminate the
problem of having to keep track of which of many different characters this particular instance of a
particular bit pattern is supposed to represent.

Of course, each language has its own peculiarities, and presents its own challenges for computerized
representation. Dealing with Unicode doesn’t necessarily mean dealing with all the peculiarities of
the various languages, but it can—it depends on how many languages you actually want to support in
your software, and how much you can rely on other software (such as the operating system) to do that
work for you.

In addition, because of the sheer number of characters it encodes, there are challenges to dealing with
Unicode-encoded text in software that go beyond those of dealing with the various languages it
allows you to represent. The aim of this book is to help the average programmer find his way
through the jargon and understand what goes into dealing with Unicode.

This is a book about Unicode.

What Unicode Is

Unicode is a standard method for representing written language in computers. So why do we need
this? After all, there are probably dozens, if not hundreds, of ways of doing this already. Well, this is
exactly the point. Unicode isn’t just another in the endless parade of text-encoding standards; it’s an
attempt to do away with all the others, or at least simplify their use, by creating a universal text
encoding standard.

Let’s back up for a second. The best known and most widely used character encoding standard is the
American Standard Code for Information Interchange, or ASCII for short. The first version of ASCII
was published in 1964 as a standard way of representing textual data in computer memory and
sending it over communication links between computers. ASCII is based on a eeven-bit byte. Each
byte represented a character, and characters were represented by assigning them to individual bit
patterns (or, if you prefer, individual numbers). A seven-bit byte can have 128 different bit patterns.
33 of these were set aside for use as control signals of various types (start- and end-of-transmission
codes, block and record separators, etc.), leaving 95 free for representing characters.

Perhaps the main deficiency in ASCII comes from the A in its name: American. ASCII is an
American standard, and was designed for the storage and transmission of English text. 95 characters
are sufficient for representing English text, barely, but that’s it. On early teletype machines, ASCII
could also be used to represent the accented letters found in many European languages, but this
capability disappeared in the transition from teletypes to CRT terminals.

 Language, Computers, and Unicode

 A Practical Programmer’s Guide to the Encoding Standard 7

So, as computer use became more and more widespread in different parts of the world, alternative
methods of representing characters in computers arose for representing other languages, leading to
the situation we have today, where there are generally three or four different encoding schemes for
every language and writing system in use today.

Unicode is the latest of several attempts to solve this Tower of Babel problem by creating a universal
character encoding. Its main way of doing this is to increase the size of the possible encoding space
by increasing the number of bits used to encode each character. Most other character encodings are
based upon an eight-bit byte, which provides enough space to encode a maximum of 256 characters
(in practice, most encodings reserve some of these values for control signals and encode fewer than
256 characters). For languages, such as Japanese, that have more than 256 characters, most
encodings are still based on the eight-bit byte, but use sequences of several bytes to represent most of
the characters, using relatively complicated schemes to manage the variable numbers of bytes used to
encode the characters.

Unicode uses a 16-bit word to encode characters, allowing up to 65,536 characters to be encoded
without resorting to more complicated schemes involving multiple machine words per character.
65,000 characters, with careful management, is enough to allow encoding of the vast majority of
characters in the vast majority of written languages in use today. The current version of Unicode,
version 3.2, actually encodes 95,156 different characters—it actually does use a scheme to represent
the less-common characters using two 16-bit units, but with 50,212 characters actually encoded using
only a single unit, you rarely encounter the two-unit characters. In fact, these 50,212 characters
include all of the characters representable with all of the other character encoding methods that are in
reasonably widespread use.

This provides two main benefits: First, a system that wants to allow textual data (either user data or
things like messages and labels that may need to be localized for different user communities) to be in
any language would, without Unicode, have to keep track of not just the text itself, but also of which
character encoding method was being used. In fact, mixtures of languages might require mixtures of
character encodings. This extra bookkeeping means you couldn’t look directly at the text and know,
for example, that the value 65 was a capital letter A. Depending on the encoding scheme used for that
particular piece of text, it might represent some other character, or even be simply part of a character
(i.e., it might have to be considered along with an adjacent byte in order to be interpreted as a
character). This might also mean you’d need different logic to perform certain processes on text
depending on which encoding scheme they happened to use, or convert pieces of text between
different encodings.

Unicode does away with this. It allows all of the same languages and characters to be represented
using only one encoding scheme. Every character has its own unique, unambiguous value. The value
65, for example, always represents the capital letter A. You don’t need to rely on extra information
about the text in order to interpret it, you don’t need different algorithms to perform certain processes
on the text depending on the encoding or language, and you don’t (with some relatively rare
exceptions) need to consider context to correctly interpret any given 16-bit unit of text.

The other thing Unicode gives you is a pivot point for converting between other character encoding
schemes. Because it’s a superset of all of the other common character encoding systems, you can
convert between any other two encodings by converting from one of them to Unicode, and then from
Unicode to the other. Thus, if you have to provide a system that can convert text between any
arbitrary pair of encodings, the number of converters you have to provide can be dramatically
smaller. If you support n different encoding schemes, you only need 2n different converters, not n2
different converters. It also means that when you have to write a system that interacts with the
outside world using several different non-Unicode character representations, it can do its internal

 What Unicode Is

8 Unicode Demystified

processing in Unicode and convert at the boundaries, rather than potentially having to have alternate
code to do the same things for text in the different outside encodings.

What Unicode Isn’t

It’s also important to keep in mind what Unicode isn’t. First, Unicode is a standard scheme for
representing plain text in computers and data communication. It is not a scheme for representing rich
text (sometimes called “fancy text” or “styled text”). This is an important distinction. Plain text is the
words, sentences, numbers, and so forth themselves. Rich text is plain text plus information about the
text, especially information on the text’s visual presentation (e.g., the fact that a given word is in
italics), the structure of a document (e.g., the fact that a piece of text is a section header or footnote),
or the language (e.g., the fact that a particular sentence is in Spanish). Rich text may also include
non-text items that travel with the text, such as pictures.

It can be somewhat tough to draw a line between what qualifies as plain text, and therefore should be
encoded in Unicode, and what’s really rich text. In fact, debates on this very subject flare up from
time to time in the various Unicode discussion forums. The basic rule is that plain text contains all of
the information necessary to carry the semantic meaning of the text—the letters, spaces, digits,
punctuation, and so forth. If removing it would make the text unintelligible, then it’s plain text.

This is still a slippery definition. After all, italics and boldface carry semantic information, and losing
them may lose some of the meaning of a sentence that uses them. On the other hand, it’s perfectly
possible to write intelligible, grammatical English without using italics and boldface, where it’d be
impossible, or at least extremely difficult, to write intelligible, grammatical English without the letter
“m”, or the comma, or the digit “3.” Some of it may also come down to user expectation—you can
write intelligible English with only capital letters, but it’s generally not considered grammatical or
acceptable nowadays.

There’s also a certain amount of document structure you need to be able to convey in plain text, even
though document structure is generally considered the province of rich text. The classic example is
the paragraph separator. You can’t really get by without a way to represent a paragraph break in plain
text without compromising legibility, even though it’s technically something that indicates document
structure. But many higher-level protocols that deal with document structure have their own ways of
marking the beginnings and endings of paragraphs. The paragraph separator, thus, is one of a
number of characters in Unicode that are explicitly disallowed (or ignored) in rich-text
representations that are based on Unicode. HTML, for example, allows paragraph marks, but they’re
not recognized by HTML parsers as paragraph marks. Instead, HTML uses the <P> and </P> tags to
mark paragraph boundaries.

When it comes down to it, the distinction between plain text and rich text is a judgment call. It’s kind
of like Potter Stewart’s famous remark on obscenity—“I may not be able to give you a definition, but
I know it when I see it.” Still, the principle is that Unicode encodes only plain text. Unicode may be
used as the basis of a scheme for representing rich text, but isn’t intended as a complete solution to
this problem on its own.

Rich text is an example of a “higher-level protocol,” a phrase you’ll run across a number of times in
the Unicode standard. A higher-level protocol is anything that starts with the Unicode standard as its
basis and then adds additional rules or processes to it. XML, for example, is a higher-level protocol
that uses Unicode as its base and adds rules that define how plain Unicode text can be used to

 Language, Computers, and Unicode

 A Practical Programmer’s Guide to the Encoding Standard 9

represent structured information through the use of various kinds of markup tags. To Unicode, the
markup tags are just Unicode text like everything else, but to XML, they delineate the structure of the
document. You can, in fact, have multiple layers or protocols: XHTML is a higher-level protocol for
representing rich text that uses XML as its base.

Markup languages such as HTML and XML are one example of how a higher-level protocol may be
used to represent rich text. The other main class of higher-level protocols involves the use of multiple
data structures, one or more of which contain plain Unicode text, and which are supplemented by
other data structures that contain the information on the document’s structure, the text’s visual
presentation, and any other non-text items that are included with the text. Most word processing
programs use schemes like this.

Another thing Unicode isn’t is a complete solution for software internationalization. Software
internationalization is a set of design practices that lead to software that can be adapted for various
international markets (“localized”) without having to modify the executable code. The Unicode
standard in all of its details includes a lot of stuff, but doesn’t include everything necessary to
produce internationalized software. In fact, it’s perfectly possible to write internationalized software
without using Unicode at all, and also perfectly possible to write completely non-internationalized
software that uses Unicode.

Unicode is a solution to one particular problem in writing internationalized software: representing
text in different languages without getting tripped up dealing with the multiplicity of encoding
standards out there. This is an important problem, but it’s not the only problem that needs to be
solved when developing internationalized software. Among the other things an internationalized
piece of software might have to worry about are:

x� Presenting a different user interface to the user depending on what language he speaks. This may
involve not only translating any text in the user interface into the user’s language, but also altering
screen layouts to accommodate the size or writing direction of the translated text, changing icons
and other pictorial elements to be meaningful (or not to be offensive) to the target audience,
changing color schemes for the same reasons, and so forth.

x� Altering the ways in binary values such as numbers, dates, and times are presented to the user, or
the ways in which the user enters these values into the system. This involves not only relatively
small things, like being able changing the character that’s used for a decimal point (it’s a comma,
not a period, in most of Europe) or the order of the various pieces of a date (day-month-year is
common in Europe), but possibly larger-scale changes (Chinese uses a completely different
system for writing numbers, for example, and Israel uses a completely different calendar system).

x� Altering various aspects of your program’s behavior. For example sorting a list into alphabetical
order may produce different orders for the same list depending on language because “alphabetical
order” is a language-specific concept. Accounting software might need to work differently in
different places because of differences in accounting rules.

x� And the list goes on…

To those experienced in software internationalization, this is all obvious, of course, but those who
aren’t often seem to use the words “Unicode” and “internationalization” interchangeably. If you’re in
this camp, be careful: if you’re writing in C++, storing all your character strings as arrays of
wchar_t doesn’t make your software internationalized. Likewise, if you’re writing in Java, the fact
that it’s in Java and the Java String class uses Unicode doesn’t automatically make your software
internationalized. If you’re unclear on the internationalization issues you might run into that Unicode
doesn’t solve, you can find an excellent introduction to the subject at http://www.xerox-
emea.com/globaldesign/paper/paper1.htm, along with a wealth of other useful papers and
other goodies.

 What Unicode Isn’t

10 Unicode Demystified

Finally, another thing Unicode isn’t is a glyph registry. We’ll get into the Unicode character-glyph
model in Chapter 3, but it’s worth a quick synopsis here. Unicode draws a strong, important
distinction between a character, which is an abstract linguistic concept such as “the Latin letter A” or
“the Chinese character for ‘sun,’” and a glyph, which is a concrete visual presentation of a character,

such as A or . There isn’t a one-to-one correspondence between these two concepts: a single glyph

may represent more than one character (such a glyph is often called a ligature), such as the ¿�OLJDWXUH��
a single mark that represents the letters f and i together. Or a single character might be represented
by two or more glyphs: The vowel sound au in the Tamil language (•) is represented by two
marks: one that goes to the left of a consonant character, and another on the right, but it’s still
thought of as a single character. A character may also be represented using different glyphs in
different contexts: The Arabic letter heh has one shape when it stands alone () and another when it

occurs in the middle of a word ().

You’ll also see what we might consider typeface distinctions between different languages using the
same writing system. For instance, both Arabic and Urdu use the Arabic alphabet, but Urdu is
generally written in the more ornate Nastaliq style, while Arabic frequently isn’t. Japanese and
Chinese are both written using Chinese characters, but some characters have a different shape in

Chinese (for example, in Japanese is in Chinese).

Unicode, as a rule, doesn’t care about any of these distinctions. It encodes underlying semantic
concepts, not visual presentations (characters, not glyphs) and relies on intelligent rendering software
(or the user’s choice of fonts) to draw the correct glyphs in the correct places. Unicode does
sometime encode glyphic distinctions, but only when necessary to preserve interoperability with
some preexisting standard or to preserve legibility (i.e., if smart rendering software can’t pick the
right glyph for a particular character in a particular spot without clues in the encoded text itself).
Despite these exceptions, Unicode by design does not attempt to catalogue every possible variant
shape for a particular character. It encodes the character and leaves the shape to higher-level
protocols.

The challenge of representing text in computers

The main body of the Unicode standard is 1,040 pages long, counting indexes and appendices, and
there’s a bunch of supplemental information—addenda, data tables, related substandards,
implementation notes, etc.—on the Unicode Consortium’s Web site. That’s an awful lot of verbiage.
And now here I come with another 500 pages on the subject. Why? After all, Unicode’s just a
character encoding. Sure, it includes a lot of characters, but how hard can it be?

Let’s take a look at this for a few minutes. The basic principle at work here is simple: If you want to
be able to represent textual information in a computer, you make a list of all the characters you want
to represent and assign each one a number.2 Now you can represent a sequence of characters with a

2 Actually, you assign each one a bit pattern, but numbers are useful surrogates for bit patterns, since
there’s a generally-agreed-upon mapping from numbers to bit patterns. In fact, in some character
encoding standards, including Unicode, there are several alternate ways to represent each character in
bits, all based on the same numbers, and so the numbers you assign to them become useful as an
intermediate stage between characters and bits. We’ll look at this more closely in Chapters 2 and 6.

 Language, Computers, and Unicode

 A Practical Programmer’s Guide to the Encoding Standard 11

sequence of numbers. Consider the simple number code we all learned as kids, where A is 1, B is 2,
C is 3, and so on. Using this scheme, the word…

food

…would be represented as 6-15-15-4.

Piece of cake. This also works well for Japanese…

…although you need a lot more numbers (which introduces its own set of problems, which we’ll get
to in a minute).

In real life, you may choose the numbers fairly judiciously, to facilitate things like sorting (it’s useful,
for example, to make the numeric order of the character codes follow the alphabetical order of the
letters) or character-type tests (it makes sense, for example, to put all the digits in one contiguous
group of codes and the letters in another, or even to position them in the encoding space such that
you can check whether a character is a letter or digit with simple bit-maskng). But the basic principle
is still the same: Just assign each character a number.

It starts to get harder, or at least less clear-cut, as you move to other languages. Consider this phrase:

 à bientôt

What do you do with the accented letters? You have two basic choices: You can either just assign a
different number to each accented version of a given letter, or you can treat the accent marks as
independent characters and given them their own numbers.

If you take the first approach, a process examining the text (comparing two strings, perhaps) can lose
sight of the fact that a and à are the same letter, possibly causing it to do the wrong thing, without
extra code that knows from extra information that à is just an accented version of a. If you take the
second approach, a keeps its identity, but you then have to make decisions about where the code the
accent goes in the sequence relative to the code for the a, and what tells a system that the accent
belongs on top of the a and not some other letter.

For European languages, though, the first approach (just assigning a new number to the accented
version of a letter) is generally considered to be simpler. But there are other situations…

� �-: � �

…such as this Hebrew example, where that approach breaks down. Here, most of the letters have
marks on them, and the same marks can appear on any letter. Assigning a unique code to every

 The Challenge of representing text in computers

12 Unicode Demystified

letter-mark combination quickly becomes unwieldy, and you have to go to giving the marks their own
codes.

In fact, Unicode prefers the give-the-marks-their-own-codes approach, but in many cases also
provides unique codes for the more common letter-mark combinations. This means that many
combinations of characters can be represented more than one way. The “à” and “ô” in “à bientôt,” for
example, can be represented either with single character codes, or with pairs of character codes, but
you want “à bientôt” to be treated the same no matter which set of codes is used to represent it, so
this requires a whole bunch of equivalence rules.

The whole idea that you number the characters in a line as they appear from left to right doesn’t just
break down when you add accent marks and the like into the picture. Sometimes, it’s not even
straightforward when all you’re dealing with are letters. In this sentence…

Avram said and smiled.

…which is in English with some Hebrew words embedded, you have an ordering quandary: The
Hebrew letters don’t run from left to right; they run from right to left: the first letter in the Hebrew

phrase, , is the one furthest to the right. This poses a problem for representation order. You can’t
really store the characters in the order the appear on the line (in effect, storing either the English or
the Hebrew “backward,” because it messes up the determination of which characters go on which line
when you break text across lines. But if you store the characters in the order they’re read or typed,
you need to specify just how they are to be arranged when the text is displayed or printed.

The ordering thing can go to even wilder extremes. This example…

…is in Hindi. The letters in Hindi knot together into clusters representing syllables. The syllables
run from left to right across the page like English text does, but the arrangement of the marks within a
syllable can be complicated and doesn’t necessarily follow the order in which the sounds they
correspond to are actually spoken (or the characters themselves are typed). There are six characters
in this word, arranged like this:

 Language, Computers, and Unicode

 A Practical Programmer’s Guide to the Encoding Standard 13

Many writing systems have complicated ordering or shaping behavior, and each presents unique
challenges in detemining how to represent the characters as a linear sequence of bits.

You also run into interesting decisions as to just what you mean by “the same character” or “different
characters.” For example, in this Greek word…

�

«WKH�OHWWHU� �DQG�WKH�OHWWHU� �DUH�UHDOO\�ERWK�WKH�OHWWHU�VLJPD�� �—it’s written one way when it occurs
at the end of a word and a different way when it occurs at the beginning or in the middle. Two
distinct shapes representing the same letter. Do they get one character code or two? This issue
comes up over and over again, as many writing systems have letters that change shape depending on
context. In our Hindi example, the hook in the uppper right-hand corner normally looks like this…

�
…but can take some very different forms (including the hook) depending on the characters
surrounding it.

You also have the reverse problem of the same shape meaning different things. Chinese characters
often have more than one meaning or pronunciation. Does each different meaning get its own
character code? The letter Å can either be a letter in some Scandinavian languages or the symbol for
the Angstrom unit. Do these two uses get different codes, or is it the same character in both places?
What about this character:

Is this the number 3 or the Russian letter z? Do these share the same character code just because they
happen to look a lot like each other?

For all of these reasons and many others like them, Unicode is more than just a collection of marks
on paper with numbers assigned to them. Every character has a story, and for every character or
group of characters, someone had to sit down and decide whether it was the same as or different from
the other characters in Unicode, whether several related marks got assigned a single number or
several, just what a series of numbers in computer memory would look like when you draw them on
the screen, just how a series of marks on a page would translate into a series of numbers in computer
memory when neither of these mappings was straightforward, how a computer performing various
type of processes on a series of Unicode character codes would do its job, and so on.

So for every character code in the Unicode standard, there are rules about what it means, how it
should look in various situations, how it gets arranged on a line of text with other characters, what
other characters are similar but different, how various text-processing operations should treat it, and
so on. Multiply all these decisions by 94,140 unique character codes, and you begin both to get an
idea of why the standard is so big, and of just how much labor, how much energy, and how much

 The Challenge of representing text in computers

14 Unicode Demystified

heartache, on the part of so many people, went into this thing. Unicode is the largest, most
comprehensive, and most carefully designed standard of its type, and the toil of hundreds of people
made it that way.

What This Book Does

The definitive source on Unicode is, not surprisingly, the Unicode standard itself. The main body
of the standard is available in book form as The Unicode Standard, Version 3.0, published by
Addison-Wesley and available wherever you bought this book. This book is supplemented by
various tables of character properties covering the exact semantic details of each individual
character, and by various technical reports that clarify, supplement, or extend the standard in
various ways. A snapshot of this supplemental material is on the CD glued to the inside back cover
of the book. The most current version of this supplemental material, and indeed the definitive
source for all the most up-to-date material on the Unicode standard, is the Unicode Web site, at
http://www.unicode.org.

For a long time, the Unicode standard was not only the definitive source on Unicode, it was the
only source. The problem with this is that the Unicode standard is just that: a standard. Standards
documents are written with people who will implement the standard as their audience. They
assume extensive domain knowledge and are designed to define as precisely as possible every
aspect of the thing being standardized. This makes sense: the whole purpose of a standard is to
ensure that a diverse group of corporations and institutions all do some particular thing in the same
way so that things produced by these different organizations can work together properly. If there
are holes in the definition of the standard, or passages that are open to interpretation, you could
wind up with implementations that conform to the standard, but still don’t work together properly.

Because of this, and because they’re generally written by committees whose members have
different, and often conflicting, agendas, standards tend by their very nature to be dry, turgid,
legalistic, and highly technical documents. They also tend to be organized in a way that
presupposes considerable domain knowledge—if you’re coming to the topic fresh, you’ll often
find that to understand any particular chapter of a standard, you have read every other chapter first.

The Unicode standard is better written than most, but it’s still good bedtime reading—at least if
you don’t mind having nightmares about canonical reordering or the bi-di algorithm. That’s where
this book comes it. It’s intended to act as a companion to the Unicode standard and supplement it
by doing the following:

x� Provide a more approachable, and more pedagogically organized, introduction to the salient
features of the Unicode standard.

x� Capture in book form changes and additions to the standard since it was last published in book
form, and additions and adjuncts to the standard that haven’t been published in book form.

x� Fill in background information about the various features of the standard that are beyond the
scope of the standard itself.

x� Provide an introduction to each of the various writing systems Unicode represents and the
encoding and implemented challenges presented by each.

x� Provide useful information on implementing various aspects of the standard, or using existing
implementations.

 Language, Computers, and Unicode

 A Practical Programmer’s Guide to the Encoding Standard 15

My hope is to provide a good enough introduction to “the big picture” and the main components of
the technology that you can easily make sense of the more detailed descriptions in the standard
itself—or know you don’t have to.

This book is for you if you’re a programmer using any technology that depends on the Unicode
standard for something. It will give you a good introduction to the main concepts of Unicode,
helping you to understand what’s relevant to you and what things to look for in the libraries or
APIs you depend on.

This book is also for you if you’re doing programming work that actually involves implementing
part of the Unicode standard and you’re still relatively new either to Unicode itself or to software
internationalization in general. It will give you most of what you need and enough of a foundation
to be able to find complete and definitive answers in the Unicode standard and its technical
reports.

How this book is organized

This book is orgaized into three sections: Section I, Unicode in Essence, provides an architectural
overview of the Unicode standard, explaining the most important concepts in the standard and the
motivations behing them. Section II, Unicode in Depth, goes deeper, taking a close look at each
of the writing systems representable using Unicode and the unique encoding and implementation
problems they pose. Section III, Unicode in Action, take an in-depth look at what goes into
implementing various aspects of the standard, writing code that manipulates Unicode text, and how
Unicode interacts with other standards and technologies.

Section I: Unicode in Essence
Section I provides an introduction to the main structure and most important concepts of the
standard, the things you need to know to deal properly with Unicode whatever you’re doing with it.

Chapter 1, the chapter you’re reading , is the book’s introduction. It gives a very high-level
account of the problem Unicode is trying to solve, the goals and non-goals behind the standard,
and the complexity of the problem. It also sets forth the goals and organization of this book.

Chapter 2 puts Unicode in historical context and relates it to the various other character encoding
standards out there. It discusses ISO 10646, Unicode’s sister standard, and its relationship to the
Unicode standard.

Chapter 3 provides a more complete architectural overview. It outlines the structure of the
standard, Unicode’s guiding design principles, and what it means to conform to the Unicode
standard.

Often, it takes two or more Unicode character codes to get a particular effect, and some effects can
be achieved with two or more different sequences of codes. Chapter 4 talks more about this
concept, the combining character sequence, and the extra rules that specify how to deal with
combining character sequences that are equivalent.

 What this book is for

16 Unicode Demystified

Every character in Unicode has a large set of properties that define its semantics and how it should
be treated by various processes. These are all set forth in the Unicode Character Database, and
Chapter 5 introduces the database and all of the various character properties it defines.

The Unicode standard is actually in two layers: A layer that defines a transformation between
written text and a series of abstract numeric codes, and a layer that defines a transformation
between those abstract numeric codes and patterns of bits in memory or in persistent storage. The
lower layer, fromabstract numbers to bits, comprises several different mappings, each optimized
for different situations. Chapter 6 introduces and discusses these mappings.

Section II: Unicode in Depth
Unicode doesn’t specifically deal in languages; instead it deals in scripts, or writing systems. A
script is a collection of characters used to represent a group of related languages. Generally, no
language uses all the characters in a script. For example, English is written using the Latin
alphabet. Unicode encodes 819 Latin letters, but English only uses 52 (26 upper- and lower-case
letters). Section II goes through the standard script by script, looking at the features of each script,
the languages that are written with it, and how it’s represented in Unicode. It groups scripts into
families according to their common characteristics.

For example, in Chapter 7 we look at the scripts used to write various European languages. These
scripts generally don’t pose any interesting ordering or shaping problems, but are the only scripts
that have special upper- and lower-case forms. They’re all descended from (or otherwise related
to) the ancient Greek alphabet. This group includes the Latin, Greek, Cyrillic, Armenian, and
Georgian alphabets, as well as various collections of diacritical marks and the International
Phonetic Alphabet.

Chapter 8 looks at the scripts of the Middle East. The biggest feature shared by these scripts is
that they’re written from right to left rather than left to right. They also tend to use letters only for
consonant sounds, using separate marks around the basic letters to represent the vowels. Two
scripts in this group are cursively connected, even in printed text, which poses interesting
representational problems. These scripts are all descended from the ancient Aramaic alphabet.
This group includes the Hebrew, Arabic, Syriac, and Thaana alphabets.

Chapter 9 looks at the scripts of India and Southeast Asia. The letters in these scripts knot
together into clusters that represent whole syllables. The scripts in this group all descend from the
ancient Brahmi script. This group includes the Devanagari script used to write Hindi and Sanskrit,
plus eighteen other scripts, including such things as Thai and Tibetan.

In Chapter 10, we look at the scripts of East Asia. The interesting things here are that these
scripts comprise tends of thousands of unique, and often complicated, characters (the exact number
is impossible to determine, and new characters are coined all the time). These characters are
generally all the same size, don’t combine with each other, and can be written either from left to
right or vertically. This group includes the Chinese characters and various other writing systems
that either are used with Chinese characters or arose under their influence.

While most of the written languages of the world are written using a writing system that falls into
one of the above groups, not all of them do. Chapter 11 discusses the other scripts, including
Mongolian, Ethiopic, Cherokee, and the Unified Canadian Aboriginal Syllabics, a set of characters
used for writing a variety of Native American languages. In addition to the modern scripts,

 Language, Computers, and Unicode

 A Practical Programmer’s Guide to the Encoding Standard 17

Unicode also encodes a growing number of scripts that are not used anymore but are of scholarly
interest. The current version of Unicode includes four of there, which are also discussed in
Chapter 11.

But of course, you can’t write only with the characters that represent the sounds or words of
spoken language. You also need things like punctuation marks, numbers, symbols, and various
other non-letter characters. These are covered in Chapter 12, along with various special
formatting and document-structure characters.

Section III: Unicode in Action
This section goes into depth on various techniques that can be used in code to implement or make
use of the Unicode standard.

Chapter 13 provides an introduction to the subject, discussing a group of generic data structures
and techniques that are useful for various types of processes that operate on Unicode text.

Chapter 14 goes into detail on how to perform various types of transformations and conversions
on Unicode text. This includes converting between the various Unicode serialization formats,
performing Unicode compression and decompression, performing Unicode normalization,
converting between Unicode and other encoding standards, and performing case mapping and case
folding.

Chapter 15 zeros in on two of the most text-analysis processes: searching and sorting. It talks
about both language-senaitive and language-insensitive string comparison and how searching and
sorting algorithms build on language-sensitive string comparison.

Chapter 16 discusses the most important operations performed on text: drawing it on the screen
(or other output devices) and accepting it as input, otherwise known as rendering and editing. It
talks about dividing text up into lines, arranging characters on a line, figuring out what shape to use
for a particular character or sequence of characters, and various special considerations one must
deal with when writing text-editing software.

Finally, in Chapter 17 we look at the place where Unicode intersects with other computer
technologies. It discusses Unicode and the Internet, Unicode and various programming languages,
Unicode and various operating systems, and Unicode and database technology.

 19

CHAPTER 2 A Brief History of Character
Encoding

To understand Unicode fully, it’s helpful to have a good sense of where we came from, and what this
whole business of character encoding is all about. Unicode didn’t just spring fully-grown from the
forehead of Zeus; it’s the latest step in a history that actually predates the digital computer, having its
roots in telecommunications. Unicode is not the first attempt to solve the problem it solves, and
Unicode is also in its third major revision. To understand the design decisions that led to Unicode
3.0, it’s useful to understand what worked and what didn’t work in Unicode’s many predecessors.

This chapter is entirely background—if you want to jump right in and start looking at the features and
design of Unicode itself, feel free to skip this chapter.

Prehistory

Fortunately, unlike, say, written language itself, the history of electronic (or electrical)
representations of written language doesn’t go back very far. This is mainly, of course, because the
history of the devices using these representations doesn’t go back very far.

The modern age of information technology does, however, start earlier than one might think at first—
a good century or so before the advent of the modern digital computer. We can usefully date the
beginning of modern information technology from Samuel Morse’s invention of the telegraph in
1837.3

3 My main source for this section is Tom Jennings, “Annotated History of Character Codes,” found at

http://www.wps.com/texts/codes.

 A Brief History of Character Encoding

20 Unicode Demystified

The telegraph, of course, is more than just an interesting historical curiosity. Telegraphic
communication has never really gone away, although it’s morphed a few times. Even long after the
invention and popularization of the telephone, the successors of the telegraph continued to be used to
send written communication over a wire. Telegraphic communications was used to send large
volumes of text, especially when it needed ultimately to be in written form (news stories, for
example), or when human contact wasn’t especially important and saving money on bandwidth was
very important (especially for routine business communications such as orders and invoices). These
days, email and EDI are more or less the logical descendants of the telegraph.

The telegraph and Morse code
So our story starts with the telegraph. Morse’s original telegraph code actually worked on numeric
codes, not the alphanumeric code that we’re familiar with today. The idea was that the operators on
either end of the line would have a dictionary that assigned a unique number to each word, not each
letter, in English (or a useful subset). The sender would look up each word in the dictionary, and
send the number corresponding to that word; the receiver would do the opposite. (The idea was
probably to automate this process in some way, perhaps with some kind of mechanical device that
would point to each word in a list or something.)

This approach had died out by the time of Morse’s famous “WHAT HATH GOD WROUGHT”
demonstration in 1844. By this time, the device was being used to send the early version of what we
now know as “Morse code,” which was probably actually devised by Morse’s assistant Alfred Vail.

Morse code was in no way digital in the sense we think of the term—you can’t easily turn it into a
stream of 1 and 0 bits the way you can with many of the succeeding codes. But it was “digital” in the
sense that it was based on a circuit that had only two states, on and off. This is really Morse’s big
innovation; there were telegraph systems prior to Morse, but they were based on sending varying
voltages down the line and deflecting a needle on a gauge of some kind.4 The beauty of Morse’s
scheme is a higher level of error tolerance—it’s a lot easier to tell “on” from “off” than it is to tell
“half on” from “three-fifths” on. This, of course, is also why modern computers are based on binary
numbers.

The difference is that Morse code is based not on a succession of “ons” and “offs,” but on a
succession of “ons” of different lengths, and with some amount of “off” state separating them. You
basically had two types of signal, a long “on” state, usually represented with a dash and pronounced
“dah,” and a short “on” state, usually represented by a dot and pronounced “dit.” Individual letters
were represented with varying-length sequences of dots and dashes.

The lengths of the codes were designed to correspond roughly to the relatively frequencies of the
characters in a transmitted message. Letters were represented with anywhere from one to four dots
and dashes. The two one-signal letters were the two most frequent letters in English: E was
represented with a single dot and T with a single dash. The four two-signal letters were I (. .), A (. –
), N (– .). and M (– –). The least common letters were represented with the longest codes: Z (– – . .),
Y (– . – –), J (. – – –), and Q (– – . –). Digits were represented with sequences of five signals, and
punctuation, which was used sparingly, was represented with sequences of six signals.

The dots and dashes were separated by just enough space to keep everything from running together,
individual characters by longer spaces, and words by even longer spaces.

4 This tidbit comes from Steven J. Searle, “A Brief History of Character Codes,” found at

http://www.tronweb.super-nova-co-jp/characcodehist.html.

 Prehistory

 A Practical Programmer’s Guide to the Encoding Standard

As an interesting sidelight, the telegraph was designed as a recording instrument—the signal operated
a solenoid that caused a stylus to dig shallow grooves in a moving strip of paper. (The whole thing
with interpreting Morse code by listening to beeping like we’ve all seen in World War II movies
came later, with radio, although experienced telegraph operators could interpret the signal by
listening to the clicking of the stylus.) This is a historical antecedent to he punched-tape systems
used in teletype machines and early computers.

The teletypewriter and Baudot code
Of course, what you really want isn’t grooves on paper, but actual writing on paper, and one of the
problems with Morse’s telegraph is that the varying lengths of the signals didn’t lend itself well to
driving a mechanical device that could put actual letters on paper. The first big step in this direction
was Emile Baudot’s “printing telegraph,” invented in 1874.

Baudot’s system didn’t use a typewriter keyboard; it used a pianolike keyboard with five keys, each
of which controlled a separate electrical connection. The operator operated two keys with the left
hand and three with the right and sent each character by pressing down some combination of these
five keys simultaneously. (So the “chording keyboards” that are somewhat in vogue today as a way
of combating RSI aren’t a new idea—they go all the way back to 1874.)

[should I include a picture of the Baudot keyboard?]

The code for each character is thus some combination of the five keys, so you can think of it as a
five-bit code. Of course, this only gives you 32 combinations to play with, kind of a meager
allotment for encoding characters. You can’t even get all the letters and digits in 32 codes.

The solution to this problem has persisted for many years since: you have two separate sets of
characters assigned to the various key combinations, and you steal two key combinations to switch
between them. So you end up with a LTRS bank, consisting of twenty-eight letters (the twenty-six
you’d expect, plus two French letters), and a FIGS bank, consisting of twenty-eight characters: the
ten digits and various punctuation marks and symbols. The three left-hand-only combinations don’t
switch functions: two of them switch back and forth between LTRS and FIGS, and one (both left-
hand keys together) was used to mean “ignore the last character” (this later evolves into the ASCII
DEL character). The thirty-second combination, no keys at all, of course didn’t mean anything—no
keys at all was what separated one character code from the next. (The FIGS and LTRS signals
doubled as spaces.)

So you’d go along in LTRS mode, sending letters. When you came to a number or punctuation mark,
you’d send FIGS, send the number or punctuation, then send LTRS and go back to sending words
again. “I have 23 children.” would thus get sent as

I HAVE [FIGS] 23 [LTRS] CHILDREN [FIGS] .

It would have been possible, of course, to get the same effect by just adding a sixth key, but this was
considered too complicated mechanically.

Even though Baudot’s code (actually invented by Johann Gauss and Wilhelm Weber) can be thought
of as a series of five-bit numbers, it isn’t laid out like you might lay out a similar thing today: If you
lay out the code charts according to the binary-number order, it looks jumbled. As with Morse code,
characters were assigned to key combinations in such a way as to minimize fatigue, both to the

 A Brief History of Character Encoding

22 Unicode Demystified

operator and to the machinery. More-frequent characters, for example, used fewer fingers than less-
frequent characters.

Other teletype and telegraphy codes
The logical next step from Baudot’s apparatus would, of course, be a system that uses a normal
typewriterlike keyboard instead of the pianolike keyboard used by Baudot. Such a device was
invented by Donald Murray sometime between 1899 and 1901. Murray kept the five-bit two-state
system Baudot had used, but rearranged the characters. Since there was no longer a direct correlation
between the operator’s hand movements and the bits being sent over the wire, there was no need to
worry about arranging the code to minimize operator fatigue; instead, Murray designed his code
entirely to minimize wear and tear on the machinery.

A couple interesting developments occur first in the Murray code: You see the debut of what later
became known as “format effectors” or “control characters”—the CR and LF codes, which,
respectively return the typewriter carriage to the beginning of the line and advance the platen by one
line.5 Two codes from Baudot also move to the positions where they stayed since (at least until the
introduction of Unicode, by which time the positions no longer mattered): the NULL or BLANK all-
bits-off code and the DEL all-bits-on code. All bits off, fairly logically, meant that the receiving
machine shouldn’t do anything; it was essentially used as an idle code for when no messages were
being sent. On real equipment, you also often had to pad codes that took a long time to execute with
NULLs: If you issued a CR, for example, it’d take a while for the carriage to return to the home
position, and any “real” characters sent during this time would be lost, so you’d sent a bunch of extra
NULLs after the CR. This would put enough space after the CR so that the real characters wouldn’t
go down the line until the receiving machine could print them, and not have any effect (other than
maybe to waste time) if the carriage got there while they were still being sent.

The DEL character would also be ignored by the receeiving equipment. The idea here is that if
you’re using paper tape as an interrmediate storage medium (as we still see today, it became common
to compose a message while off line, storing it on paper tape, and then log on and send the message
from the paper tape, ratherthan “live” from the keyboard) and you make a mistake, the only way to
blank out the mistake is to punch out all the holes in the line with the mistake. So a row with all the
holes punched out (or a character with all the bits set, as we think of it today) was treated as a null
character.

Murray’s code forms the basis of most of the various telegraphy codes of the next fifty years or so.
Western Union picked it up and used it (with a few changes) as its encoding method all the way
through the 1950s. The CCITT (Consultative Committee for International Telephone and Telegraph,
a European standards body) picked up the Western Union code and, with a few changes, blessed it as
an international standard, International Telegraphy Alphabet #2 (“ITA2” for short).

The ITA2 code is often referred to today as “Baudot code,” although it’s significantly different from
Baudot’s code. It does, however, retain many of the most important features of Baudot’s code.

Among the interesting differences between Murray’s code and ITA2 are the addition of more
“control codes”: You see the introduction of an explicit space character, rather than using the all-bits-
off signal, or the LTRS and FIGS signals, as spaces. There’s a new BEL signal, which rings a bell or

5 I’m taking my cue from Jennings here: These code positions were apparently marked “COL” and “LINE

PAGE” originally; Jennings extrapolates back from later codes that had CR and LF in the same positions and

assumes that “COL” and “LINE PAGE” were alternate names for the same functions.

 Prehistory

 A Practical Programmer’s Guide to the Encoding Standard

produces some other audible signal on the receiving end. And you see the first case of a code that
exists explicitly to control the communications process itself—the WRU, or “Who are you?” code,
which would cause the receiving machine to send some identifying stream of characters back to the
sending machine (this enabled the sender to make sure he was connected to the right receiver before
sending sensitive information down the wire, for example).

This is where inertia sets in in the industry. By the time ITA2 and its narional variants came into use
in the 1930s, you had a significant number of teletype machines out there, and you had the weight of
an international standard behind one encoding method. The ITA2 code would be the code used by
teletype machines right on into the 1960s. When computers started communicating with the outside
world in real time using some kind of terminal, the terminal would be a teletype machine, and the
computer would communicate with it using the teletype codes of the day. (The other main way
computers dealt with alphanumeric data was through the use of punched cards, which had their own
encoding schemes we’ll look at in a minute.)

FIELDATA and ASCII
The teletype codes we’ve looked at are all five-bit codes with two separate banks of characters. This
means the codes all include the concept of “state”: the interpretation of a particular code depends on
the last bank-change signal you got (some operations also included an implicit bank change—a
carriage return, for example, often switched the system back to LTRS mode). This makes sense as
long as you’re dealing with a completely serial medium where you don’t have random access into the
middle of a character stream and as long as you’re basically dealing with a mechanical system (LTRS
and FIGS would just shift the printhead or the platen to a different position). In computer memory,
where you might want random access to a character and not have to scan backwards an arbitrary
distance for a LTRS or FIGS character to find out what you’re looking at, it generally made more
sense to just use an extra bit to store the LTRS or FIGS state. This gives you a six-bit code, and for a
long time, characters were thought of as six-bit units. (Punched-card codes of the day were also six
bits in length, so you’ve got that, too.) This is one reason why many computers of the time had word
lengths that were multiples of 6: As late as 1978, Kernighan and Ritchie mention that the int and
short data types were 36 bits wide on the Honeywell 6000, implying that it had a 36-bit word
length.6

By the late 1950s, the computer and telecommunications industries were both starting to chafe under
the limitations of the six-bit teletype and punched-card codes of the day, and a new standards effort
was begun that eventually led to the ASCII code. An important predecessor of ASCII was the
FIELDATA code used in various pieces of communications equipment designed and used by the
U.S. Army starting in 1957. (It bled out into civilian life as well; UNIVAC computers of the day
were based on a modified version of the FIELDATA code.)

FIELDATA code was a seven-bit code, but was divided into layers in such a way that you could
think of it as a four-bit code with either two or three control bits appended, similar to punched-card
codes. It’s useful7 to think of it has having a five-bit core somewhat on the ITA2 model with two
control bits. The most significant, or “tag” bit, is used similarly to the LTRS/FIGS bit discussed
before: it switches the other six bits between two banks: the “alphabetic” and “supervisory” banks.
The next-most-significant bit shifted the five core bits between two sub-banks: the alphabetic bank
was shifted between upper-case and lower-case sub-banks, and the supervisory bank between a
supervisory and a numeric/symbols sub-bank.

6 See Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, first edition (Prentice-Hall,

1978), p. 34.
7 Or at least I think it’s useful, looking at the code charts—my sources don’t describe things this way.

 A Brief History of Character Encoding

24 Unicode Demystified

In essence, the extra bit made it possible to include both upper- and lower-case letters for the first
time, and also made it possible to include a wide range of control, or supervisory, codes, which were
used for things like controlling the communication protocol (there were various handshake and
termination codes) and separating various units of variable-length structured data.

Also, within each five-bit bank of characters, we finally see the influence of computer technology:
the characters are ordered in binary-number order.

FIELDATA had a pronounced effect on ASCII, which was being designed at the same time.
Committee X3.4 of the American Standards Association (now the American National Standards
Institute, or ANSI) had been convened in the late 1950s, about the time FIELDATA was deployed,
and consisted of representatives from AT&T, IBM (which, ironically, didn’t actually use ASCII until
the IBM PC came out in 1981), and various other companies from the computer and
telecommunications industries.

The first result of this committee’s efforts was what we now know as ANSI X3.4-1963, the first
version of the American Standard Code for Information Interchange, our old friend ASCII (which,
for the three readers of this book who don’t already know this, is pronounced “ASS-key”). ASCII-
1963 kept the overall structure of FIELDATA and regularized some things. For example, it’s a pure
7-bit code and is laid out in such a way as to make it possible to reasonably sort a list into
alphabetical order by comparing the numeric character codes directly. ASCII-1963 didn’t officially
have the lower-case letters in it, although there was a big undefined space where they were obviously
going to go, and had a couple weird placements, such as a few control codes up in the printing-
character range. These were fixed in the next version of ASCII, ASCII-1967, which is more or less
the ASCII we all know and love today. It standardized the meanings of some of the control codes
that were left open in ASCII-1963, moved all of the control codes (except for DEL, which we talked
about) into the control-code area, and added the lower-case letters and some special programming-
language symbols. It also discarded a couple of programming-language symbols from ASCII-1963
in a bow to international usage: the upward-pointing arrow used for exponentiation turned into the
caret (which did double duty as the circumflex accent), and the left-pointing arrow (used sometimes
to represent assignment) turned into the underscore character.

Hollerith and EBCDIC
So ASCII has its roots in telegraphy codes that go all the way back to the nineteenth century, and in
fact was designed in part as telegraphy code itself. The other important category of character codes
is the punched-card codes. Punched cards were for many years the main way computers dealt with
alphanumeric data. In fact, the use of the punched card for data processing predates the modern
computer, although not by as long as the telegraph.

Punched cards date back at least as far as 1810, when Joseph-Marie Jacquard used them to control
automatic weaving machines, and Charles Babbage had proposed adapting Jacquard’s punched cards
for use in his “analytical engine.” But punched cards weren’t actually used for data processing until
the 1880s when Herman Hollerith, a U.S. Census Bureau employee, devised a method of using
punched cards to collate and tabulate census data. His punched cards were first used on a national
scale in the 1890 census, dramatically speeding the tabulation process: The 1880 census figures,
calculated entirely by hand, had taken seven years to tabulate. The 1890 census figures took six
weeks. Flush with the success of the 1890 census, Hollerith formed the Tabulating Machine
company in 1896 to market his punched cards and the machines used to punch, sort, and count them.

 Prehistory

 A Practical Programmer’s Guide to the Encoding Standard

This company eventually merged with two others, diversified into actual computers, and grew into
what we now know as the world’s largest computer company, International Business Machines.8

The modern IBM rectangular-hole punched card was first introduced in 1928 and has since become
the standard punched-card format. It had 80 columns, each representing a single character (it’s no
coincidence that most text-based CRT terminals had 80-column displays). Each column had twelve
punch positions. This would seem to indicate that Hollerith code, the means of mapping from punch
positions to characters, was a 12-bit code, which would give you 4,096 possible combinations.

It wasn’t. This is because you didn’t actually want to use all the possible combinations of punch
positions—doing so would put too many holes in the card and weaken its structural integrity (not a
small consideration when these things are flying through the sorting machine at a rate of a few dozen
a second). The system worked like this: You had 10 main rows of punch holes, numbered 0 through
9, and two “zone” rows, 11 and 12 (row 0 also did double duty as a zone row). The digits were
represented by single punches in rows 0 through 9, and the space was represented with no punches at
all.

The letters were represented with two punches: a punch in row 11, 12, or 0 plus a punch in one of the
rows from 1 to 9. This divides the alphabet into three nine-letter “zones.” A few special characters
were represented with the extra couple one-punch combinations and the one remaining two-punch
combination. The others were represented with three-punch combinations: row 8 would be pressed
into service as an extra zone row and the characters would be represented with a combination of a
punch in row 8, a punch in row 11, 12, or 0, and a punch in one of the rows from 1 to 7 (row 9 wasn’t
used). This gave you three banks of seven symbols each (four banks if included a bank that used row
8 as a zone row without an additional punch in rows 11, 12, or 0). All together, you got a grand total
of 67 unique punch combinations. Early punched card systems didn’t use all of these combinations,
but later systems filled in until all of the possible combinations were being used.

[would a picture be helpful here?]

In memory, the computers used a six-bit encoding system tied to the punch patterns: The four least-
significant bits would specify the main punch row (meaning 10 of the possible 16 combinations
would be used), and the two most-significant bits would identify which of the zone rows was
punched. (Actual systems weren’t always quite so straightforward, but this was the basic idea.)
This was sufficient to reproduce all of the one- and two-punch combinations in a straightforward
manner, and was known as the Binary Coded Decimal Information Code, BCDIC, or just BCD for
short.

IBM added two more bits to BCD to form the Extended Binary Coded Decimal Information Code, or
EBCDIC (pronounced “EB-suh-dick”), which first appeared with the introduction of the System/360
in 1964. It was backward compatible with the BCD system used in the punched cards, but added the
lower-case letters and a bunch of control codes borrowed from ASCII-1963 (you didn’t really need
control codes in a punched-card system, since the position of the columns on the cards, or the
division of information between cards, gave you the structure of the data and you didn’t need codes
for controlling the communication session. This code was designed both to allow a simple mapping
from character codes to punch positions on a punched card and, like ASCII, to produce a reasonable
sorting order when the numeric codes were used to sort character data (note that this doesn’t mean

8 Much of the information in the preceding paragraph is drawn from the Searle article; the source for the rest of

this section is Douglas W. Jones, “Punched Cards: An Illustrated Technical History” and “Doug Jones’

Punched Card Codes,” both found at http://www.cs.uiowa.edu/~jones/cards.

 A Brief History of Character Encoding

26 Unicode Demystified

you get the same order as ASCII—digits sort after letters instead of before them, and lower case sorts
before upper case instead of after).

One consequence of EBCDIC’s lineage is that the three groups of nine letters in the alphabet that you
had in the punched-card codes are numerically separated from each other in the EBCDIC encoding: I
is represented by 0xC9 and J by 0xD1, leaving an eight-space gap in the numerical sequence. The
original version of EBCDIC encoded only 50 characters in an 8-bit encoding space, leaving a large
numbers of gaping holes with no assigned characters. Later versions of EBCDIC filled in these holes
in various ways, but retained the backward compatibility with the old punched-card system.
Although ASCII is finally taking over in IBM’s product line, EBCDIC still survives in the current
models of IBM’s System/390, even though punched cards are long obsolete. Backward compatibility
is a powerful force.

Single-byte encoding systems

ANSI X3.4-1967 (ASCI-1967) went on to be adopted as an international standard, first by the
European computer Manufacturers’ Association as ECMA-6 (which actually came out in 1965, two
years before the updated version of ANSI X3.4, and then by the International Organization for
Standardization (“ISO” for short) as ISO 646 in 1972. [This is generally the way it works with ISO
standards—ISO serves as an umbrella organization for a bunch of national standards bodies and
generally creates international standards by taking various national standards, modifying them to be
more palatable to an international audience, and republishing them as international standards.]

A couple interesting things happened to ASCII on its way to turning into ISO 646. First, it
formalized a system for applying the various accent and other diacritical marks used is European
languages to the letters. It did this not by introducing accented variants of all the letters–there was no
room for that—but by pressing a bunch of punctuation marks into service as diacritical marks. The
apostrophe did double duty as the acute accent, the opening quote mark as the grave accent, the
double quotation mark as the diaeresis (or umlaut), the caret as the circumflex accent, the swung dash
as the tilde, and the comma as the cedilla. To produce an accented letter, you’d follow the letter in
the code sequence with a backspace code and then the appropriate ‘accent mark.” On a teletype
machine, this would cause the letter to be overstruck with the punctuation mark, producing an ugly
but serviceable version of the accented letter.

The other thing is that ISO 646 leaves the definitions of twelve characters open (in ASCII, these
eleven characters are #, $, @, [, \,], ̂ , ‘, {, |, }, and ~). These are called the “national use” code
positions. There’s an International Reference Version of ISO 646 that gives the American meanings
to the corresponding code points, but other national bodies were free to assign other characters to
these twelve code values. (Some national bodies did put accented letters in these slots.) The various
national variants have generally fallen out of use in favor of more-modern standards like ISO 8859
(see below), but vestiges of the old system still remain; for example, in many Japanese systems’
treatment of the code for \ as the code for ¥.9

9 The preceding information comes partially from the Jennings paper, and partially from Roman Czyborra,

“Good Old ASCII,” found at http://www.czyborra.com/charsets/iso646.html.

 Single-byte encoding systems

 A Practical Programmer’s Guide to the Encoding Standard

Eight-bit encoding schemes and the ISO 2022 model

ASCII gave us the eight-bit byte. All earlier encoding systems (except for FIELDATA, which can be
considered an embryonic version of ASCII) used a six-bit byte. ASCII extended that to seven, and
most communication protocols tacked on an eighth bit as a parity-check bit. As the parity bit became
less necessary (especially in computer memory) and 7-biit ASCII codes were stored in eight-bit
computer bytes, it was only natural that the 128 bit combinations not defined by ASCII (the ones with
the high-order bit set) would be pressed into service to represent more characters.

This was anticipated as early as 1971, when the ECMA-35 standard was first published.10 This
standard later became ISO 2022. ISO 2022 sets forth a standard method of organizing the code
space for various character encoding methods. An ISO-2022-compliant character encoding can have
up to two sets of control characters, designated C0 and C1, and up to four sets of printing (“graphic”)
characters, designated G0, G1, G2, and G3.

The encoding space can either be seven or eight bits wide. In a seven-bit encoding, the byte values
from 0x00 to 0x1F are reserved for the C0 controls and the byte values from 0x20 to 0xFF are used
for the G0, G1, G2, and G3 sets. The range defaults to the G0 set, and escape sequences can be used
to switch it to one of the other sets.

In an eight-bit encoding, the range of values from 0x00 to 0x1F (the “CL area”) is the C0 controls
and the range from 0x80 to 0x9F (the “CR area”) is the C1 controls. The range from 0x20 to 0x7F
(the “GL area”) is always the G0 characters, and the range from 0xA0 to 0xFF (the “GR area”) can
be switched between the G1, G2, and G3 characters.

Control functions (i.e., signals to the receiving process, as opposed to printing characters) can be
represented either as single control characters or as sequences of characters usually beginning with a
control character (usually that control character is ESC and the multi-character control function is an
“escape sequence”). ISO 2022 uses escape sequences to represent C1 controls in the 7-bit systems,
and to switch the GR and GL areas between the various sets of printing characters in both the 7- and
8-bit versions. It also specifies a method of using escape sequences to associate the various areas of
the encoding space (C0, C1, G0, G1, G2, and G3) with actual sets of characters.

ISO 2022 doesn’t actually apply semantics to most of the code positions–the big exceptions are ESC,
DEL and the space, which are given the positions they have in ASCII. Other than these, character
semantics are taken from other standards, and escape sequences can be used to switch an area’s
interpretation from one standard to another (there’s a registry of auxiliary standards and the escape
sequences used to switch between them).

An ISO 2022-based standard can impose whatever semantics it wants on the various encoding areas
and can choose to use or not use the escape sequences for switching things. As a practical matter,
most ISO2022-derived standards put the ISO 646 IRV (i.e., US ASCII) printing characters in the G0
area and the C0 control functions from ISO 6429 (an ISO standard that defines a whole mess of
control functions, along with standardized C0 and C1 sets—the C0 set is the same as the ASCII
control characters).

10 The information in this section is taken from Peter K. Edberg, “Survey of Character Encodings,” Proceedings

of the 13th International Unicode Conference, session TA4, September 9, 1998, and from a quick glance at

the ECMA 35 standard itself.

 A Brief History of Character Encoding

28 Unicode Demystified

ISO 8859
By far the most important of the ISO 2022-derived encoding schemes is the ISO 8859 family. 11 The
ISO 8859 standard comprises fourteen separate ISO 2022-compliant encoding standards, each
covering a different set of characters for a different set of languages. Each of these counts as a
separate standard: ISO 8859-1, for example, is the near-ubiquitous Latin-1 character set you see on
the Web.

Work on the ISO 8859 family began in 1982 as a joint project of ANSI and ECMA. The first part
was originally published in 1985 as ECMA-94. This was adopted as ISO 8859-1, and a later
addition of ECMA-94 became the first four parts of ISO 8859. The other parts of ISO 8859 likewise
originated in various ECMA standards.

The ISO 8859 series is oriented, a one might expect, toward European languages and European
usage, as well as certain languages around the periphery of Europe that get used a lot there. It aimed
to do a few things: 1) Do away with the use of backspace sequences as the way to represent accented
characters (the backspace thing is workable on a teletype, but doesn’t work at all on a CRT terminal
without some pretty fancy rendering hardware), 2) do away with the varying meanings of the
“national use” characters from ISO 646, replacing them with a set of code values that would have the
same meaning everywhere and still include everyone’s characters, and 3) unify various other national
and vendor standards that were attempting to do the same thing.

All of the parts of ISO 8859 are based on the ISO 2022 structure, and all have a lot in common.
Each of them assigns the ISO 646 printing characters to the G0 range, and the ISO 6429 C0 and C1
control characters to the C0 and C1 ranges. This means that each of them, whatever else they
include, includes the basic Latin alphabet and is downward compatible with ASCII. (That is, pure 7-
bit ASCII text, when represented with 8-bit bytes, conforms to any of the 8859 standards.) Where
they differ is in their treatment of the G1 range (none of them defines anything in the G2 or G3 areas
or uses escape sequences to switch interpretations of any of the code points, although you can use the
registered ISO 2022 escape sequences to assign the G1 repertoire from any of these standards to the
various GR ranges in a generalized ISO 2022 implementation).

The fourteen parts of ISO 8859 are as follows:

ISO 8859-1 Latin-1 Western European languages (French, German, Spanish, Italian, the
Scandinavian languages etc.)

ISO 8859-2 Latin-2 Eastern European languages (Czech, Hungarian, Polish, Romanian, etc.)

ISO 8859-3 Latin-3 Southern European languages (Maltese and Turkish, plus Esperanto)

ISO 8859-4 Latin-4 Northern European languages (Latvian, Lithuanian, Estonian,
Greenlandic, and Sami)

ISO 8859-5 Cyrillic Russian, Bulgarian, Ukrainian, Belarusian, Serbian, and Macedonian

11 Much of the information in this section is drawn from Roman Czyborra, “ISO 8859 Alphabet Soup”, found at

http://www.czyborra.com/charsets/iso8859.html, supplemented with info from the ISO

Web site, the ECMA 94 standard, and the Edberg article.

 Single-byte encoding systems

 A Practical Programmer’s Guide to the Encoding Standard

ISO 8859-6 Arabic Arabic

ISO 8859-7 Greek Greek

ISO 8859-8 Hebrew Hebrew

ISO 8859-9 Latin-5 Turkish (replaces Latin-3)

ISO 8859-10 Latin-6 Northern European languages (unifies Latin-1 and Latin-4)

ISO 8859-11 Thai Thai

ISO 8859-13 Latin-7 Baltic languages (replaces Latin-4, supplements Latin-6)

ISO 8859-14 Latin-8 Celtic languages

ISO 8859-15 Latin-9 Western European languages (replaces Latin-1, adds the Euro symbol
and some forgotten French and Finnish letters)

ISO 8859-16 Latin-10 Eastern European languages (replaces Latin-2, adds the Euro symbol and
a few missing Romanian letters)

One of the things that the ISO 8859 family of standards does is show how constraining an 8-bit
encoding space can be. You have a whole mess of different versions of the Latin alphabet with
considerable overlap, each optimizing for a slightly different collection of alphabets. Likewise, the
ones for the non-Latin alphabets tend to make do with fairly constrained collections of characters
from their writing systems. But they’re a lot better, and a lot more standard, than the mishmash that
came before.

Other 8-bit encoding schemes
There are tons of other 8-bit encoding standards. These include a wide variety of vendor-developed
encodings (many vendors, including IBM and Microsoft, call these “code pages”) that cover the
same set of languages as the 8859 series, but generally predate it and put things in a different order.
There are also code pages that add other non-letter characters, such as the old DOS box-drawing
characters. These include the old Mac and DOS code pages that predate ISO 8859, as well as some
code pages that follow and extend ISO 8859. While most of these are downward-compatible with
ASCII, they’re not always ISO 2022 compliant. Windows code page 1252, the Western European
encoding for Windows, for example, is a superset of ISO 8859-1. It includes all the Latin-1
characters, but then goes on to fill the C1 space with additional printing characters. (Sometimes you
even see this happen to the C0 space: the old standard ICM PC code page not only had box-drawing
characters and what-not up in the C1/G1 range, but also put printing characters down in the C0 range
where they could be confused with control characters.) IBM also has a whole mess of EBCDIC-
derived code pages devoted to the languages covered by the ISO 8859 family.

There are other eight-bit encoding standards for languages outside the ISO 8859 family. These
includes the TIS 620 standard for Thai, an ISO 2022-derived standard that puts the Thai letters in the

 A Brief History of Character Encoding

30 Unicode Demystified

G1 range, the ISCII standard (“Indian Script Code for Information Interchange”), which places any
of several sets of characters for writing Indian languages in the G1 area. (The various Indian writing
systems are all so closely related that the meanings of the code points are common across all of
them—you can transliterate from one Indian writing system to another simply by changing fonts
[more or less]). The VISCII and TCVN 5712 standards (VISCII [“Vietnamese Standard Code for
Information Interchange”] is an Internet RFC; TCVN 5712 is a Vietnamese national standard) for
writing Vietnamese are both ASCII-derived, but invade both the C0 and C1 areas with Vietnamese
letters (it’s a big set). There’s a version of TCVN 5712 that complies with ISO 2022, but it omits a
bunch of letters.

The Japanese JIS X 0201 (“JIS-Roman”) standard is also an ISO 2022-derived 8-bit standard. It
places the Japanese Katakana syllabary in the G1 area. Here, though, the G0 area isn’t exactly the
same as American ASCII: a few of the “national use” code positions from ISO 646 have Japanese-
specific meanings (the one everybody’s most familiar with is that the code position normally
occupied by the backslash [\] is instead occupied by the yen sign [¥], so DOS path names on
Japanese computers come out with yen signs between their components).

Character encoding terminology

Before we move on to talk about more character encoding standards, we need to take a break and
define some terms. It’ll make the discussion in the next section easier and help crystallize some of
the fuzzy terminology in the sections we just finished.

It’s useful to think of the mapping of a sequence of written characters to a sequence of bits in a
computer memory or storage device or in a communication link as taking places in a series of stages,
or levels, rather than all at once. The Internet Architecture Board proposed a three-level encoding
model. The Unicode standard, in Unicode Technical Report #17, proposes a five-level model,
explicitly discussing one level that was merely implied in the IAB model, and interposing an extra
level between two of the IAB levels. This discussion borrows the terms from UTR #17, since it was
designed specifically to make it easier to talk about Unicode.

The first level is abstract character repertoire. This is simply a collection of characters to be
encoded. This can usually be expressed simply in words: such phrases as “the Latin alphabet” or “the
union of the English, Spanish, French, German, Italian, Swedish, Danish, and Norwegian alphabets”
define repertoires. For most Western languages, this kind of thing is pretty straightforward and
usually takes the form “The blah-blah alphabet, plus this set of special characters and digits,” but for
East Asian languages, it’s more complicated.

One of the other things you start thinking about when defining a character repertoire is just what
constitutes a “character.” Here, “character” can simply mean “a semantic unit that has its own
identity when encoded.” An encoding standard can decide, for example whether accented letters are
first-class characters that get their own identity when encoded, or whether the accents themselves are
first-class characters that get their own identity and combine with unaccented letters to form the
accented letters. Another example would be whether the different shapes a character can assume in
different contexts each get treated as a “character” or whether the underlying and unchanging
semantic unit these shapes represent gets treated as a “character.”

Unicode defines “character” as an independent abstract semantic unit, explicitly eschewing glyph
variants and presentation forms, and explicitly encodes accents and other combining marks as first-
class characters, but other encoding standards made different decisions. Throughout the rest of the

 Character encoding terminology

 A Practical Programmer’s Guide to the Encoding Standard

book, we’ll use “character” the way Unicode does, distinguishing it from “glyph,” rather than simply
to mean “something deemed worthy of encoding.”

The second level is the coded character set, a mapping between the characters in an abstract
repertoire and some collection of coordinates. Most coded character sets map the characters to x and
y positions in a table, although these coordinates can always be mapped to a set of single numbers.

Allied with the concept of coded character set is the idea of encoding space, basically the
dimensions of the table containing all the characters. This can be expressed as a pair of numbers (“a
16 u 16 encoding space”) or as a single number (“a 256-character encoding space”). Often (but not
always) the encoding space is constrained by the size of the storage unit used to represent a character,
and this is used a shorthand way of describing the encoding space (“an 8-bit encoding space”).
Sometimes the encoding space is broken down into subsets. Depending on the subset and the
standard, these subsets go by various names (e.g., “row,” “plane,” “column,” etc.)

A position in the encoding space is called a code point. The position occupied by a particular
character is called a code point value. A coded character set is a mapping of characters to code
points values.

The third level of the encoding model is the character encoding form, also called a “storage
format.” This maps the abstract code point values to sequences of integers of a specific size, called
code units. For a fixed-size encoding, this is usually a null mapping, but it doesn’t have to be. For
variable-length encodings, the mapping is more complicated, as some code points will map to single
code units and some code points will map to sequences of code units.

The fourth level of the encoding model is the character encoding scheme, also referred to as the
“serialization format.” This is the mapping from code unit values to actual sequences of bits. Two
basic things happen here: First, code units that are more than a byte long are converted to sequences
of bytes (in other words, which byte goes first when the encoded text is sent over a communications
link or written to a storage medium becomes important). Second, a character encoding scheme may
tie together two or more character encoding forms, defining extra bytes that get written into the
serialized data stream to switch between them, or some additional transformation that happens to the
code units from one of the encoding forms to make their numeric ranges disjoint.

The “charset” parameter that shows up in a variety of Internet standards (see Chapter 17) specifically
refers to a character encoding scheme.

A character encoding standard usually defines a stack of all four of these transformations: from
characters to code points, from code points to code units, and from code units to bytes, although
some of the transformations might be implicit. Sometimes, though, you’ll see separate definitions of
different layers in the model. This often happens with East Asian encodings, for example.

The fifth level is the transfer encoding syntax, which is more or less orthogonal to the other four
levels, and is usually defined separately from (and independent of) the others. This is an additional
transformation that might be applied ex post facto to the bytes produced by a character encoding
scheme. Transfer encoding syntaxes usually are used for one of two things: They either map a set of
values into a more-constrained set of values to meet the constraints of some environment (think
Base64 or quoted-printable, both of which we’ll talk about in Chapter 17), or they’re compression
formats, mapping sequences of bytes into shorter sequences of bytes (think LZW or run-length
encoding).

 A Brief History of Character Encoding

32 Unicode Demystified

Let’s go back and apply these terms to the encoding standards we’ve looked at so far. The various
telegraph codes, such as ITA2, divided their repertoires into two coded character sets, FIGS and
LTRS, each of which mapped half the repertoire into a five-bit encoding space, usually expressed as
a table of two rows of 16 cells each. The character encoding forms were straightforward
transformations, mapping the coordinates into five-bit binary numbers in a straightforward manner.
The character encoding schemes mapped the five-bit code units into bytes in an equally
straightforward manner, and added the concept of using the FIGS and LTRS codes for switching
back and forth between the two coded character sets. (In fact, if you consider the character encoding
scheme the transformation to physical media, this is also where it was decided whether the most
significant bit in the byte was the leftmost hole or the rightmost hole on the paper tape.)

ASCII is actually simpler, mapping its repertoire of characters into a 7-bit, 128-character encoding
space, usually expressed as an 8 u 16 table. It comprised a character encoding form that mapped the
table positions into integer code units in an obvious manner, and an encoding scheme the mapped
these code units to bytes in an equally obvious manner (if you’re going to an 8-bit byte, the character
encoding scheme can be said to comprise the padding of the value out to eight bits).

ISO 2022 doesn’t actually define any coded character sets, instead simply specifying the layout of the
256-character encoding space, but it does specify a character encoding scheme for switching back
and forth between, say, the G1 and G2 sets, and for associating actual coded character sets (for
example Latin-1 and Latin-2) with the G1 and G2 sets.

Multiple-byte encoding systems

These distinctions between layers become more interesting when you start talking about East Asian
languages such as Chinese, Japanese, and Korean. These languages all make use of the Chinese
characters. Nobody is really sure how many Chinese characters there are, although the total is
probably more than 100,000. Most Chinese speakers have a working written vocabulary of some
5,000 characters or so, somewhat less for Japanese and Korean speakers, who depend more on
auxiliary writing systems to augment the Chinese characters.

East Asian coded character sets

When you’ve got this many characters to mess around with, you start officially defining particular
sets of Chinese characters you’re interested in. The Japanese government, for example publishes the
Gakushu Kanji, a list of 1,006 Chinese characters (the Japanese call them kanji) everyone learns in
elementary school, the Joyo Kanji, a list of another 1,945 characters used in government documents
and newspapers (and, presumably, learned in secondary school), and the Jinmei-yo Kanji, a list of
285 characters officially sanctioned for use in personal names.12 (Think of these lists as analogous to
the vocabulary lists that school boards and other educational institutions in the U.S. put together to
standardize which words a kid should know at which grade level.) The other countries that use the
Chinese characters publish similar lists. These lists are examples of character-set standards that just
standardize an abstract character repertoire—there’s no attempt (so far) to assign numbers to them.

The Japanese Industrial Standards Commission (JISC, Japan’s counterpart to ANSI) led the way in
devising coded character set standards for representing the Chinese characters in computers (there

12 This section relies heavily on various sections of Ken Lunde, CJKV Information Processing
(O’Reilly, 1999), as well as the Edberg paper, op. cit.

 Multiple-byte encoding systems

 A Practical Programmer’s Guide to the Encoding Standard

are earlier Japanese telegraph codes, but we don’t consider them here). The first of these was JIS X
0201, first published in 1976, which we looked at earlier. It doesn’t actually encode the Chinese
characters; it’s and ISO 2022-derived encoding that places a Japanese variant of ISO 646 in the G0
area and the Japanese Katakana syllabary in the G1 area. It’s a fixed-length 8-bit encoding, and it
becomes important later.

The first Japanese standard to actually encode the kanji characters was JIS C 6226, first published in
1978 and later renamed JIS X 0208 (the work on this standard actually goes back as far as 1969).
JIS X 0208 uses a much larger encoding space than we’ve looked at so far: a 94 u 94 table. The
choice of 94 as the number of rows and columns isn’t coincidental: it’s the number of assignable
code points in the G0 area according to ISO 2022. This gives you an ISO 2022-compliant 7-bit
encoding scheme. Each character would be represented with a pair of 7-bit code units (in effect, you
have a single 14-bit code point expressed as a coordinate in a 94 u 94 space being mapped into two
7-bit code units).

JIS X 0208’s repertoire includes not only 6,355 kanji, divides into two “levels” by frequency and
importance, but also the Latin, Greek and Cyrillic alphabets, the Japanese Hiragana and Katakana
syllabaries, and a wide variety of symbols and punctuation marks.

JIS X 0208 was supplemented in 1990 by JIS X 0212, a supplemental standard that adds another
5,801 kanji, as well as more symbols and some supplementary characters in the Latin and Greek
alphabets. It’s based on the same 94 u 94 encoding space used in JIS X 0208. JIS X 0213,
published in 2000, adds in another 5,000 Kanji (Levels 3 and 4; I don’t know what “level” JIS X
0212 is supposed to be) and follows the same structure as the other two standards.

The other countries that use the Chinese characters followed the JIS model when designing their own
national character set standards. These include the People’s Republic of China’s GB 2312, first
published in 1981, Taiwan’s CNS 11643, published in 1992, and South Korea’s KS X 1001 (aka KS
C 5601), first published in 1987. All of these make use of a 94 u 94 encoding space, laid out in
roughly similar ways (although the actual allocation of individual characters, in particular the
Chinese characters and the native-language characters in each standard, varies quite a bit).

CNS 11643, by the way is the most ambitious of all of these, encoding a whopping 48,027 characters
across 16 “planes” (actually, only 7 are currently used). The “planes” correspond roughly to the
different parts of the ISO 8859 standard; they’re more or less independent standards that put different
characters in the same encoding space. CNS 11643 is set up such that characters at corresponding
positions in each plan are variants of each other. In theory, you could take a text consisting of
characters from all the places, encode it using only plane 1, and it’d still be legible.

All of these standards define coded character sets; if you take the row and column numbers of the
code points and shift them up into ISO 2022’s G0 space (by adding 32), you have a simple ISO
2022-derived encoding form. You can then have two encoding schemes based on this—one that
encodes the row number before the column number, and another that encodes the column number
before the row number. Piece of cake.

Character encoding schemes for East Asian coded character sets
Here’s where things start to get interesting. Rather than just treat the East Asian standards as two-
byte encodings along the lines above, various packing schemes have been developed, either to save
space or to combine characters from two or more of the coded character set standards described
above. There are four main categories of these character encoding schemes:

 A Brief History of Character Encoding

34 Unicode Demystified

The most familiar of all of these is Shift-JIS. It combines the JIS X 0201 and JIS X 0208 coded
character sets. The JIS X 0201 code point values are represented as-is as single-byte values. The
byte values not used by 201 (the C1 range and the top two rows of the G1 range: 0x80–0x9F and
0xE0–0xEF) are used as leading byte values for two-byte sequences representing the characters from
208. (The second byte would be in the range 0x40–0x7E or 0x80–0xFC.) The transformation from
row and column numbers in JIS X 0208 to a two-byte Shift-JIS sequence isn’t straightforward, but
it’s enough to cover all the characters. In fact, Shift-JIS also adds a space for user-defined
characters: these are also represented with two-byte sequences, the leading byte of which runs from
0xF0 to 0xFC.

One interesting consequence of Shift-JIS (and the other encodings we’ll look at) is that it includes
both JIS X 0201 and JIS X 0208, even though all the characters in 201 are also included in 208.
They’ve come to have different meanings: the codes from 201 (the single-byte sequences) are often
thought of as “half-width” (taking up half the horizontal space of a typical kanji character), which the
codes from 208 (the two-byte sequences) are thought of as “full-width” (taking up the full horizontal
space of a kanji character).

The next most familiar encoding scheme is Extended UNIX Code, which, as the name suggests, was
originally developed for use with UNIX systems and was standardized in 1991 by a group of UNIX
vendors. It makes use of variable-length sequences ranging from one to four bytes and based on the
ISO 2022 structure. EUC defines four separate code sets. Code set 0 is always ASCII (or some
other national variant of ISO 646), and is represented as-is in the C0 and G0 spaces. Code sets 1, 2,
and 3 are represented using the values in the G1 space. Characters in code set 1 are represented
unadorned. Characters in code set 2 are preceded with a C1 control character, the SS2 character,
0x8E. Characters in code set 3 are precedes with a different C1 control characters, SS3 or 0x8F.
Characters in code set 0 are always represented with one-byte sequences; characters in code sets are
always sequences of at least two bytes (and can be as many as four—this is because of the SS2 or
SS3 byte appended to the front); characters in code set 1 may be sequences of from one to three
bytes.

The assignment of specific characters to the three EUC code sets is locale-specific, so there are
variants of EUC for each locale, as follows:

EUC-JP (Japan): Code set 0: JIS Roman (i.e., the Japanese variant of ISO 646) [one
byte]

 Code set 1: JIS X 0208, with the row and column numbers shifted
up into the G1 range [two bytes]

 Code set 2: Katakana from JIS X 0201 [SS2 plus one byte]

 Code set 3: JIS X 0212, with the row and column numbers shifted
up into the G1 range [SS3 plus two bytes]

EUC-CN (China): Code set 0: Chinese ISO 646 [one byte]

 Code set 1: GB 2312, with the row and column numbers shifted up
to the G1 range [two bytes]

 Multiple-byte encoding systems

 A Practical Programmer’s Guide to the Encoding Standard

 Code sets 2 and 3: Not used

EUC-TW
(Taiwan):

Code set 0: Taiwanese ISO 646 [one byte]

 Code set 1: CNS 11643, plane 1, with the row and column numbers
shifted up into the G1 range [two bytes]

 Code set 2: All of CNS 11643, the row and column numbers as
above, preceded by the plane number, also shifted into
the G1 range [SS2 plus three bytes]

 Code set 3: Not used.

EUC-KR (Korea): Code set 0: Korean ISO 646 [one byte]

 Code set 1: KS X 1001, with the row and column numbers shifted
up into the G1 range [two bytes]

 Code sets 2 and 3: Not used.

There there’s the family of 7-bit ISO 2022 encodings. Here you use the standard ISO 2022
machinery and the normal framework of 7-bit ISO 2022 code points to represent the characters.
Again, depending on locale, you get different default behavior. The basic idea here is that the system
is modal and you can use the ASCII SI and SO (shift in and shift out, 0x0F and 0x0E) to switch back
and forth between single-byte mode and double-byte mode. You can also use the SS2 and SS3 codes
from ISO 2022 (here in their escape-sequence incarnations, since we’re staying within seven bits) to
quote characters from alternate two-byte character sets. The various national variants of ISO 2022
then make use of various escape sequences (often running to four bytes) to switch the two-byte mode
from one coded character set to another. The various versions give you access to the following
character sets:

ISO-2022-JP JIS-Roman and JIS X 0208

ISO-2022-JP-1 and
ISO-2022-JP-2

ISO-2022-JP plus JIS X 0212

ISO-2022-CN ASCII, GB 2312, CNS 11643 planes 1 and 2

ISO-2022-CN-EXT ISO-2022-CN plus the rest of CNS 11643

ISO-2022-KR ASCII and KS X 1001

The actual specifications vary widely from one variant to the next, and they don’t all strictly follow
the ISO 2022 standard (despite the name). See Ken Lunde’s CJKV Information Processing for all
the gory details.

 A Brief History of Character Encoding

36 Unicode Demystified

Finally, there’s HZ, another 7-bit encoding, which uses sequences of printing characters to shift back
and forth between single-byte mode (ASCII) and double-byte mode (GB 2312). The sequence ~{
would switch into double-byte mode, and the sequence ~} would switch back.

Other East Asian encoding systems
Finally, there are two more important encoding standards that don’t fit neatly into the coded-
character-set/character-encoding-scheme division we’re been considering.

The Taiwanese Big5 standard is an industry standard (so named because it was backed by five large
computer manufacturers) that predates the CNS 11643, the “official” Taiwanese standard, dating
back to 1984. (CNS 11643 is downward compatible with Big5, and can be thought of as an extended
and improved version of it.) Big5 uses a 94 u 157 encoding space, providing room for 14,758
characters. It’s a variable-length encoding compatible with the ISO 2022 layout: The Taiwanese
version of ISO 646 is represented as-is in the C0 and G0 spaces with single-byte sequences. The
Chinese characters (and all the usual other stuff) is represented with two-byte sequences: the first
byte is in the G1 range; the second byte can be in either the G1 or the G0 range (although not all G0
values are used as trailing bytes).

CCCII (“Chinese Character Code for Information Interchange”) is another Taiwanese industry
standard that predates Big5 (it was published in 1980) and also influenced CNS 11643. It’s a fixed-
length encoding where each code point maps to three seven-bit code units. It has a 94 u 94 u 94
encoding space: sixteen layers, each consisting of six 94 u 94 planes. The first byte of the code point
is the layer and plane numbers, the second the row number, and the third the column number.

Johab is an alternate encoding scheme described in the KS X 1001 standard. KS X 1001 normally
encodes only 2,350 Hangul syllables (see Chapter 10 for more on Hangul) actually used in Korean,
but it proposes an alternate method that permits encoding of all 11,172 possible modern Hangul
syllables (the Korean Hangul script is an alphabetic system, but the letters are commonly grouped
into syllabic blocks, which are encoded as units in most Korean encoding systems in a manner
analogous to that used for the Chinese characters). It takes advantage of the alphabetic nature of
Hangul: instead of just giving each syllable an arbitrary number, the syllable is broken down into its
component letters, or jamo (there can be up to three in a syllable), each of which can be encoded in
five bits. This gives you a fifteen-bit character code, which can be encoded in a two-byte sequence.
The G0 space in the leading byte is taken up with the Korean version of ISO 646, as always, but the
leading byte of a two-byte sequence invades the C1 range and the second byte can be from the G0,
C1, or G1 ranges. Thus, the Johab encoding doesn’t fit the ISO 2022 structure.

ISO 10646 and Unicode

It should be fairly clear by now that we have a real mess on our hands. There are literally
hundreds of different encoding standards out there, many of which are redundant, encoding the
same characters but encoding them differently. Even within the ISO 8859 family, there are ten
different encodings of the Latin alphabet, each containing a slightly different set of letters.

This means you have to be very explicit about which encoding scheme you’re using, lest the
computer interpret your text as characters other than the characters you intend, garbling it in the
process (log onto a Japanese Web site with an American computer, for example, and it’s likely
you’ll see gobbledygook rather than Japanese). About the only thing that’s safely interchangeable
across a wide variety of systems is 7-bit ASCII, and even then you’re not safe—you might run into

 A Brief History of Character Encoding

 A Practical Programmer’s Guide to the Encoding Standard

a system using one of the national variants of ISO 646, mangling the “national use” characters
from ASCII, or your text might pass through an EBCDIC-based system and get completely messed
up.

You also can’t easily mix characters from different languages (other than English and something
else) without having auxiliary data structures to keep track of which encodings different pieces of
the same text are in. Your other choice is to use a code switching scheme such as the one specified
in ISO 2022, but this is cumbersome both for the user and for the processing software.

So you have a bunch of problems it’d be really nice to fix:

x� A wide variety of mutually-incompatible methods of encoding the various languages, and no
way to tell from the data itself which encoding standard is being followed.

x� A limited encoding space, leading to an even wider variety of conflicting encoding standards,
none of which is terribly complete.

x� Variable-length encoding schemes that don’t use numerically disjoint code unit values for the
different pieces of a multi-byte character, making it difficult to count characters or locate
character boundaries, and which make the data highly susceptible to corruption. (A missing
byte can trigger the wrong interpretation of every byte that follows it.)

x� Stateful in-band code-switching schemes such as ISO 2022 are complicated, make encoded text
in memory harder to process, and require arbitrary-length look-back to understand how to
interpret a given byte on random access.

Clearly what was needed was an universal character encoding system, one that would solve these
problems and assign an unique code point value to every character in common use. A group
formed in 1984 under the auspices of the International Organization for Standardization and the
International Electrotechnical Commission to create such a thing. The group goes by the rather
unwieldy name of ISO/IEC JTC1/SC2/WG2 (that’s “ISO/IEC Joint Technical Committee #1
[Information Technology], Subcommittee #2 [Coded Character Sets], Working Group #2 [Multi-
octet codes]”), or just “WG2” for short. They began working on what became known as ISO
10646 (the connection between 10646 and 646 is not accidental: the number signifies that 10646 is
an extension of 646).13

In 1988 a similar effort got underway independently of WG2. This was sparked by a paper written
by Joe Becker of Xerox setting forth the problems listed above and proposing a list of desirable
characteristics for a universal character encoding standard. The Becker paper was the first to use
the name “Unicode,” which has stuck. An informal group of internationalization experts from
Xerox, Apple, and a few other companies got together to begin work on the Unicode standard
(beginning from Xerox’s earlier XCCS encoding standard). This group grew into the Unicode
Consortium of today.

Although they had similar goals, they went about them in very different ways. The original version
of ISO 10646 was based on 32-bit abstract code point values, arranged into a 256 u 256 u 256 u
256 encoding space, but not all code point values were actually possible: byte values from 0x00 to

13 This section draws on Mike Ksar, “Unicode and ISO 10646: Achievements and Directions,” Proceedings

of the 13th International nicode Conference, session B11, September 11, 1998, and the Edberg paper, op,

cit. The information on the early history of ISO 10646 comes from contributions by Mark Davis and Ken

Whistler to online discussions by the IETF’s Internationalized Domain Names task force, and were

forwarded to me by Mark Davis.

 A Brief History of Character Encoding

38 Unicode Demystified

0x1F and 0x80 to 0x9F, corresponding to the C0 and C1 areas in ISO 2022, were illegal in any
position in the four-byte code point values, effectively yielding a 192 u 192 u 192 u 192 encoding
space. This was referred to as 192 “groups” of 192 “planes” of 192 “rows” of 192 “cells.”

Recognizing that a scheme with four-byte character codes, involving a quadrupling of the space
required for a given piece of text, probably wouldn’t go over well, the early versions of ISO 10646
had a whopping five encoding forms, based on code units of from one to four bytes in size, plus a
variable-length scheme that allowed single code points to be represented with sequences of one-
byte code units of varying lengths. There were also encoding schemes for the shorter encoding
forms that used ISO 2022-style escape sequences to switch the meanings of the code units from
one part of the encoding space to another.

The division into “plane” was intended to facilitate the use of shorter encoding forms: If all your
characters came from the same plane, you could omit the plane and group numbers from the code
unit and just have it consist of the row and cell numbers. There was a “basic multilingual plane”
(“BMP” for short) the contained the characters from most of the modern writing systems, the big
exception being the Han characters. The Han characters were organized into several planes of
their own: for Traditional Chinese, Simplified Chinese, Japanese, and Korean. There was also
provision for various special-purpose and private-use planes.

The original version of ISO 10646, with these features, failed to get approval on its first ballot
attempt. The prohibition of C0 and C1 byte values not only restricted the available space too much
(especially in the basic multilingual plane), but it also caused problems for C implementations
because zero-extended ASCII values weren’t legal 10646 code points, making it difficult or
impossible to use wchar_t to store 10646 code points and maintain and backward compatibility.
No one liked the multitude of different encoding forms and the escape sequences that were to be
used with them. And the Asian countries didn’t like having their writing systems relegated off to
their own planes.14

Meanwhile, the Unicode Consortium started with a 16-bit code point length, equivalent to a single
plane of the ISO 10646 encoding space, and declared no byte values off limits. There were no
separate encoding forms or schemes, no ambiguous interpretations of variable lengths, just
Unicode. (Encoding forms such as UTF-8 were a later development.)

One of the big differences between Unicode and ISO 10646 was the treatment of the Chinese
characters. Even though there are certainly significant differences in the use of the Chinese
characters in China, Japan, Korean, Vietnam, and Taiwan, they’re still essentially the same
characters—there’s great overlap between the five different sets of Chinese characters, and it
doesn’t make sense to encode the same character once for each language any more than it makes
sense to encode the letter A once each for English, Spanish, French, Italian, and German.

Work had already been going on at Xerox and Apple to devise a unified set of Chinese characters,
and this work followed work that had already been going on in China (CCCII, for example

14 One of Ken Whistler’s messages in the discussion I’m basing this on actually quotes the Chinese national

body’s objections. The Chinese not only didn’t like havng their codes in a separate plane, but didn’t like

the idea that a single Han character could have one of several code point values depending on the

language of the text. It advocates a unified Han area located in the BMP. This seems to put the lie rather

effectively to the allegations you hear every so often that Han unification was forced on the Asians by the

Americans.

 A Brief History of Character Encoding

 A Practical Programmer’s Guide to the Encoding Standard

attempts to unify the various national versions of the Chinese characters, and another effort was
underway in China). The Apple/Xerox effort went into early drafts of Unicode and was proposed
to ISO as a possible addition to ISO 10646. The Apple/Xerox efforts eventually merged with the
various Chinese efforts to form the CJK Joint Research Group, which produced the first version of
the unified Chinese character set in ISO 10646 in 1993. This group, now called the Ideographic
Rapporteur Group (or “IRG”) is still responsible for this section of ISO 10646 and Unicode and is
now a formal subcommittee of WG2.

In addition to unifying the set of Chinese characters, the original idea was to further conserve
encoding space by building up things like Korean syllables, rarer Chinese characters, and rarer
accented-letter combinations out of pieces: You’d take more than one code point to represent
them, but each code point value would have a defined meaning independent of the others. Unicode
also had a Private Use Area, which could be used for characters with more specialized applications
(writing systems no longer in common use, for example). A higher-level protocol outside of
Unicode would be used to specify the meaning of private-use code points.

After the initial ISO 10646 ballot failed, talks began between the two groups to merge their
technologies. 10646 retained its 32-bit-ness and its organization into groups, planes, rows, and
cells, but it removed the prohibition against C0 and C1 byte values, opening up the entire 32-bit
space for encoding. (Actually, it turned into a 31-bit space: code point values with the sign bit
turned on were prohibited, making it possible to store an ISO 10646 code point in either a signed
or an unsigned data type without worrying about manging the contents.) The multitude of
encoding forms and schemes was simplified: the ISO 2022-style escape sequences were
eliminated, as were the 1-byte, 3-byte and variable-byte encodings, leaving just UCS-4, a
straightforward representation of the code point values in bytes, and UCS-2, which allowed the
Basic Multilingual Plane to be represented with two-byte code unit values.

Both ISO 10646 and Unicode wound up adding and moving characters around: Unicode was
forced to give up the idea of exclusively building up Korean syllables and rare Chinese characters
out oof pieces, and ISO 10646 moved to a unified Chinese-character repertoire and located it in
the BMP. From this point, in 1991, on forward, Unicode and ISO 10646 have had their character
repertoires and the code points those characters are assigned to symchronized. Unicode 1.1, minus
the unified Chinese repertoire, was the first standard published after the merger. The unified
Chinese repertoire was finished in 1993, at which point the first version of 10646 was published as
ISO/IEC 10646-1:1993. The standard have remained symchronized ever since.

Neither standard went away in the merger; Unicode and ISO 10646 still exist as separate, distinct
standards. But great effort is expended to make sure that the two standards remain in sync with
each other: there’s a lot of overlapping membership on the two governing committees, and both
sides care a lot about staying in sync with each other. From the time of the merger until now, the
character repertoires of the two standards have remained effectively identical.

ISO 10646’s organization into planes eventually had to be adopted into Unicode to accommodate
the rapidly growing character repertoire. Unicode 2.0 added something called the “surrogate
mechanism” (now known as “UTF-16”) to permit representation of characters outside the BMP in
a 16-bit framework (a range of code point values was set aside to be used in pairs to represent
characters outside the BMP). This permitted access to the first seventeen planes of ISO 10646.
WG2 agreed to declare the planes above Plane 16 off limits, and the encoding spaces were also
synchronized.

 A Brief History of Character Encoding

40 Unicode Demystified

So starting in Unicode 2.0, Unicode’s encoding space has expanded from a single 256 u 256 plane,
corresponding to 10646’s BMP, to seventeen 256 u 256 planes, corresponding to Planes 0 to 16 in
ISO 10646. This means a Unicode code point value is now a 21-bit value. Unicode and ISO
10646 both also now define a set of three character encoding forms, UTF-32, UTF-16, and UTF-8,
which map the 21-bit code points into single 32-bit code units, variable-length sequences of 1 or 2
16-bit code units, and variable-length sequences of from 1 to 4 8-bit code units, respectively. They
further go on to define seven encoding schemes (UTF-8 and three flavors each of UTF-16 and
UTF-32, arranged for machine architectures with different byte ordering).

While they now define the same coded character set and character encoding forms and schemes,
Unicode and ISO 10646 differ in content and in how updates are issued. Among the important
differences:

x� ISO 10646 defines a formalized method of declaring which characters are supported by an
implementation; Unicode leaves this to ad-hoc methods.

x� Unicode defines a whole host of semantic information about each of the characters and
provides a whole bunch of implementation guidelines and rules; ISO 10646 basically just lists
the characters and their code point assignments.

x� The Unicode standard can be picked up in any bookstore (and updates between books are
published on the Web); ISO 10646 has to be ordered from an ISO member organization.

x� The ISO 10646 standard is divided into two parts: ISO 10646-1, which defines the basic
architecture and standardizes the code assignments in the Basic Multilingual Plane, and ISO
10646-2, which standardizes the code assignments in the other sixteen planes, which Unicode is
published as a single unified standard.

The other important difference is the way the standards are updated. Unicode has a version-
numbering scheme; minor updates (where the number to the right of the decimal point increases)
are published as technical reports, while major updates result in a whole new edition of the book
being published. New editions of ISO 10646 get published far less often, but amendments and
corrigenda are issued more frequently.

This means that one standard can periodically get ahead of the other. Usually 10646 runs a little
ahead as amendments get adopted—every so often, a bunch of amendments are gathered together
to make a new Unicode version. Still, there’s always a direct mapping from a particular version of
one standard to a particular version of the other. For the versions that have been published to date,
that mapping is:

Unicode 1.0 (pre-merger)

Unicode 1.1 ISO 10646-1:1993

Unicode 2.0 ISO 10646-1:1993, plus amendments 1 thru 7

Unicode 2.1 ISO 10646-1:1993, plus amendments 1 thru 7 and 18

Unicode 3.0 ISO 10646-1:2000 (which was formed from ISO 10646-1:1993 and amendments 1
thru 31)

Unicode 3.1 ISO 10646-1:2000 and ISO 10646-2:2001

 A Brief History of Character Encoding

 A Practical Programmer’s Guide to the Encoding Standard

Unicode 3.2 ISO 10646-1:2000 and amendment 1, plus ISO 10646-2:2001

How the Unicode standard is maintained

Before we go ahead to look at the nuts and bolts of Unicode itself, it’s worth it to take a few
minutes to look at how the Unicode Consortium actually works and the process by wich changes
are made to the standard.15

The Unicode Consortium is a nonprofit corporation located in Silicon Valley. It’s a membership
organization—members pay dues to belong and have a say in the development of the standard.
Membership is pretty expensive, so full voting members are generally corporations, research and
educational institutions, and national governments. (There are also various levels of non-voting
membership, many of which are individuals.)

The Unicode Consortium basically exists to maintain and promote the Unicode standard. The
actual work of maintaing the Unicode standard falls to the Unicode Technical Committee (“UTC”
for short). Each member organization gets to appoint one principal and one or two alternate
representatives to the Unicode Technical Committee. Representatives of non-voting members can
also send people to the UTC who can participatein discussion but not vote. Other people are
sometimes permitted to observe but not participate.

The UTC usually meets four or five times a year to discuss changes and additions to the standard,
make recommendations to various other standard-setting bodies, issue various resolutions, and
occasionally issue new standards. A change to the standard requires a majority vote of the UTC,
and a precedent-setting change requires a two-thirds vote.

The UTC doesn’t take its job lightly; only the most trivial of actions goes through the whole
process in a single UTC meeting. Often proposals are sent back to their submitters for clarification
or referred to various outside organizations for comment. Since many other standards are based on
the Unicode standard, the organizations responsible for these dependent standardsget a prominent
place at the table whenever architectural changes that might affect them are discussed. Additions of
new writing systems (or significant changes to old ones) require input from the affected user
communities. For certain areas, either the UTC or WG2 (or both) maintain standing
subcommittees: the Ideographic Rapporteur Group (IRG) is a WG2 subcommittee charged with
maintaining the unified Chinese-character repertoire, for example.

A lot of work also goes into keeping Unicode aligned with ISO 10646. Because the Unicode
Consortium is an industry body, it has no vote with ISO, but it works closely with the American
national body, Technical Committee L2 of the National Committee on Information Technology
Standards, an ANSI organization. L2 does have a vote with ISO; its meetings are held jointly with
the UTC meetings, and most UTC members are also L2 members.

ISO 10646 is maintained by ISO JTC1/SC2/WG2, which is made up of representatives from
various national bodies, including L2. Many WG2 members are also UTC members. For things
that affect both Unicode and 10646, such as the addition of new characters, both the UTC and
WG2 have to agree—effectively, each organization has a veto over the other’s actions. Only after
both the UTC and WG2 agree on something does it go through the formal ISO voting process. A
typical proposal takes two years to wend its way through the whole process, from submission to

15 The information in this section is drawn from Rick McGowan, “About Unicode Consortium
Procedures, Policies, Stability, and Public Access,” published as an IETF Internet-Draft,
http:/search.ietf.org/internet-drafts/draft-rmcgowan-unicode-procs-

00.txt.

 A Brief History of Character Encoding

42 Unicode Demystified

WG2 or the UTC to being adopted as an international standard (or amendment) by an international
ballot.

The Unicode Consortium maintains two Internet mailing lists: the “unicore” list, which is limited
to Unicode Consortium members, and the “unicode” list, which is open to anybody (go to the
Unicode Web site for information on how to join). A lot of proposals start as information
discussions on one of these two lists and only turn into formal proposals after being thoroughly
hashed out in one of these information discussions. In fact, it’s generally recommended that an
idea be floated on the mailing lists before being submitted formally—this cuts down on the back-
and-forth after the proposal has been sent to the UTC.

Anyone, not just UTC or Unicode Consortium members, can submit a proposal for a change or
addition to the Unicode standard. You can find submission forms and instructions on the Unicode
Web site. Don’t make submissions lightly, however: To be taken seriously, you should understand
Unicode well enough first to make sure the submission makes sense within the architecture and the
constraints Unicode works under, and you’ll need to be prepared to back up the proposal with
evidence of why it’s the right thing to do and who needs it. You also need patience: it takes a long
time for a propsal to get adopted, and shepherding a proposal through the process can be time
consuming.

More background than you really wanted, huh? Well, it’ll be helpful to be armed with it as we
march on ahead to explore the Unicode standard in depth. Onward…

 43

CHAPTER 3 Architecture: Not Just a Pile of
Code Charts

If you’re used to working with ASCII or other similar encodings designed for European languages,
you’ll find Unicode noticeably different from other character encoding standards, and you’ll find that
when you’re dealing with Unicode text, various assumptions you may have made in the past about
how you deal with text don’t hold. If you’ve worked with encodings for other languages, at least
some characteristics of Unicode will be familiar to you, but even then, some pieces of Unicode will
be unfamiliar.

Unicode is more than just a big pile of code charts. To be sure, it includes a big pile of code charts,
but Unicode goes much further than that. It doesn’t just take a bunch of character forms and assign
numbers to them; it adds a wealth of information on what those characters mean and how they are
used.

The main reason for this is that unlike virtually all other character encoding standards, Unicode isn’t
designed for the encoding of a single language or a family of closely related languages; Unicode is
designed for the encoding of all written languages. The current version doesn’t give you a way to
encode all written languages (and in fact, this is such a slippery thing to define that it probably never
will), but it gives you a way to encode an extremely wide variety of languages. The languages vary
tremendously in how they are written, and so Unicode must be flexible enough to accommodate all of
them. This necessitates rules on how Unicode is to be used with each language it works with. Also,
because the same encoding standard can be used for all these different languages, there’s a higher
likelihood that they will be mixed in the same document, requiring rules on how text in the different
languages interacts. The sheer number of characters requires special attention, as does the fact that
Unicode often provides multiple ways of representing the same thing.

The idea behind all the rules is simple: to ensure that a particular sequence of code points will get
drawn and interpreted the same way (or in semantically-equivalent ways) by all systems that handle

 Architecture: Not Just a Pile of Code Charts

44 Unicode Demystified

Unicode text. In other words, it’s not so that there should only be one way to encode “à bientôt,” but
that a particular sequence of code points that represents “à bientôt” on one system will also represent
it on any other system that purports to understand the code points used. This also doesn’t mean that
every system has to handle that sequence of code points exactly the same, but merely that it interpret
it as meaning the same thing. In English, for example, there are tons of different typographical
conventions you can follow when you draw the word “carburetor,” but someone who reads English
would still interpret all of them as the word “carburetor.” Any Unicode-based system has wide
latitude in how it deals with a sequence of code points representing the word “carburetor,” as long as
it still treats it as the word “carburetor.”

All of this means that there’s a lot more that goes into supporting Unicode text than supplying a font
with the appropriate character forms for all the characters. The whole purpose of this book is to
explain all these other things you have to be aware of (or at least might have to be aware of). This
chapter will highlight all the things which are special about Unicode and attempt to tie them together
into a coherent architecture.

The Unicode Character-Glyph Model

The first and most important thing to understand about Unicode is what is known as the character-
glyph model. Up until the introduction of the Macintosh in 1984, text was usually displayed on
computer screens in a fairly simple fashion. The screen would be divided up into a number of
equally-sized display cells. The most common video mode on the old IBM PCs, for example, had 25
rows of 80 display cells each. There was a video buffer in memory that consisted of 2,000 bytes, one
for each display cell. The video hardware would contain a character generator chip that contained a
bitmap for each possible byte value, and this chip was used to map from the character codes in
memory to a particular set of lit pixels on the screen.

Handling text was simple. There were 2,000 possible locations on the screen, and 256 possible
characters to put in them. All the characters were the same size, and were laid out regularly from the
left to the right across the screen. There was a one-to-one correspondence between character codes
stored in memory and visible characters on the screen, and there was a one-to-one correspondence
between keystrokes and characters.

We don’t live in that world anymore. One reason is the rise of the WYSIWYG (“what you see is
what you get” text editor, where you can see on the screen exactly what you want to see on paper,
meaning video displays have to be able to handle proportionally-spaced fonts, the mixing of different
typefaces, sizes, and styles, and the mixing of text with pictures and other pieces of data. The other
reason is that the old world of simple video-display terminals can’t handle many languages, which
are more complicated to write than the Latin alphabet is.

This means there’s been a shift away from translating character codes to pixels in hardware and
toward doing it in software. And the software for doing this has become considerably more
sophisticated.

The main consequence of this is that on modern computer systems, Unicode or no, there is no longer
always a nice simple one-to-one relationship between character codes stored in your computer’s
memory and actual shapes drawn on your computer’s screen. This is important to understand because
Unicode requires this—a Unicode-compatible system cannot be designed to assume a one-to-one

 The Unicode Character-Glyph Model

 A Practical Programmer’s Guide to the Encoding Standard

correspondence between code points in the backing store and marks on the screen (or on paper), or
between code points in the backing store and keystrokes in the input.16

So let’s start by defining two concepts: character and glyph. A character is an atomic unit of text with
some semantic identity; a glyph is a visual representation of that character.

Let’s consider an analogy. Consider the following examples:

13 thirteen

$0C

1.3 × 101
dreizehn

treize
??

[The picture got mangled in the pasting process—the ?? is supposed to be native Arabic digits.]

These are eleven different visual representations of the number 13. The underlying semantic is the
same in every case: the concept “thirteen.” These are just different ways of depicting the concept of
“thirteen.”

Now consider the following:

g g g J

Each of these is a different presentation of the Latin lowercase letter g. To go back to our words,
these are all the same character (the lowercase letter g), but four different glyphs.

Of course, I got these four glyphs by taking the small g out of four different typefaces. That’s
because there’s generally only one glyph per character in a Latin typeface. But in other writing
systems, that isn’t true. The Arabic alphabet, for example, joins cursively even when printed. This
isn’t an optional feature, as it is with the Latin alphabet; it’s the way the Arabic alphabet is always
written.

� � � �

16 Technically, if you restrict the repertoire of characters your system supports enough, you actually can make

this assumption, but at that point, you’re likely back to being a fairly simplistic English-only system, in

which case why bother with Unicode in the first place?

 Architecture: Not Just a Pile of Code Charts

46 Unicode Demystified

These are four different forms of the Arabic letter heh. The first is how the letter looks in isolation.
The second is how it looks when it joins only to a letter on its right (usually at the end of a word).
The third is how it looks when it joins to letters on both sides in the middle of a word. And the last
form is how the letter looks when it joins to a letter on its left (usually at the beginning of a word).

Unicode only provides one character code for this letter,17 and it’s up to the code that draws it on the
screen (the text rendering process) to select the appropriate glyph depending on context. The process
of selecting from among a set of glyphs for a character depending on the surrounding characters is
called contextual shaping, and it’s required in order to draw many writing systems correctly.

There’s also not always a one-to-one mapping between character and glyphs. Consider the following
example:

¿
This, of course, is the letter f followed by the letter i, but it’s a single glyph. In many typefaces, if you
put a lowercase f next to a lowercase i, the top of the f tends to run into the dot on the i, so often the
typeface includes a special glyph called a ligature that represents this particular pair of letters. The
dot on the i is incorporated into the overhanging arch of the f, and the crossbar of the f connects to
the serif on the top of base of the i. Some desktop-publishing software and some high-end fonts will
automatically substitute this ligature for the plain f and i.

In fact, some typefaces include additional ligatures. Other forms involving the lowercase f are
common, for example. You’ll often see ligatures for a-e and o-e pairs (useful for looking erudite
when using words like “archæology” or “œnophile”), although software rarely forms these
automatically (æ and œ are actually separate letters in some languages, rather than combinations of
letters), and some fonts include other ligatures for decorative use.

Again, though, ligature formation isn’t just a gimmick. Consider the Arabic letter lam () and the

Arabic letter alef (). When they occur next to each other, you’d expect them to appear like this if
they followed normal shaping rules:

But they actually don’t. Instead of forming a U shape, the vertical strokes of the lam and the alef
actually cross, forming a loop at the bottom like this:

17 Technically, this isn’t true—Unicode actually provides separate codes for each glyph in Arabic, although

they’re only included for backwards compatibility. They’re called “presentation forms” and encoded in a

separate numeric range to emphasize this. Implementations generally aren’t supposed to use them. Almost all

other writing systems that have contextual shaping don’t have separate presentation forms in Unicode.

 The Unicode Character-Glyph Model

 A Practical Programmer’s Guide to the Encoding Standard

Unlike the f and i in English, these two letters always combine together when they occur together.
It’s not optional. The form that looks like a U is just plain wrong. So ligature formation is a required
behavior for writing many languages.

A single character may also split into more than one glyph. This happens in some Indian languages,
such as Tamil. It’s very roughly analogous to the use of the silent e in English. The e at the end of
“bite,” for example, doesn’t have a sound of its own; it merely changes the way the i is pronounced.
Since the i and the e are being used together to represent a single vowel sound, you could think of
the them as two halves of a single vowel character. This is sort of what happens in languages like
Tamil. Here’s an example of a Tamil split vowel:

���

This looks like three letters, but it’s really only two. The middle glyph is a consonant, the letter .

The vowel ���is shown with a mark on either side of the . This kind of thing is required for the

display of a number of languages.

So there’s not always a simple straightforward one-to-one mapping between characters and glyphs.
Unicode assumes the presence of a character rendering process capable of handling the sometimes
complex mapping from characters to glyphs. It doesn’t provide separate character codes for different
glyphs that represent the same character, or for ligatures representing multiple characters.

Exactly how this all works varies from writing system to writing system (and to a lesser degree from
language to language within a writing system). For all the details on just how Unicode deals with the
peculiar characteristics of each writing system it encodes, see Section II (Chapters 7 to 12).

Character positioning

Another assumption that has to go is the idea that characters are laid out in a neat linear progression
running in lines from left to right. In many languages, this isn’t true.

Many languages also make use of various kinds of diacritical marks which are used in combination
with other characters to indicate pronunciation. Exactly where the marks get drawn can depend on
what they’re being attached to. For example, look at these two letters:

ä Ä
Each of these examples is an a with an umlaut placed on top of it. But the umlaut needs to be
positioned higher when attached to the capital A than when attached to the small a.

This can get more complicated when multiple marks are attached to the same character. In Thai, for
example, a consonant with a tone mark might look like this:

 Architecture: Not Just a Pile of Code Charts

48 Unicode Demystified

°o�

But if the consonant also has a vowel mark attached to it, the tone mark has to move out of the way.
It actually moves up and gets smaller when there’s a vowel mark:

°¹Ê�

Mark positioning can get quite complicated. In Arabic, there’s a whole host of dots and marks that
can appear along with the actual letters. There are dots that are used to differentiate the consonants
from one another when they’re written cursively, there are diacritical marks that modify the
pronunciation of the consonants, there may be vowel marks (Arabic generally doesn’t use letters for
vowels—they’re either left out or shown as marks attached to consonants), and there may also be
reading or chanting marks attached to the letters. In fact, some Arabic calligraphy includes other
marks that are purely decorative. There’s a hierarchy of how these various marks are placed relative
to the letters that can get quite complicated when all the various marks are actually being used.

Unicode expects, again, that a text rendering process will know how to position marks appropriately.
It generally doesn’t encode mark position at all—it adopts a single convention that marks follow in
memory the characters they attach to, but that’s it.18

But it’s not just diacritical marks that may have complicated positioning. Sometimes the letters
themselves do. For example, many Middle Eastern languages are written from right to left rather
than from left to right (in Unicode, the languages that use the Arabic, Hebrew, Syriac, and Thaana
alphabets are written from right to left). Unicode stores these characters in the order they’d be spoken
or typed by a native speaker of one of the relevant languages. This is known as logical order.

Logical order means that the “first” character in character storage is the character that a native user of
that character would consider “first.” For a left-to-right writing system, the “first” character is drawn
furthest to the left. (For example, the first character in this paragraph is the letter L, which is the
character furthest to the left on the first line.) For a right-to-left writing system, the “first” character
would be drawn furthest to the right. For a vertically-oriented writing system, such as that used to
write Chinese, the “first” character is drawn closest to the top of the page.

This is in contrast with “visual order,” which assumes that all characters are drawn progressing in the
same direction (usually left to right). When text is stored in visual order, text that runs counter to the
direction assumed (i.e., right-to-left text) is stored in memory in the reverse of the order in which it
was typed.

18 The one exception to this rule has to do with multiple marks attached to a single character. In the absence of

language-specific rules governing how multiple marks attach to the same character, Unicode adopts a

convention that marks that would otherwise collide radiate outward from the character they’re attached to in

the order they appear in storage. This is covered in depth in Chapte 4.

 Character Positioning

 A Practical Programmer’s Guide to the Encoding Standard

Unicode doesn’t assume any bias in layout direction. The characters in a Hebrew document are
stored in the order they are typed, and Unicode expects that the text rendering process will know that
because they’re Hebrew letters, the first one in memory should be positioned the furthest to the right,
with the succeeding characters progressing leftward from there.

This gets really interesting when left-to-right text and right-to-left text mix in the same document.
Say you have an English sentence with a Hebrew phrase embedded into the middle of it:

Avram said and smiled.

Even though the dominant writing direction of the text is from left to right, the first letter in the

Hebrew phrase () still goes to the right of the other Hebrew letters—the Hebrew phrase still reads
from right to left. The same thing can happen even when you’re not mixing languages: in Arabic and
Hebrew, even though the dominant writing direction is from right to left, numbers are still written
from left to right.

This can get even more fun when you throw in punctuation. Letters have inherent directionality;
punctuation doesn’t. Instead, punctuation marks take on the directionality of the surrounding text. In
fact, some punctuation marks (such as the parentheses) actually change shape based on the
directionality of the surrounding text (this is called mirroring, since the two shapes are usually mirror
images of each other). Mirroring is another example of how Unicode encodes meaning rather than
appearance—the code point encodes the meaning (“starting parenthesis”) rather than the shape
(which can be either ‘(’ or ‘)’ depending on the surrounding text).

Dealing with mixed-directionality text can get quite complicated, not to mention ambiguous, so
Unicode includes a set of rules that govern just how text of mixed directionality is to be arranged on
a line. The rules are rather involved, but are required for Unicode implementations that claim to
support Hebrew and Arabic.19

The writing systems used for the various languages used on the Indian subcontinent and in Southeast
Asia have even more complicated positioning requirements. For example, the Devanagari alphabet
used to write Hindi and Sanskrit treats vowels as marks that get attached to consonants (which get
treated as “letters”). But a vowel may attach not just to the top or bottom of the consonant, but also to
the left or right side. Text generally runs left to right, but when you get a vowel that attaches to the
left-hand side of its consonant, you get the effect of a character appearing “before” (i.e., to the left of)
the character it logically comes “after.”

+� �=�

In some alphabets, a vowel can actually attach to the left-hand side of a group of consonants,
meaning this “reordering” may actually involve more than just two characters switching places.
Also, in some alphabets, such as the Tamil example we looked at earlier, a vowel might actually
appear on both the left- and right-hand sides of the consonant it attaches to (this is called a “split
vowel”).

19 This set of rules, the Unicode Bidirectional Text Layout Algorithm, is explained in a lot more detail later in

this book: a high-level overview is in Chapter 8, and a look at implementation strategies is in Chapter 16.

 Architecture: Not Just a Pile of Code Charts

50 Unicode Demystified

Again, Unicode stores the characters in the order they’re spoken or typed; it expects the display
engine to do this reordering. For more on the complexities of dealing with the Indian scripts and
their cousins, see Chapter 9.

Chinese, Japanese, and Korean can be written either horizontally or vertically. Again, Unicode stores
them in logical order, and again, the character codes encode the semantics. So many of the
punctuation marks used with Chinese characters have a different appearance when used with
horizontal text than when used with vertical text (some are positioned differently, some are rotated
ninety degrees). Horizontal scripts are sometimes rotated ninety degrees when mixed into vertical
text and sometimes not, but this distinction is made by the rendering process and not by Unicode.

Japanese and Chinese text may include annotations (called “ruby” or “furigana” in Japanese) that
appear in between the lines of normal text. Unicode includes ways of marking text as ruby and leaves
it up to the rendering process to determine how to draw it.

For more on vertical text and ruby, see Chapter 10.

The Principle of Unification

The bottom-line philosophy you should draw from the discussions on the character-glyph model and
on character positioning is that Unicode encodes semantics, not appearances. In fact, the Unicode
standard specifically states that the pictures of the characters in the code charts are there for
illustrative purposes only—the pictures of the characters are there to help clarify the meaning of the
character code, not to specify the appearance of the character with that code.

The philosophy that Unicode encodes semantics and not appearances also undergirds the principle
that Unicode is a plain-text encoding, which we discussed in Chapter 1 . The fact that an Arabic letter
looks different depending on the letters around it doesn’t change what letter it is, and thus doesn’t
justify different codes for the different shapes. The fact that the letters lam and alef combine into a
single mark when written doesn’t change the fact that the word still contains the letters lam and alef
in succession. The fact that text from some language might be combined on the same line with text
from another language whose writing system runs the opposite direction doesn’t justify storing either
language’s text in some order other than the order in which the characters are typed or spoken. In all
of these cases, Unicode encodes the underlying meaning and leaves it up to the process that draws it
to be smart enough to do so properly.

The philosophy of encoding semantics rather than appearance also leads to another important
Unicode principle: the principle of unification.

Unlike most character encoding schemes, Unicode aims to be comprehensive. It aims to provide
codes for all the characters in all of the world’s written languages. It also aims to be a superset of all
other character encoding schemes (or at least the vast majority). By being a superset, Unicode can be
an acceptable substitute for any of those other encodings (technical limitations aside, anyway), and it
can also serve as a pivot point for processes converting text between any of the other encodings.

Other character encoding standards are Unicode’s chief source of characters. The designers of
Unicode aimed to include all the characters from every computer character encoding standard in
reasonably widespread use at the time Unicode was designed, and have continued to incorporate

 The Principle of Unification

 A Practical Programmer’s Guide to the Encoding Standard

characters from other standards as it has evolved, either as important new standards emerged, or as
the scope of Unicode widened to include new languages. The designers of Unicode drew characters
from every international and national standard they could get their hands on, as well as code pages
from all the big computer and software manufacturers, telegraphy codes, various other corporate
standards, and even popular fonts, in addition to all the non-computer sources they used. As an
example of their thoroughness, Unicode includes code-point values for the glyphs the old IBM PC
code pages would show for certain ASCII control characters. As another example, Unicode assigns
values to the glyphs from the popular Zapf Dingbats typeface.

This wealth of sources led to an amazingly extensive repertoire of characters, but also led to a lot of
redundancy. If every character code from every source encoding retained its identity in Unicode (say,
Unicode kept the original code values and just padded them all out to the same length and prefixed
them with some identifier for the source encoding), they’d never all fit in a 16-bit code space. You’d
also wind up with numerous alternate representations for things that anyone with a little common
sense would consider to be the same thing.

For starters, almost every language has several different encoding standards. For example, there
might be one national standard for each country where the language is spoken, plus one or more
corporate standards devised by computer manufacturers selling into that market. Think about ASCII
and EBCDIC in American English, for example. The capital letter A encoded by ASCII (as 0x41) is
the same capital letter A that is encoded by EBCDIC (as 0xC1), so it makes little sense to have these
two different source values map to different codes in Unicode. Then Unicode would have two
different values for the letter A. So instead, Unicode unifies these two character codes and says that
both sources map to the same Unicode value. Thus, the letter A is encoded only once in Unicode (as
U+0041), not twice.

In addition to there being multiple encoding standards for most languages, most languages share their
writing system with at least one other language. The German alphabet is different from the English
alphabet—it adds ß and some other letters, for example—but they’re really both just variations on the
Latin alphabet. We need to make sure that the letter ß is encoded, but we don’t need to create a
different letter k for German—the same letter k we use in English will do just fine.

A truly vast number of languages use the Latin alphabet. Most omit some letters from what English
speakers know as the alphabet, and most add some special letters of their own. Just the same, there’s
considerable overlap between their alphabets. The characters that overlap between languages are
only encoded once in Unicode, not once for every language that uses them. For example, both
Danish and Norwegian add the letter ø to the Latin alphabet, but the letter ø is only encoded once in
Unicode.

Generally, characters are not unified across writing-system boundaries. For instance, the Latin letter
%��WKH�&\ULOOLF�OHWWHU� �DQG�WKH�*UHHN�OHWWHU� �DUH�QRW�XQLILHG��HYHQ�WKRXJK�WKH\�ORRN�WKH�VDPH�DQG�
KDYH�WKH�VDPH�KLVWRULFDO�RULJLQV��7KLV�LV�SDUWLDOO\�EHFDXVH�WKHLU�ORZHUFDVH�IRUPV�DUH�DOO�GLIIHUHQW��E�� ��
DQG� ��UHVSHFWLYHO\���EXW�PRVWO\�EHFDXVH�WKH�GHVLJQHUV�RI�8QLFRGH�GLGQ¶W�ZDQt to unify across writing-
system boundaries.20 It made more sense to keep each writing system distinct.

20 There are a few exceptions to this base rule: One that comes up often is Kurdish, which when written with the

Cyrillic alphabet also uses the letters Q and W from the Latin alphabet. Since the characters are a direct

borrowing from the Latin alphabet, they weren’t given counterparts in Unicode’s version of the Cyrillic

alphabet, a decision which still arouses debate.

 Architecture: Not Just a Pile of Code Charts

52 Unicode Demystified

So the basic principle is that wherever possible, Unicode unifies character codes from its various
source encodings, whenever they can be demonstrated beyond reasonable doubt to refer to the same
character. But there’s a big exception: respect for existing practice. It was important to Unicode’s
designers (and probably a big factor in Unicode’s success) for Unicode to be interoperable with the
various encoding systems that came before it. In particular, for a subset of so-called “legacy”
encodings, Unicode is specifically designed to preserve round-trip compatibility. That is, if you
convert from one of the legacy encodings to Unicode and then back to the legacy encoding, you
should get the same thing you started with. This means that there are many examples of characters
that would have been unified in Unicode that aren’t because of the need to preserve round-trip
compatibility with a legacy encoding (or sometimes simply to conform to standard practice).

As an example, the Greek lowercase letter sigma has two forms. is used in the middle of words,

and is used at the ends of words. As with the letters of the Arabic alphabet, this is an example of
two different glyphs for the same letter. Unicode would normally just have a single code point for the
lowercase sigma, but because all the standard encodings for Greek give different character codes to
the two different versions of the lowercase sigma, Unicode has to as well. The same thing happens in
Hebrew, where the word-ending forms of several letters have their own code point values in Unicode.

If a letter does double duty as a symbol, this generally isn’t sufficient grounds for different character
codes HLWKHU��7KH�*UHHN�OHWWHU�SL�� ���IRU�H[DPSOH��LV�VWLOO�WKH�*UHHN�OHWWHU�SL�HYHQ�ZKHQ�LW¶V�EHLQJ�XVHG�
as the symbol of the ratio between a circle’s diameter and its circumference, so it’s still represented
with the same character code. There are exceptions to this, however: the Hebrew letter aleph () is
used in mathematics to represent the transfinite numbers, and this use of the letter aleph is given a
separate character code. The rationale here is that aleph-as-a-mathematical-symbol is a left-to-right
character like all the other numerals and mathematical symbols, while aleph-as-a-letter is a right-to-
left character. The letter Å is used in physics as the symbol of the Angstrom unit. Å-as-the-Angstrom-
sign is given its own character code because some of the variable-length Japanese encodings did.

The business of deciding which characters can be unified can be complicated. Looking different is
definitely not sufficient grounds by itself. For instance, the Arabic and Urdu alphabets have a very
different look, but the Urdu alphabet is really just a particular calligraphic or typographical variation
of the Arabic alphabet. The same set of character codes in Unicode is used to represent both Arabic
and Urdu. The same thing happens with Greek and Coptic,21 modern and old Cyrillic (the original
Cyrillic alphabet had different letter shapes and a bunch of letters that have since disappeared), and
Russian and Serbian Cyrillic (in italicized fonts, there are some letters that have a different shape in
Serbian from their Russian shape to avoid confusion with italicized Latin letters).

But by far the biggest, most complicated, and most controversial instance of character unification in
Unicode is the Han ideographs. The characters originally developed to write the various Chinese
languages, often called “Han characters” after the Han Dynasty, were also adopted by various other
peoples in East Asia to write their languages, and the Han characters are still used (in combination
with other characters) to write Japanese (who call them kanji) and Korean (who call them hanja).

The problem is that over the centuries, many of the Han characters have developed different forms in
the different places where they’re used. Even within the same written language—Chinese—you have
different forms: In the early 1960s, the Mao regime in the People’s Republic of China standardized

21 The unification of Greek and Coptic has always been controversial, since they’re generally considered to be

different alphabets, rather than just different typographical versions of the same alphabet. It’s quite possible

that Greek and Coptic will be disunified in a future Unicode version.

 The Principle of Unification

 A Practical Programmer’s Guide to the Encoding Standard

on simplified versions of many of the more complicated characters, but the traditional forms are still
used in Taiwan and Hong Kong.

So the same ideograph can have four different forms: one each for Traditional Chinese, Simplified
Chinese, Japanese, and Korean (and when Vietnamese is written with Chinese characters, you might
have a fifth form). Worse yet, it’s very often not clear what really counts as the “same ideograph”
between these languages. Considerable linguistic research went into coming up with a unified set of
ideographs for Unicode that can be used for both forms of written Chinese, Japanese, Korean, and
Vietnamese. In fact, without this, it would have been impossible to fit Unicode into a 16-bit code
space.

[One popular misconception about Unicode, by the way, is that Simplified and Traditional Chinese
are unified. This isn’t true; in fact, it’s impossible, since the same Simplified Chinese character
might be used as a stand-in for several different Traditional Chinese characters. Thus, most of the
time, Simplified and Traditional Chinese characters get different code point values in Unicode. Only
small differences that could be reliably categorized as font-design differences, analogous to the
difference between Arabic and Urdu, were unified. For more on Han unification, see Chapter 10.]

In all of these situations where multiple glyphs are given the same character code, it either means the
difference in glyph is simply the artistic choice of a type designer (for example, whether the dollar
sign has one vertical stroke or two), or it’s language dependent and it’s expected a user will use an
appropriate font for his language (or some mechanism outside Unicode’s scope, such as automatic
language detection or some kind of tagging scheme, would be used to determine the language and
select an appropriate font).

The opposite situation—different character codes being represented by the same glyph—can also
happen. One notable example is the apostrophe (’). There’s one character code for this glyph when
it’s used as a punctuation mark and another when it’s used as a letter (it’s used in some languages to
represent a glottal stop, such as in “Hawai’i”).

Alternate-glyph selection

One interesting blurring of the line that can happen from time to time is the situation where a
character with multiple glyphs needs to be drawn with a particular glyph in a certain situation, the
glyph to use can’t be algorithmically derived, and the particular choice of glyph needs to be
preserved even in plain text.

Unicode has taken different approaches to solving this problem in different situations. Much of the
time, the alternate glyphs are just given different code points. For example, there are five Hebrew
letters that normally have a different shape when they appear at the end of a word from the shape
they normally have. But in foreign words, these letters keep their normal shape even when they
appear at the end of a word. Unicode just gives the regular and “final” versions of the letters
different code point values. Examples like this can be found throughout Unicode.

Two special characters, U+200C ZERO WIDTH NON-JOINER (“ZWNJ” for short) and U+200D
ZERO WIDTH JOINER (“ZWJ” for short), can be used as hints of which glyph shape is preferred in
a particular situation. The ZWNJ prevents formation of a cursive connection or ligature in situations
where one would normally happen, and the ZWJ causes a ligature or cursive connection where one

 Architecture: Not Just a Pile of Code Charts

54 Unicode Demystified

would otherwise not occur. These two characters can be used to override the default choice of
glyphs.

The Unicode Mongolian block takes yet another approach: Many characters in the Mongolian block
have or cause special shaping behavior to happen, but there are still times when the proper shape for
a particular letter in a particular word can’t be determined algorithmically (except maybe with an
especially sophisticated algorithm that recognized certain words). So the Mongolian block includes
three “variation selectors,” characters that have no appearance of their own, but change the shape of
the character that precedes them in some well-defined way.

Beginning in Unicode 3.2, the variation-selector approach has been extended to all of Unicode.
Unicode 3.2 introduces sixteen general-purpose variation selectors, which work the same way as the
Mongolian variation selectors: They have no visual presentation of their own, but act as “hints” to the
rendering process that the preceding character should be drawn with a particular glyph shape. The
list of allowable combinations of regular charactera and variation selectors is given in a file called
StandardizedVariants.html in the Unicode Character Database.

For more information on the joiner, non-joiner, and variation selectors, see Chapter 12.

Multiple Representations

Having now talked about the importance of the principle of unification, we have to talk about the
opposite property, the fact that Unicode provides alternate representations for many characters.

As we saw earlier, Unicode’s designers placed a high premium on respect for existing practice and
interoperability with existing character encoding standards, in many cases sacrificing some measure
of architectural purity in pursuit of the greater good (i.e., people actually using Unicode).

This means that Unicode includes code-point assignments for a lot of characters that were included
solely or primarily to allow for round-trip compatibility with some legacy standard, a broad category
of characters known more or less informally as compatibility characters. Exactly which characters
are compatibility characters is somewhat a matter of opinion, and there isn’t necessarily anything
special about the compatibility characters that flags them as such, But there’s an important subset of
compatibility characters that are called out as special because they have alternate, preferred,
representations in Unicode. Since the preferred representations usually consist of more than one
Unicode code point, these characters are said to decompose into multiple code points.

There are two broad categories of decomposing characters: those with canonical decompositions
(these characters are often referred to as “precomposed characters” or “canonical composites”) and
those with compatibility decompositions (the term “compatibility characters” is frequently used to
refer specifically to these characters; a more specific term, “compatibility composite” is probably
better). A canonical composite can be replaced with its canonical decomposition with no loss of
data: the two representations are strictly equivalent, and the canonical decomposition is the
character’s preferred representation.22

22 I have to qualify the word “preferred” here slightly. For characters whose decompositions consist of a single

other character (so-called “singleton decompositions”), this is true. For multiple-character decompositions,

there’s nothing that necessarily makes them “better” than the precomposed forms, and you can generally use

either representation. Decomposed representations are somewhat easier to deal with in code, though, and

 Multiple Representations

 A Practical Programmer’s Guide to the Encoding Standard

Most canonical composites are a combination of a “base character” and one or more diacritical
marks. For example, we talked about the character positioning rules and how the rendering engine
needs to be smart enough so that when it sees, for example, an a followed by an umlaut, it draws the
umlaut on top of the a, like so: ä. The thing is, much of the time, normal users of these characters
don’t see them as the combination of a base letter and an accent mark. A German speaker sees ä
simply as “the letter ä” and not as “the letter a with an umlaut on top.” So a vast number of letter-
mark combinations are encoded using single character codes in the various source encodings, and
these are very often more convenient to work with than the combinations of characters would be.
The various European character-encoding standards follow this pattern, for example, assigning
character codes to letter-accent combinations like é, ä, å, û, and so on, and Unicode follows suit.

Because a canonical composite can be mapped to its canonical decomposition without losing data,
the original character and its decomposition are freely interchangeable. The Unicode standard
enshrines this principle in law: On systems that support both the canonical composites and the
combining characters that are included in their decompositions, the two different representations of
the same character (composed and decomposed) are required to be treated as identical. That is, there
is no difference between ä when represented by two code points and ä when represented with a single
code point. In both cases, it’s still the letter ä.

This means that most Unicode implementations have to be smart enough to treat the two
representations as equivalent. One way to do this is by normalizing a body of text to always prefer
one of the alternate representations. The Unicode standard actually provides four different
normalized forms for Unicode text.

All of the canonical decompositions involve one or more combining marks, a special class of
Unicode code points representing marks that combine graphically in some way with the character that
precedes them. If a Unicode-compatible system seems an a followed by a combining umlaut, it
draws the umlaut on top of the a. This can be a little more inconvenient than just using a single code
point to represent the a-umlaut combination, but it does give you an easy way to represent a letter
with more than one mark attached to it, such as you find in Vietnamese or some other languages: just
follow the base character with multiple combining marks.

But this means you can get into trouble with equivalence testing even without having composite
characters. There are plenty of cases where the same character can be represented multiple ways by
putting the various combining marks in different orders. Sometimes, the difference in ordering can be
significant (if two combining marks attach to the base character in the same place, the one that comes
first in the backing store is drawn closest to the character and the others are moved out of the way),
but in many cases, the ordering isn’t significant—you get the same visual result whatever order the
combining marks come in. In cases like this, the different forms are all legal and are required—once
again—to be treated as identical. But the Unicode standard provides for a canonical ordering of
combining marks to aid in testing sequences like these for equivalence.

The other class of decomposing characters is compatibility composites, characters with compatibility
decompositions23. A character can’t be mapped to its compatibility decomposition without losing
data. For example, sometimes alternate glyphs for the same character are given their own character

many processes on Unicode text are based on mapping characters to their canonical decompsitions, so

they’re “preferred” in that sense. We’ll untangle all of this terminology in Chapter 4.
23 There are a few characters in Unicode whose canonical decompositions include characters with
compatibility decompositions. The Unicode standard considers these characters to be both canonical
composites and compatibility composites.

 Architecture: Not Just a Pile of Code Charts

56 Unicode Demystified

codes. In these cases, there will be a preferred Unicode code point value representing the character,
independent of glyph. Then there will be code point values representing the different glyphs. These
are called presentation forms. The presentation forms have mapping back to the regular character
they represent, but they’re not simply interchangeable; the presentation forms refer to specific glyphs,
while the preferred character maps to whatever glyph is appropriate for the context. In this way, the
presentation forms carry more information than the canonical forms. The most notable set of
presentation forms are the Arabic presentation forms, where each standard glyph for each Arabic
letter, plus a wide selection of ligatures, has its own Unicode character code. Some rendering engines
use presentation forms as an implementation detail, but normal users of Unicode are discouraged
from using them and urged to use the non-decomposing characters instead. The same goes for the
smaller set of presentation forms for other languages.

Another interesting class of compatibility composites are those that represent a particular stylistic
variant of a particular character. These are similar to presentation forms, but instead of representing
particular glyphs that are normally contextually selected, they represent particular glyphs that are
normally specified through the use of additional styling information (remember, Unicode only
represents plain text, not styled text). Examples include superscripted or subscripted numerals, or
letters with special styles applied to them. For example the Planck constant is represented using an
italicized letter h. Unicode includes a compatibility character code for the symbol for the Planck
constant, but you could also just use a regular h in conjunction with some non-Unicode method of
specifying that it’s italicized. Characters with adornments such as surrounding circles also fall into
this category, as do the abbreviations sometimes used in Japanese typesetting that consist of several
characters arranged in a square.

For compatibility composites, the Unicode standard not only specifies the characters they decompose
to, but some additional information intended to explain what additional non-text information is
needed to express exactly the same thing.

Canonical and compatibility decompositions, combining characters, normalized forms, canonical
accent ordering, and various related topics are all dealt with in excruciating detail in Chapter 4.

Flavors of Unicode

Let’s take a minute to go back over the character-encoding terms from Chapter 2:

x� An abstract character repertoire is just a collection of characters.

x� A coded character set maps the characters in an abstract repertoire to abstract numeric values or
positions in a table. These abstract numeric values are called code points. (For a while, the
Unicode 2.0 standard was referring to code points as a “Unicode scalar values.”)

x� A character encoding form maps code points to series of fixed-length bit patterns known as
code units. (For a while, the Unicode 2.0 standard was referring to code units as “code points.”)

x� A character encoding scheme, also called a “serialization format,” maps code units to bytes in a
sequential order. (This may involve specifying a serialization order for code units that are more
than one byte long, or specifying a method of mapping code units from more than one encoding
form into bytes, or both.)

x� A transfer encoding syntax is an additional transformation that may be performed on a
serialized sequence of bytes to optimize it for some situation (transforming a sequence of eight-bit
byte values for transmission through a system that only handles seven-bit values, for example).

 Flavors of Unicode

 A Practical Programmer’s Guide to the Encoding Standard

For most Western encoding standards, the transforms in the middle (i.e., from code points to code
units and from code units to bytes) are so straightforward that they’re never thought of as distinct
steps. The standards in the ISO 8859 family, for example define coded character sets. Since the
code point values are a byte long already, the character encoding forms and character encoding
schemes used with these coded character sets are basically null transforms: You use the normal
binary representation of the code point values as code units, and you don’t have to do anything to
convert the code units to bytes. (Although ISO 2022 does define a character encoding scheme that
lets you mix characters from different coded character sets in a single serialized data stream.)

The East Asian character standards make these transforms more explicit: JIS X 0208 and JIS X 0212
define coded character sets only: they just map each character to row and column numbers in a table.
You then have a choice of character encoding schemes you can use to convert the row and column
numbers into serialized bytes: Shift-JIS, EUC-JP, and ISO 2022-JP are all examples of character
encoding schemes used with the JIS coded character sets.

The Unicode standard makes each layer in this hierarchy explicit. It comprises:

x� An abstract character repertoire that includes characters for an extremely wide variety of writing
systems.

x� A single coded character set that maps each of the characters in the abstract repertoire to a 21-bit
value. (The 21-bit value can also be thought of as a coordinate in a three-dimensional space: a 5-
bit plane number, an 8-bit row number, and an 8-bit cell number.)

x� Three character encoding forms:

x� UTF-32, which represents each 21-bit code point value as a single 32-bit code unit. UTF-
32 is optimized for systems where 32-bit values are easier or faster to process and space
isn’t at a premium.

x� UTF-16, which represents each 21-bit code point value as a sequence of one or two 16-bit
code units. The vast majority of characters are represented with single 16-bit code units,
making it a good general-use compromise between UTF-32 and UTF-8. UTF-16 is the
oldest Unicode encoding form, and is the form specified by the Java and Javscript
programming languages and the XML Document Object Model APIs.

x� UTF-8, which represents each 21-bit code point value as a sequence of from one to four 8-
bit code units. The ASCII characters have exactly the same representation in UTF-8 as they
do in ASCII, and UTF-8 is optimized for byte-oriented systems or systems where backward
compatibility with ASCII is important. For European languages, UTF-8 is also more
compact than UTF-16, although for Asian languages UTF-16 is more compact than UTF-8.
UTF-8 is the default encoding form for a wide variety of Internet standards.

These encoding forms are often referred to as Unicode Transformation Formats (hence the “UTF”
abbreviation).

x� Seven character encoding schemes: UTF-8 is a character encoding scheme unto itself because it
uses 8-bit code units. UTF-16 and UTF-32 each have three associated encoding schemes:

x� A “big-endian” version that serializes each code unit most-significant-byte first

x� A “little-endian” version that serializes each code unit least-significant-byte first

x� A self-describing version that uses an extra sentinel value at the beginning of the stream,
called the “byte order mark,” to specify whether the code units are in big-endian or little-
endian order.

In addition, there are some allied specifications that aren’t officially part of the Unicode standard:

 Architecture: Not Just a Pile of Code Charts

58 Unicode Demystified

x� UTF-EBCDIC, an alternate version of UTF-8 designed for use on EBCDIC-based systems that
maps Unicode code points to series of from one to five 8-bit code units.

x� UTF-7, a now-mostly-obsolete character encoding scheme for use with 7-bit Internet standards
that maps UTF-16 code units to sequences of 7-bit values.

x� Standard Compression Scheme for Unicode (SCSU), a character encoding scheme that maps a
sequence of UTF-16 code units to a compressed sequence of bytes, providing a serialized
Unicode representation that is generally as compact for a given language as that language’s legacy
encoding standards and optimizes Unicode text for further compression with byte-oriented
compression schemes such as LZW.

x� Byte-Order Preserving Compression for Unicode (BOCU), another compression format for
Unicode.

We’ll delve into the details of all of these encoding forms and schemes in Chapter 6.

Character Semantics

Since Unicode aims to encode semantics rather than appearances, simple code charts don’t suffice.
After all, all they do is show pictures of characters in a grid that maps them to numeric values. The
pictures of the characters can certainly help illustrate the semantics of the characters, but they can’t
tell the whole story. The Unicode standard actually goes well beyond just pictures of the characters,
providing a wealth of information on every character.

Every code chart in the standard is followed by a list of the characters in the code chart. For each
character, there’s an entry that gives the following information for the character:

x� Its Unicode code point value.

x� A representative glyph. For characters, such as accent marks, that combine with other characters,
the representative glyph includes a dotted circle that shows where the main character would go—
this makes it possible to distinguish COMBINING DOT ABOVE from COMBINING DOT
BELOW, for example. For characters that have no visual appearance, such as spaces and control
and formatting codes, the representative glyph is a dotted square with some sort of abbreviation of
the character name inside.

x� The character’s name. The name, and not the representative glyph, is the normative property (the
parts of the standard that are declared to be “normative” are the parts you have to follow exactly
in order to conform to the standard; parts declared “informative” are there to supplement or
clarify the normative parts and don’t have to be followed exactly in order to conform). This
reflects the philosophy that Unicode encodes semantics, although there are a few cases where the
actual meaning of the character has drifted since the earliest drafts of the standard and no longer
matches the name. This is very rare, though.

In addition to the code point value, name, and representative glyph, an entry may also include:

x� Alternate names the character might be known by.

x� Cross-references to similar characters elsewhere in the standard (this helps to distinguish them
from each other).

x� The character’s canonical or compatibility decomposition (if it’s a composite character)

x� Additional notes on its usage or meaning (for example, the entries for many letters include the
languages that use them).

 Character Semantics

 A Practical Programmer’s Guide to the Encoding Standard

The Unicode standard also includes chapters on each major group of characters in the standard, with
information that’s common to all of the characters in the group (such as encoding philosophy or
information on special processing challenges) and additional narrative explaining the meaning and
usage of any characters in the group that have special properties or behavior that needs to be called
out.

But the Unicode standard actually consists of more than just The Unicode Standard. That is, there’s
more to the Unicode standard than just the book. The Unicode standard also comprises a
comprehensive database of all the characters, a copy of which is included on a CD that’s included
with the book (the character database changes more frequently than the book, however, so for truly
up-to-date information, it’s usually a good idea to get the most recent version of the database from
the Unicode Consortium’s Web site [www.unicode.org]).

Every character in Unicode has a bunch of properties associated with it that define how that character
is to be treated by various processes. The Unicode Character Database comprises a group of text
files that give the properties for each character in Unicode. Among the properties that each character
has are:

x� The character’s code-point value and name.

x� The character’s general category. All of the characters in Unicode are grouped into 30 categories,
17 of which are considered normative. The category tells you things like whether the character is
a letter, numeral, symbol, whitespace character, control code, etc.

x� The character’s decomposition, along with whether it’s a canonical or compatibility
decomposition, and for compatibility composites, a tag that attempts to indicate what data is lost
when you convert to the decomposed form.

x� The character’s case mapping. If the character is a cased letter, the database includes the mapping
from the character to its counterpart in the opposite case.

x� For characters that are considered numerals, the database includes the character’s numeric value.
(That is, the numeric value the character represents, not the character’s code point value.)

x� The character’s directionality. (e.g., whether it’s left-to-right, right-to-left, or takes on the
directionality of the surrounding text). The Unicode Bidirectional Layout Algorithm uses this
property to determine how to arrange characters of different directionalities on a single line of
text.

x� The character’s mirroring property. This says whether the character take on a mirror-image glyph
shape when surrounded by right-to-left text.

x� The character’s combining class. This is used to derive the canonical representation of a character
with more than one combining mark attached to it (it’s used to derive the canonical ordering of
combining characters that don’t interact with each other).

x� The character’s line-break properties. This is used by text rendering processes to help figure out
where line divisions should go.

x� Many more…

For an in-depth look at the various files in the Unicode Character Database, see Chapter 5.

 Architecture: Not Just a Pile of Code Charts

60 Unicode Demystified

Unicode Versions and Unicode Technical Reports

The Unicode standard also includes a bunch of supplementary documents known as Unicode
Technical Reports. A snapshot of these is also included on the CD that comes with the book, but at
this point, the CD in the Unicode 3.0 is so out of date as to be nearly useless. You can always find
the most up-to-date slate of technical reports on the Unicode Web site (www.unicode.org).

There are three kinds of technical reports:

x� Unicode Standard Annexes (abbreviated “UAX”). These are actual addenda and amendments
to the Unicode standard.

x� Unicode Technical Standards (abbreviated “UTS”). These are adjunct standards related to
Unicode. They’re not normative parts of the standard itself, but carry their own conformance
criteria.

x� Unicode Technical Reports (abbreviated “UTR”). Various other types of adjunct information,
such as text clarifying or expanding on parts of the standard, implementation guidelines, and
descriptions of procedures for doing things with Unicode text that don’t rise to the level of official
Unicode Technical Standards.

There are also:

x� Draft Unicode Technical Reports (abbreviated “DUTR”). Technical reports are often
published while they’re still in draft form. DUTR status indicates that an agreement has been
reached in principle to adopt the proposal, but that details are still to be worked out. Draft
technical reports don’t have any normative force until the Unicode Technical Committee votes to
remove “Draft” from their name, but they’re published early to solicit comment and give
implementers a head start.

x� Proposed Draft Unicode Technical Reports (abbreviated “PDUTR”). Technical reports that
are published before an agreement in principle has been reached to adopt them.

The status of the technical reports is constantly changing. Here’s a summary of the slate of technical
reports as of this writing (December 2001):

Unicode Standard Annexes
All of the following Unicode Standard Annexes are officially part of the Unicode 3.2 standard.

x� UAX #9: The Unicode Bidirectional Algorithm: This specifies the algorithm for laying out
lines of text that mix left-to-right characters with right-to-left characters. This supersedes the
description of the Bidirectional layout algorithm in the Unicode 3.0 book. For an overview of the
bidirectional layout algorithm, see Chapter 8. For implementation details, see Chapter 16.

x� UAX #11: East Asian Width. Specifies a set of character properties that determine how many
display cells a character takes up when used in the context of East Asian typography. For more
information, see Chapter 10.

x� UAX #13: Unicode Newline Guidelines. There are some interesting issues regarding how you
represent the end of a line or paragraph in Unicode text, and this document clarifies them. This
information is covered in Chapter 12.

x� UAX #14: Line Breaking Properties. This document specifies how a word-wrapping routine
should treat the various Unicode characters. Word-wrapping is covered in Chapter 16.

 Unicode Versions and Unicode Technical Reports

 A Practical Programmer’s Guide to the Encoding Standard

x� UAX #15: Unicode Normalization Forms. Since Unicode actually has multiple ways of
representing a lot of characters, it’s often helpful to convert Unicode text to some kind of
normalized form that prefers one representation for any given character over all the others. There
are four Unicode Normalization Forms, and this document describes them. The Unicode
Normalization Forms are covered in Chapter 4.

x� UAX #19: UTF-32. Specifies the UTF-32 encoding form. UTF-32 is covered in Chapter 6.

x� UAX #27: Unicode 3.1. The official definition of Unicode 3.1. Includes the changes and
additions to Unicode 3.0 that form Unicode 3.1. This is the document that officially incorporates
the other Unicode Standard Annexes into the standard and gives them a version number. It also
includes code charts and character lists for all the new characters added to the standard in
Unicode 3.1.

Unicode Technical Standards

x� UTS #6: A Standard Compression Scheme for Unicode. Defines SCSU, a character encoding
scheme for Unicode that results in serialized Unicode text of comparable size to the same text in
legacy encodings. For more information, see Chapter 6.

x� UTS #10: The Unicode Collation Algorithm. Specifies a method of comparing character strings
in Unicode in a language-sensitive manner and a default ordering of all the characters to be used
in the absence of a language-specific ordering. For more information, see Chapter 15.

Unicode Technical Reports

x� UTR #16: UTF-EBCDIC. Specifies a special 8-bit transformation of Unicode for use on
EBCDIC-based systems. This is covered in Chapter 6.

x� UTR #17: Character Encoding Model. Defines a set of useful terms for discussing the various
aspects of character encodings. This material was covered in Chapter 2 and reiterated in this
chapter.

x� UTR #18: Regular Expression Guidelines. Provides some guidelines for how a regular-
expression facility should behave when operating on Unicode text. This material is covered in
Chapter 15.

x� UTR #20: Unicode in XML and Other Markup Languages. Specifies some guidelines for how
Unicode should be used in the context of a markup language such as HTML or XML. This is
covered in Chapter 17.

x� UTR #21: Case Mappings. Gives more detail than the standard itself on the whole business of
mapping uppercase to lowercase and vice versa. Case mapping is covered in Chapter 14.

x� UTR #22: Character Mapping Tables. Specifies an XML-based file format for describing a
mapping between Unicode and some other encoding standard. Mapping between Unicode and
other encodings is covered in Chapter 14.

x� UTR #24: Script Names. Defines an informative character property: script name, which would
identify which writing system (or “script”) each character belongs to. The script-name property is
discussed in Chapter 5.

Draft and Proposed Draft Technical Reports

x� PDUTR #25: Unicode support for mathematics. Gives a detailed account of all the various
considerations involved in using Unicode to represent mathematical expressions, including things
like spacing and layout, font design, and how to interpret various Unicode characters in the
context of mathematical expressions. It also includes a heuristic for detecting mathematical

 Architecture: Not Just a Pile of Code Charts

62 Unicode Demystified

expressions in plain Unicode text, and proposes a scheme for representing structured
mathematical expressions in plain text. We’ll look at math symbols in Chapter 12.

x� DUTR #26: Compatibility Encoding Scheme for UTF-16: 8-bit (CESU-8). Documents a
UTF-8 like Unicode encoding scheme that’s being used in some existing systems. We’ll look at
CESU-8 in chapter 6.

x� PDUTR #28: Unicode 3.2. The official definition of Unicode 3.2. Together with UAX #27, this
gives all the changes and additions to Unicode 3.0 that define Unicode 3.2, including revised and
updated code charts with all the new Unicode 3.2 characters. Unicode 3.2 is schedule to be
releated in March 2002, so it’s likely this will be UAX #28 by the time you read this.

Superseded Technical Reports
The following technical reports have been superseded by (or absorbed into) more recent versions of
the standard.

x� UTR #1: Myanmar, Khmer and Ethiopic. Absorbed into Unicode 3.0.

x� UTR #2: Sinhala, Mongolian, and Tibetan. Tibetan was in Unicode 2.0; Sinhala and
Mongolian was added in Unicode 3.0.

x� UTR #3: Various less-common scripts. This document includes exploratory proposals for a
whole bunch of historical or rare writing systems. It has been superseded by more-recent
proposals. Some of the scripts in this proposal have been incorporated into more-recent versions
of Unicode: Cherokee (Unicode 3.0), Old Italic (Etruscan; Unicode 3.1), Thaana (Maldivian;
3.0), Ogham (3.0), Runic (3.0), Syriac (3.0)., Tagalog (3.2), Buhid (3.2), and Tagbanwa (3.2).
Most of the others are in various stages of discussion, with another batch scheduled for inclusion
in Unicode 4.0. This document is mostly interesting as a list of writing systems that will probably
be in future versions of Unicode. For more information on this subject, check out
http://www.unicode.org/unicode/alloc/Pipeline.html.

x� UTR #4: Unicode 1.1. Superseded by later versions.

x� UTR #5: Handling non-spacing marks. Incorporated into Unicode 2.0.

x� UTR #7: Plane 14 Characters for Language Tags. Incorporated into Unicode 3.1.

x� UTR #8: Unicode 2.1. Superseded by later versions.

The missing numbers belong to technical reports that have been withdrawn by their proposers, have
been turned down by the Unicode Technical Committee, or haven’t been published yet.

Unicode Versions

Many of the technical reports either define certain versions of Unicode or are superseded by certain
version s of Unicode. Each version of Unicode comprises a particular set of characters, a particular
version of the character-property files, and a certain set of rules for dealing with them. All of these
things change over time (although there are certain things that are guaranteed to remain the same—
see “Unicode stability policies” later in this chapter).

Which gets us to the question of Unicode version numbers. A Unicode version number consists of
three parts: for example “Unicode 2.1.8.” The first number is the major version number. This gets
bumped every time a new edition of the book is released. That happens when the accumulation of
Technical Reports starts to get unwieldy or when a great many significant changes (such as lots of
new characters) are incorporated into the standard at once. There’s a new major version of Unicode
once every several years.

 Unicode Versions and Unicode Technical Reports

 A Practical Programmer’s Guide to the Encoding Standard

The minor version number gets bumped whenever new characters are added to the standard or other
significant changes are made. New minor versions of Unicode don’t get published as books, but do
get published as Unicode Standard Annexes. There has been one minor version of Unicode between
each pair of major versions (i.e., there was a Unicode 1.1 [published as UTR #4], a Unicode 2.1
[UTR #8], and a Unicode 3.1 [UAX #27]), but this was broken with the release of Unicode 3.2
(PDUTR #28 at the time of this writing, but most likely UAX #28 by the time you read this).

The update number gets bumped when changes are made to the Unicode Character Database.
Updates are usually just published as new versions of the database; there is no corresponding
technical report.

The current version of Unicode at the time of this writing (January 2002) is Unicode 3.1.1. Unicode
3.2, which includes a whole slate of new characters, is currently in beta and will likely be the current
version by the time you read this.

One has to be a bit careful when referring to a particular version of the Unicode standard from
another document, particularly another standard. Unicode is changing all the time, and so it’s seldom
a good idea to nail yourself to one specific version. Most of the time, it’s best either to specify only a
major version number (or, in some cases, just major and minor version numbers), or to specify an
open-ended range of versions (e.g., “Unicode 2.1 or later”). Generally, this is okay, as future versions
of Unicode will only add characters—since you’re never required to support a particular character,
you can pin yourself to an open-ended range of Unicode versions and not sweat the new characters.
Sometimes, however, changes are made to a character’s properties in the Unicode Character
Database, and these could alter program behavior. Usually this is a good thing—changes are made to
the database when the database is deemed to have been wrong before—but your software may need
to deal with this in some way.

Unicode stability policies

Unicode will, of course, continue to evolve. There are, however, a few things you can count on to
remain stable:

x� Characters that are in the current standard will never be removed from future standards. They
may, in unusual circumstances, be deprecated (i.e., their use might be discouraged), but they’ll
never be taken out altogether and their code point values will never be reused to refer to different
characters.

x� Characters will never be reassigned from one code point to another. If a character has ambiguous
semantics, a new character may be introduced with more specific semantics, but the old one will
never be taken away and will continue to have ambiguous semantics.

x� Character names will never change. This means that occasionally a character with ambiguous
semantics will get out of sync with its name as its semantics evolve, but this is very rare.

x� Text in one of the Unicode Normalized Forms will always be in that normalized form. That is,
the definition of the Unicode Normalized Forms will not change between versions of the standard
in ways that would cause text that is normalized according to one version of the standard not to be
normalized in later versions of the standard.

x� A character’s combining class and canonical and compatibility decompositions will never change,
as this would break the normalization guarantee.

x� A character’s properties may change, but not in a way that would alter the character’s
fundamental identity. In other words, the representative glyph for “A” won’t change to “B”, and

 Architecture: Not Just a Pile of Code Charts

64 Unicode Demystified

“A”’s category won’t change to “lowercase letter.” You’ll see property changes only to correct
clear mistakes in previous versions.

x� Various structural aspects of the Unicode character properties will remain the same, as
implementations depend on some of these things: For example, the standard won’t add any new
general categories or any new bi-di categories, it’ll keep characters combining classes in the range
from 0 to 255, non-combining characters will always have a combining class of 0, and so on.

You can generally count on characters’ other normative properties not changing, although the
Unicode Consortium certainly reserves the right to fix mistakes in these properties.

The Unicode Consortium can change a character’s informative properties pretty much at will, without
changing version numbers, since you don’t have to follow them anyway. Again, this shouldn’t
actually happen much, except when they feel they need to correct a mistake of some kind.

These stability guarantees are borne out of bitter experience: In particular, characters did get
removed and reassigned, and characters’ names did change in Unicode 1.1 as a result of the merger
with ISO 10646, and it caused serious grief. This won’t happen again.

Arrangement of the encoding space

Unicode’s designers tried to assign the characters to numeric values in an orderly manner that would
make it easy to tell something about a character just from its code point value. As the encoding space
has filled up, this has become harder to do. But the logic still comes through reasonably well.

Unicode was originally designed for a 16-bit encoding space, consisting of 256 rows of 256
characters each. ISO 10646 was designed for a 32-bit encoding space, consisting of 128 groups of
256 planes containing 256 rows of 256 characters. So the original Unicode encoding space had
room for 65,536 characters. ISO 10646 had room for an unbelievable 2,147,483,648 characters.
The ISO encoding space is clearly overkill (experts estimate there’s maybe a million or so characters
eligible for encoding), but it was clear by the time Unicode 2.0 came out that the 16-bit Unicode
encoding space was too small.

The solution was the surrogate mechanism, a scheme whereby special escape sequences known as
surrogate pairs could be used to represent characters outside the original encoding space. This
extended the number of characters that could be encoded to 1,114,112, ample space for the
foreseeable future (only 95,156 characters are actually encoded in Unicode 3.2, and Unicode has
been in development for twelve years). The surrogate mechanism was introduced in Unicode 2.0 and
has since become known as UTF-16. It effectively encodes the first 17 planes of the ISO 10646
encoding space. The Unicode Consortium and WG2 have agreed never to populate the planes above
Plane 16, so for all intents and purposes, Unicode and ISO 10646 now share a 21-bit encoding space
consisting of 17 planes of 256 rows of 256 characters. Valid Unicode code point values run from
U+0000 to U+10FFFF.

Organization of the planes
The Unicode encoding space currently looks like this:

 Arrangement of the Encoding Space

 A Practical Programmer’s Guide to the Encoding Standard

0: Basic Multilingual Plane

1: Supplementary Multilingual Plane

2: Supplementary Ideographic Plane

3

4

5

6

7

8

9

A

B

C

D

E:Supplementary Special-Purpose Plane

F

10

Unassigned

Private Use Planes

Plane 0 is the Basic Multilingual Plane (or “BMP” for short). It contains the majority of the
encoded characters, including all of the most common. In fact, prior to Unicode 3.1, there were no
characters at all encoded in any of the other planes. The characters in the BMP can be represented in
UTF-16 with a single 16-bit code unit.

Plane 1 is the Supplementary Multilingual Plane (“SMP” for short). It is intended to contain
characters from archaic or obsolete writing systems. Why encode these at all? These are mostly here
for the use of the scholarly community for papers where they write about these characters. Various
specialized collections of symbols will also go into this plane.

Plane 2 is the Supplementary Ideographic Plane (“SIP” for short).It’s an extension of the CJK
Ideographs Area from the BMP and contains rare and unusual Chinese characters.

Plane 14 (E) is the Supplementary Special-Purpose Plane (“SSP”). It’s reserved for special-
purpose characters—generally code points that don’t encode characters as such but are instead used
by higher-level protocols or as signals to processes operating on Unicode text.

Planes 15 and 16 (F and 10) are the Private Use Planes, an extension of the Private Use Area in the
BMP. The other planes are currently unassigned, and will probably remain that way until Planes 1,
2, and 14 start to fill up.

 Architecture: Not Just a Pile of Code Charts

66 Unicode Demystified

The Basic Multilingual Plane

The heart and soul of Unicode is Plane 0, the Basic Multilingual Plane. It contains the vast majority
of characters in common use today, and those that aren’t yet encoded will go here as well. Here’s a
graph of the BMP:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

General Scripts Area

Symbols

CJK Misc.

CJK
Misc.

Han

Yi

Hangul

Surrogates

Private Use Area
Compatibility

The characters whose code point values begin with 0 and 1 form the General Scripts Area. This
area essentially contains the characters from all of the alphabetic writing systems, including the Latin,
Greek, Cyrillic, Hebrew, Arabic, Devanagari (Hindi), and Thai alphabets, among many others. It
also contains a collection of combining marks that are often used in conjunction with the letters in
this area. The General Scripts Area breaks down as follows:

 Arrangement of the Encoding Space

 A Practical Programmer’s Guide to the Encoding Standard

Lat. Ext. B

Lat. Ext. B

Canadian Aboriginal Syllablics

Runic KhmerOgh
am

Myanmar Georgian Hangul Jamo

Ethiopic Cherokee

Gurmukhi Gujarati Oriya Tamil

Telugu Kannada Malayalam Sinhala

Thai Lao Tibetan

Thaana

Cyrillic Hebrew

IPA Mod. Ltrs. Comb. Diac. Greek

ASCII Latin1 Lat. Ext. A

00 20 40 60 80 A0 C0 E0 00 20 40 60 80 A0 C0 E0

00/01

02/03

04/05

06/07

08/09

0A/0B

0C/0D

0E/0F

10/11

12/13

14/15

16/17

18/19

1A/1B

1C/1D

1E/1F

Armenian

Arabic Syriac

Devanagari Bengali

Mongolian

Latin Extended Additional Greek Extended

Phillipine
Scripts

There are a couple of important things to note about the general scripts area. The first is that the first
128 characters, those from U+0000 to U+7F, are exactly the same as the ASCII characters with the
same code point values. This means you can convert from ASCII to Unicode simply by zero-padding
the characters out to 16 bits (in fact, in UTF-8, the 8-bit version of Unicode, the ASCII characters
have exactly the same representation as they do in ASCII).

Along the same lines, the first 256 characters, those from U+0000 to U+00FF, are exactly the same
as the characters with the same code point values from the ISO 8859-1 (ISO Latin-1) standard.
(Latin-1 is a superset of ASCII; its lower 128 characters are identical to ASCII.) You can convert
Latin-1 to Unicode by zero-padding out to 16 bits. (However, the non-ASCII Latin-1 characters have
two-byte representations in UTF-8.)

For those writing systems, such as most of the Indian and Southeast Asian ones, that have only one
dominant existing encoding, Unicode keeps the same relative arrangement of the characters as their
original encoding had, enabling conversion back and forth by adding or subtracting a constant.

We’ll be taking an in-depth look at all of these scripts in Section II. The Latin, Greek, Cyrillic,
Armenian, and Georgian blocks, as well as the Combining Diacritical Marks, IPA Extensions, and
Spacing Modifier Letters blocks, are covered in Chapter 7. The Hebrew, Arabic, Syriac, and Thaana
blocks are covered in Chapter 8. The Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil,
Telugu, Kannada, Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar, and Khmer blocks are covered
in Chapter 9. The Hangul Jamo block is covered in Chapter 10. The Ethiopic, Cherokee, Canadian
Aboriginal Syllables, Ogham, Runic, and Mongolian blocks are covered in Chapter 11.

The characters whose code point values begin with 2 (with a few recent exceptions) form the
Symbols Area. There’s all kinds of stuff in this area. It includes a collection of punctuation that can

 Architecture: Not Just a Pile of Code Charts

68 Unicode Demystified

be used with many different languages (this block actually supplements the punctuation marks in the
ASCII and Latin-1 blocks), collections of math, currency, technical, and miscellaneous symbols,
arrows, box-drawing characters, and so forth. It breaks down like this:

Gen. Punc. Sup/
Sub

Curr-
ency

Symb.
Diac.

Letterlike Numbers Arrows

Mathematical Operators Miscellaneous Technical

Ctrl.
Pict.

OCR Enclosed Box Drawing
Bloc
ks

Geom. Shapes

Misc. Symbols Dingbats

Braille Patterns

Supp. CJK Radicals KangXi Radicals IDC

CJK
Punc. Hiragana Katakana

Bopomofo

Hangul
Compat.

Kanbun

Enclosed CJK CJK Compatibility

Han

00 20 40 60 80 A0 C0 E0 00 20 40 60 80 A0 C0 E0

20/21

22/23

24/25

26/27

28/29

2A/2B

2C/2D

2E/2F

30/31

32/33

34/35

36/37

38/39

3A/3B

3C/3D

3E/3F

Misc.
Math

Supp. Arrows Misc. Math

Supplemental Mathematical Operators

Supp.
Arrows

Katakana
Ext .

The various blocks in the Symbols Area are covered in Chapter 12.

The characters whose code point values begin with 3 (actually, with Unicode 3.0, this group has now
slopped over to include some code points values beginning with 2) form the CJK Miscellaneous
Area. This includes all of the characters used in the East Asian writing systems, except for the three
very large areas immediately following. This includes punctuation used in East Asian writing, the
phonetic systems used for Japanese and Chinese, various symbols and abbreviations used in Japanese
technical material, and a collection of “radicals,” component parts of Han ideographic characters.
These blocks are covered in Chapter 10.

The characters whose code point values begin with 4, 5, 6, 7, 8, and 9 (in Unicode 3.0, this area has
slopped over to include most of the characters whose code points values begin with 3 as well)
constitute the CJKV Unified Ideographs Area. This is where the Han ideographs used in Chinese,
Japanese, Korean, and (much less frequently) Vietnamese are located.

The characters whose code point values range from U+A000 to U+A4CF form the Yi Area, which
contains the characters used for writing Yi, a minority Chinese language.

The characters whose code point values range from U+AC00 to U+D7FF form the Hangul Syllables
Area. Hangul is the alphabetic writing system used (sometimes in conjunction with Han ideographs)
to write Korean. Hangul can be represented using the individual letters, or “jamo”, which are
encoded in the General Scripts Area, but the jamo are usually arranged into ideograph-like blocks

 Arrangement of the Encoding Space

 A Practical Programmer’s Guide to the Encoding Standard

representing whole syllables, and most Koreans look at whole syllables as single characters. This
area encodes all possible modern Hangul syllables using a single code point for each syllable.

We look at the CJKV Unified Ideographs, Yi, and Hangul Syllables Areas in chapter 10.

The code point values from U+D800 to U+DFFF constitute the Surrogates Area. This range of code
point values is reserved and will never be used to encode characters. Instead, values from this range
are used in pairs as code-unit values by the UTF-16 encoding to represent characters from Planes 1
through 16.

The code point values from U+E000 to U+F8FF form the Private Use Area, or “PUA.” This area is
reserved for the private use of applications and systems that use Unicode, which may assign any
meaning they wish to the code point values in this range. Private-use characters should be used only
within closed systems that can apply a consistent meaning to these code points; text that is supposed
to be exchanged between systems is prohibited from using these code point values (unless there’s a
private agreement otherwise by the sending and receiving parties), since there’s no guarantee that a
receiving process would know what meaning to apply to them.

The remaining characters with code point values beginning with F form the Compatibility Area.
This is a catch-all area for characters that are included in Unicode simply to maintain backward
compatibility with the source encodings. This area includes various ideographs that would be unified
with ideographs in the CJK Unicode Ideographs except that the source encodings draw a distinction,
presentation forms for various writing systems, especially Arabic, halfwidth and fullwidth variants of
various Latin and Japanese characters, and various other things. This section isn’t the only area of the
encoding space containing compatibility characters; the Symbols Area includes many blocks of
compatibility characters, and some are also scattered throughout the rest of the encoding space. This
area also contains a number of special-purpose characters and non-character code points.

The Compatibility Area breaks down like this:

F0/F1

F2/F3

F4/F5

F6/F7

F8/F9

FA/FB

FC/FD

FE/FF

Private Use Area

CJK Compatibility

CJK Compat. Alpha. Pres.

Arabic Presentation Forms A

Comb. 1/2
Marks Vertical Small

Arabic Pres. Forms B Halfwidth & Fullwidth

SpecialVar.
Select.

The Supplementary Planes
Planes 1 through 16 are collectively known as the Supplementary Planes, and include rarer or more
specialized characters.

 Architecture: Not Just a Pile of Code Charts

70 Unicode Demystified

Plane 1 breaks down like this:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Letters

Music Math

The area marked “Letters” includes a number of obsolete writing systems and will expand to include
more. The area marked “Music” includes a large collection of musical symbols, and the area marked
“Math” includes a special set of alphanumeric characters intended to be used as symbols in
mathematical formulas.

Plane 2 breaks down like this:

 Arrangement of the Encoding Space

 A Practical Programmer’s Guide to the Encoding Standard

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Han

Compat.

It’s given over entirely to Chinese ideographic characters, acting as an extension of the CJKV
Unified Ideographs Area in the BMP.

Plane 14 looks like this:

 Architecture: Not Just a Pile of Code Charts

72 Unicode Demystified

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Tags

The only thing in there right now is a small collection of “tag” characters intended to be used for
things like language tagging.

Although there aren’t a lot of unassigned code point values left in the BMP, there are thousands upon
thousands in the other planes. And except for the private-use areas, Unicode implementations are not
permitted to use the unassigned code point values for anything. All of them are reserved for future
expansion, and may be assigned to characters in future versions of Unicode. Conforming Unicode
implementations can’t use these values for any purpose, and can’t emit text purporting to be Unicode
that uses them. This also goes for the planes above Plane 16, even though they may never be used to
encode characters. It’s specifically illegal to use the unused bits in a UTF-32 code unit to store other
data.

Non-Character code point values

In addition, the code point values U+FFFE and U+FFFF, plus the corresponding code point values
from all the other planes, are illegal. They’re not to be used in Unicode text at all. U+FFFE can be
used in conjunction with the Unicode byte-order mark (U+FEFF) to detect byte-ordering problems
(for example, if a Unicode text file produced on a Wintel PC starts with the byte-order mark, a
Macintosh program reading it will read the byte-order mark as the illegal value U+FFFE and know
that it has to byte-swap the file in order to read it properly).

U+FFFF is illegal for two main reasons: First, it provided a non-Unicode value that can be used as a
sentinel value by Unicode-conformant processes. For example, the getc() function in C has to
have a return type of int even though all of the character values it can return are of type char .
This is because all char values are legal character codes, leaving no values to serve as the end-of-file
signal. The int value -1 is the end-of-file signal—you can’t use the char value -1 as end-of-file

 Arrangement of the Encoding Space

 A Practical Programmer’s Guide to the Encoding Standard

because it’s the same as 0xFF, which is a legal character. The Unicode version of getc(), on the
other hand, could return unsigned short (or wchar_t on many systems) and still have a non-
character value of that type—U+FFFF—available to use as the end-of-file signal.

Here’s the other reason why U+FFFF isn’t a legal Unicode code point value: Say you want to iterate
over all of the Unicode code point values. You write the following (in C):

unsigned short c;

for (c = 0; c <= 0xFFFF; ++c) {

 // etc...

The loop will never terminate. This is because the next value after 0xFFFF is 0. Designating
U+FFFF as a non-Unicode value enables you to write loops that iterate over the whole Unicode
range in a straightforward manner without having to resort to a larger type (and a lot of casting) for
the loop variable or other funny business to make sure the loop terminates.

The corresponding code points in the other planes were reserved for the same reasons, although this
is mostly a historical curiosity now. In the original design of ISO 10646, it was expected that each
plane would function as a more or less independent encoding space, and that if you only dealt with
characters from one plane, you might represent them with 16-bit units (effectively chopping off the
plane and group numbers) and have the same problem as described above.

Unicode 3.1 sets aside 32 addition code points values, U+FDD0 to U+FDEF, as non-character code
points. Like the others, this basically makes these values available to implementations for their
internal use as markers or sentinel values without the implementations having to worry about their
being assigned to characters in the future. These are very specifically not private use code points and
therefore aren’t supposed to be used to represent characters. Like the other non-character code
points, they’re never legal in serialized Unicode text.

Conforming to the standard

So just what does it mean to say that you conform to the Unicode standard? Well, this answer
varies depending on what it is that your product does. The answer tends to be both more and less
than what most people think.

First of all, one thing that conforming to the Unicode standard does not mean is that you have to be
able to properly support every single character that the Unicode standard defines. What the
Unicode standard requires is that you declare which characters you do support. For the characters
you claim to support, then you have to follow all the rules in the standard. In other words, if you
declare your program to be Unicode conformant (and you’re basically doing that if you use the
word “Unicode” anywhere in your advertising or docs) and say “Superduperword supports
Arabic,” then you have to support Arabic the way the Unicode standard says you should. In
particular, you’ve got to be able to automatically select the right glyphs for the various Arabic
letters depending on their context, and you’ve got to support the Unicode bidirectional text layout
algorithm. If you don’t do these things, then as far as the Unicode standard is concerned, you don’t
support Arabic.

 Architecture: Not Just a Pile of Code Charts

74 Unicode Demystified

Here are the rules for conforming to the Unicode standard. These differ somewhat from the rules
as set forth in Chapter 3 of the actual Unicode standard, but they produce the same end result.
There are certain algorithms that you have to follow (or mimic) in certain cases to be conformant. I
haven’t included those here, but will go over them in future chapters. There are also some terms
used here that haven’t been defined yet; all will be defined in future chapters.

General
For most processes, it’s not enough to say you support Unicode. By itself, this doesn’t mean very
much. You’ll also need to say:

x� Which version of Unicode you’re supporting. Generally, this is just a shorthand way of
saying which characters you support, but in cases where the Unicode versions differ in the
semantics they give to characters, or in their algorithms to do different things, you’re specifying
which versions of those things you’re using as well. Typically, if you support a given Unicode
version, you also support all previous versions as well.24

Informative character semantics can and do change from version to version. You’re not
required to conform to the informative parts of the standard, but saying which version you
support is also a way of saying which set of informative properties you’re using.

It’s legal, and in fact often a good idea, to say something like “Unicode 2.1.8 and later” when
specifying which version of Unicode you use. This is particularly true when you’re writing a
standard that uses the Unicode standard as one of its base standards. This permits new versions
of the standard (or conforming implementations) to support new characters without going out
of compliance. It’s also rarely necessary to specify which version of Unicode you’re using all
the way out to the last version number. Often, it’s sufficient to just specify the major revision
(“This product supports Unicode 2. x”).

x� Which transformation formats you support. This is only relevant if you exchange Unicode
text with the outside world (including writing it to disk or sending it over a network
connection), but if you do, you have to specify which of the various character encoding
schemes defined by Unicode (the “Unicode Transformation Formats”) you support. If you
support several, you need to specify your default (i.e., which formats you can read without
being told by the user or some other outside source what format the incoming file is in). The
Unicode Transformation Formats are discussed in Chapter 6.

x� Which normalization forms you support or expect. Again, this is basically important if
you’re exchanging Unicode text with the outside world somehow. This can be thought of as
another shorthand way of specifying which characters you support, but is specifically oriented
toward telling people what characters can be in an incoming file. The normalization forms are
discussed in Chapter 4.

x� Which characters you support. The Unicode standard doesn’t require you to support any
particular set of characters, so you need to say which sets of characters you know how to handle
properly (of course, if you’re relying on an external library, such as the operating system, for
part or all of your Unicode support, you support whatever characters it supports).

The ISO 10646 standard has formal ways of specifying which characters you support. Unicode
doesn’t; it asks that you say, but you can specify them any way you want, and you can specify
any characters that you want.

Part of the reason that Unicode doesn’t provide a formal way of specifying which characters
you support is that this often varies depending on what you’re doing with the characters. Which
characters you can display, for example, is often governed by the fonts installed on the system

24 Technically, this is only guaranteed as far back as Unicode 2.0—there were some radical changes,

including removal and movement of characters, between some of the earlier versions as Unicode and ISO

10646 were brought into sync with each other.

 Conforming to the Standard

 A Practical Programmer’s Guide to the Encoding Standard

you’re running on. You might also be able to sort lists properly only for a subset of languages
you can display. Some of this you can specify in advance, but you may be limited by the
capabilities of the system you’re actually running on.

Producing text as output
If your process produces Unicode text as output, either by writing it to a file or by sending it over
some type of communication link, there are certain things you can’t do. (Note that this refers to
machine-readable output; displaying Unicode text on the screen or printing it on a printer follow
different rules, outlined below.)

x� Your output can’t contain any code point values which are unassigned in the version of
Unicode you’re supporting.

x� Your output can’t contain the U+FFFE, U+FFFF, or any of the other non-character code point
values.

x� Your output is allowed to include code point values in the private use area, but this is strongly
discouraged. Since anyone’s allowed to attach any meaning they want to the private-use code
points, you can’t guarantee someone reading the file will interpret the private-use characters the
same way you do (or interpret them at all). [You can, of course, exchange things any way you
want within the universe you control, but this doesn’t count as exchanging with “the outside
world.”] You can get around this if there’s some kind of private agreement you’re expecting the
receiving party to uphold, but then you’re not technically supporting Unicode anymore; you’re
supporting a higher-level protocol that uses Unicode as its basis.

x� You can’t produce a sequence of bytes that’s illegal for whatever Unicode transformation
format you’re using. Among other things, this means you have to obey the shortest-sequence
rule: If you’re putting out UTF-8, for example, you can’t use a three-byte sequence when the
character can be represented with a two-byte sequence, and you can’t represent characters
outside the BMP using two three-byte sequences representing surrogates.

Interpreting text from the outside world
If your program reads Unicode text files or accepts Unicode over a communications link (from an
arbitrary source, of course; you can have private agreements with a known source), you’re subject
to the following restrictions:

x� If the input contains unassigned or illegal code point values, you must treat them as errors.
Exactly what this means may vary from application to application, but this is basically intended
to prevent security holes that could conceivably result from letting an application interpret
illegal byte sequences.

x� In the input contains malformed byte sequences according to the transformation format it’s
supposed to be in, you must treat that as an error.

x� If the input contains code point values from the private-use area, you can interpret them
however you want, but are encouraged to ignore them or treat them as errors. See the caveats
above.

x� You must interpret every code point value you purport to understand according to the semantics
the Unicode standard gives to those values.

x� You can handle the code point values you don’t claim to support any way that’s convenient for
you, unless you’re passing them through to another process, in which case see below.

 Architecture: Not Just a Pile of Code Charts

76 Unicode Demystified

Passing text through
If your process accepts text from the outside world and then passes it back out to the outside world
(for example, you perform some kind of process on an existing disk file), you have to be sure you
don’t mess it up. This means that with certain exceptions, your process can’t have any side effects
on the text—it must do to the text only what you say it’s going to do. In particular:

x� If the input contains characters that you don’t recognize, you can’t drop them or modify them in
the output. However, you are allowed to drop illegal characters from the output.

x� You are allowed to change a sequence of code points to a canonically equivalent sequence, but
you’re not allowed to change a sequence to a compatibility-equivalent sequence. This will
generally occur as part of producing normalized text from potentially unnormalized text. Be
aware, however, that you can’t claim you produce normalized text unless the process
normalizing the text can do so properly on any piece of Unicode text, regardless of which
characters you support for other purposes. (In other words, you can’t claim you produce text in
Normalized Form D if you only know how to decompose the precomposed Latin letters.)

[Note that this guarantees you’re producing normalized text according to whatever version of
Unicode you support—if someone passes you text that includes characters from later Unicode
versions, you may still not normalize them properly, but this is okay, as long as you’re clear
about what version of Unicode you support.]

x� You are allowed to translate the text to a different Unicode transformation format, or a
different byte ordering, as long as you do it correctly.

x� You are allowed to convert U+FEFF ZERO WIDTH NO-BREAK SPACE to U+2060 WORD
JOINER, as long as it doesn’t appear at the beginning of a file.

Drawing text on the screen or other output devices
Again, you’re not required to be able to display every Unicode character, but for those you purport
to display, you’ve got to do so correctly.

x� You can do more or less whatever you want with any characters you encounter that you don’t
support (including illegal and unassigned code point values). The most common approach is to
display some type of “unknown character” glyph. In particular, you’re allowed to draw the
“unknown character” glyph even for characters that don’t have a visual representation, and
you’re also allowed to treat combining characters as non-combining characters.

[It’s better, of course, if you don’t do these things—even if you don’t handle certain characters,
if you know enough to know which ones not to display (such as formatting codes), or can
display a “missing” glyph that gives the user some idea of what kind of character it is, that’s
better.]

x� If you claim to support the non-spacing marks, they have to combine with the characters that
precede them. In fact, multiple combining marks should combine according to the accent-
stacking rules in the Unicode standard (or a more-appropriate language-specific way).
Generally, this is governed by the font being used—application software usually can’t influence
this much.

x� If you claim to support the characters in the Hebrew, Arabic, Syriac, or Thaana blocks, you
have to support the Unicode bidirectional text layout algorithm.

x� If you claim to support the characters in the Arabic block, you have to perform contextual
glyph selection correctly.

x� If you claim to support the conjoining Hangul jamo, you have to support the conjoining jamo
behavior, as set forth in the standard.

 Conforming to the Standard

 A Practical Programmer’s Guide to the Encoding Standard

x� If you claim to support any of the Indic blocks, you have to do whatever glyph reordering,
contextual glyph selection, and accent stacking is necessary to properly display that script.
(Note that “properly display” gives you some latitude—anything that is legible and correctly
conveys the writer’s meaning to the reader is good enough. Different fonts, for example, may
include different sets of ligatures or contextual forms.)

x� If you support the Mongolian script, you have to draw the characters vertically.

x� When you’re word-wrapping lines, you have to follow the mandated semantics of the characters
with normative line-breaking properties.

x� You’re not allowed to assign semantics to any combination of a regular character and a
variation selector that isn’t listed in the StandardizedVariants.html file; if the combination isn’t
officially standardized, the variation selector has no effect; you can’t define ad-hoc glyph
variations with the variation selectors (you can, of course, create your own “variation selectors”
in the Private Use Area).

Comparing character strings
When you compare two Unicode character strings for equality, strings that are canonically
equivalent should compare equal. This means you’re not supposed to do a straight bitwise
comparison without normalizing the two strings first. You can sometimes get around this by
declaring that you expect all text coming in from outside to already be normalized, or by not
supporting the non-spacing marks.

Summary

In a nutshell, conforming to the Unicode standard boils down to just these rules:

x� If you receive text from the outside world and pass it back to the outside world, don’t mess it
up, even if it contains characters you don’t understand.

x� In order to claim you support a particular character, you have to follow all the rules in the
Unicode standard that are relevant to that character and to what you’re doing with it.

x� If you produce output that purports to be Unicode text, another Unicode-conformant process
should be able to interpret it properly.

 79

CHAPTER 4 Combining character sequences
and Unicode normalization

One feature of Unicode we’ve talked a lot about is combining characters. Indeed, this is one of the
features of Unicode that gives it its power. However, it may be the single greatest contributor to
Unicode’s complexity as well. In this chapter, we’ll take an in-depth look at combining characters
and all of the issues that arise because of them.

Consider the following collection of characters:

á à ä â
é è ë ê
í ì ï î
ó ò ö ô
ú ù ü û
What we have here are the Latin vowels with various diacritical marks added to them. Most of these
letters occur fairly often in various European languages. There are twenty letters in this group, but
what’s interesting to note is that all of the letters in each row have something in common and all of
the letters in each column have something in common. Each row consists of characters sharing the
same basic letter, and each column consists of characters sharing the same diacritical mark. We can
take advantage of this commonality to cut down on the number of characters we have to encode in
our encoding. We already have codes for the basic letters:

 Combining Character Sequences and Unicode Normalization

80 Unicode Demystified

a e i o u
All we really need to do is add codes for the diacritical marks:

´ ` ¨ ˆ
If we use these in combination with the regular letters, we can produce all twenty of the characters in
our original chart, and we’ve only had to allocate four additional character codes, not twenty. Using
this system, you’d represent the letter ö using the code for the letter o and the code for the umlaut
together.

The ASCII character encoding was originally designed to work that way. On a teletype machine, the
backspace control code would actually cause the carriage of the teletype to back up one space,
causing the next character to be printed over the top of the preceding character. The carriage-return
code originally returned the teletype carriage to the beginning of the line without advancing the
platen, allowing you to overtype a whole line. A number of ASCII characters were designed to be
used in conjunction with the backspace and carriage return. For example, the underscore character
we’re all familiar with today in computers (“_”) was originally intended to be used with the
backspace and carriage return characters to underline words. In the same way, you could get ô by
sending the letter o, followed by a backspace, followed by the caret or circumflex character “^”.
ASCII provided characters for the circumflex (^), tilde (~), and grave accent (`). The
apostrophe/single-quote character did double duty (or maybe that’s triple duty) as the acute accent,
the double-quote character did double duty as the diaeresis or umlaut (the terms “diaeresis” and
“umlaut” are more or less interchangeable—they refer to the same mark used for two different
things), and the comma did double duty as the cedilla.

Unfortunately, this way of representing accented characters disappeared with the advent of the CRT
terminal. Early CRTs weren’t sophisticated enough to show two characters in the same display cell,
so if they encountered two characters separated by a backspace, the second character would just
replace the first one on the screen. The diacritical marks in ASCII lost their meaning as diacritical
marks and just turned into symbols, and the backspace fell into disuse (it was still the code trans-
mitted when you hit the backspace key, but you didn’t see it used inside stored or transmitted text to
glue characters together anymore).

For CRT display, it became necessary to have a separate character code for each combination of
letter and diacritical mark, and this is the situation that prevails in most character encodings in use
today, at least for European languages.

There are a few problems with this approach. One is that it can be limiting. If you have an unusual
combination of base letter and accent that’s not encoded, you’re out of luck. Every combination of
letter and mark requires the allocation of another code. In any given European language, the number
of letter-mark combinations is relatively small, but the number of them for all languages that use the
Latin alphabet is quite large—witness the large number of different “Latin alphabet” encodings in the
ISO 8859 standard, for example.

Furthermore, for some other languages, base letters and diacritical marks can legitimately occur in
almost any arbitrary combination. Almost any Hebrew letter, for example, can occur with almost any
Hebrew vowel point. It can get worse: you can have combinations that include multiple marks

 How Unicode non-spacing marks work

 A Practical Programmer’s Guide to the Encoding Standard

applied to the same base letter: In Thai, you can have arbitrary combinations of a consonant (the base
letter), a vowel mark, and a tone mark.

So Unicode dispenses with the idea that a single code point always maps to a single “display cell” on
the screen. A single code point might map to a single “display cell,” or perhaps multiple code points
will, as in the cases we’ve examined above.

Instead, Unicode includes a whole class of characters known as “combining marks” or “non-spacing
marks.” (The term “non-spacing mark” also comes from teletype machines—some European teletype
machines were designed so that the carriage wouldn’t advance to the next position when they
received an accent mark, allowing one to send an accented letter without using a backspace. This
practice goes back to the use of “dead keys” on European typewriters for the same purpose.) A non-
spacing mark doesn’t display as a self-contained unit; instead, it combines typographically with
another character. A sequence of code points consisting of a regular character and one or more non-
spacing marks is called a combining character sequence.

How Unicode non-spacing marks work

There are three basic rules governing the behavior of Unicode non-spacing marks:

x� A non-spacing mark always combines with the character that precedes it. So if the backing
store contains the following character codes:
U+006F LATIN SMALL LETTER O

U+0302 COMBINING DIAERESIS

U+006F LATIN SMALL LETTER O

that represents the sequence

öo
and not the sequence

oö
In other words, the diaeresis attaches to the o that precedes it.

Unicode’s designers could have gone either way with this one. It really doesn’t make much
difference whether the mark attaches to the character before it or the one after it. Having the mark
attach to the character after it is consistent with keyboards that use “dead key” combinations for
entering accented letters, but having the mark attach to the character before it makes certain types
of text analysis easier and is a little easier to understand when you’ve got multiple combining
marks attached to the same character.

x� If you want to show a non-spacing mark appearing by itself, apply it to a space. Unicode
provides spacing versions of some non-spacing marks, generally for backward compatibility with
some legacy encoding, but you can get any non-spacing mark to appear alone by preceding it with
a space. In other words, U+0020 SPACE followed by U+0308 COMBINING DIAERESIS gives
you a spacing (i.e., non-combining) diaeresis.

x� When multiple non-spacing marks that interact typographically with the base character in
the same way are applied to the same character, the marks occurring closest to the base
character in the backing store also occur closest to it typographically, unless a different
language-specific behavior is more appropriate. This is a little complicated. Basically,
Unicode allows you to apply arbitrarily many combining marks to a character. If they attach to

 Combining Character Sequences and Unicode Normalization

82 Unicode Demystified

different parts of the character (say, the top and the bottom), their ordering in the backing store
isn’t important. In other words, the sequence
U+006F LATIN SMALL LETTER O
U+0302 COMBINING CIRCUMFLEX ACCENT
U+0323 COMBINING DOT BELOW

and the sequence
U+006F LATIN SMALL LETTER O
U+0323 COMBINING DOT BELOW
U+0302 COMBINING CIRCUMFLEX ACCENT

are equivalent.

Both look like this:

But if the two marks attach to the same part of the character (say, they both attach to the top), then
the order is important. In this case, the marks radiate outward from the character in the order in
which they appear in the backing store.

In other words, the following sequence:
U+0075 LATIN SMALL LETTER U
U+0308 COMBINING DIAERESIS
U+0304 COMBINING MACRON

looks like this:

However, the following sequence:
U+0075 LATIN SMALL LETTER U
U+0304 COMBINING MACRON
U+0308 COMBINING DIAERESIS

looks like this:

�
Note that the marks never collide typographically! Proper display of a Unicode combining
character sequence includes positioning all of the marks so that they don’t collide.

This is the default beavior, but it isn’t necessarily required. In particular, there are cases of language-
specific behavior that’s different from the default behavior—usually with multiple marks appearing
side by side instead of stacked. For example, in Vietnamese, when a vowel has both a circumflex
and an acute or gave accent on it, intstead of stacking like this…

…the accent marks appear next to each other, like this:

 How Unicode non-spacing marks work

 A Practical Programmer’s Guide to the Encoding Standard

In Greek, when a vowel has both an accent and a diaeresis mark on it, the accent is drawn between
the dots of the diaeresis…

…and if a vowel has a breathing mark and an accent on it, they appear side by side:

Unicode doesn’t explicitly specify this kind of behavior (although you can usually tell you’re
supposed to do it from looking at the representative glyph pictures in the Unicode standard), partially
because accent placement on the same letters sometimes varies depending on what language is being
displayed. If you’re designing a font for a particular language, you need to know what the characters
should look like for that language.

Dealing properly with combining character sequences

Systems handling Unicode text need to be careful when dealing with combining character sequences.
Generally speaking, they should be thought of as single characters that happen to be stored using
multiple code points, just as supplementary-plane characters are representing using two code units in
UTF-16 (the so-called “surrogate pair”). This means they should travel as units.

For example, deleting a base character without deleting the non-spacing marks that follow it will
cause those marks to attach themselves to the character that precedes the one that was deleted.
Inserting characters into the middle of a combining character sequence can have similarly weird
consequences. There’s nothing in Unicode or in most string-handling libraries that prevents you from
doing this kind of thing, just as they don’t prevent you from breaking up surrogate pairs; code that
manipulates Unicode strings has to be careful to respect combining-character-sequence boundaries.

Unicode also doesn’t say anything about what happens when a string or file begins with a non-
spacing mark, or when a non-spacing mark follows a paragraph boundary or some kind of control
character. These are situations that shouldn’t happen if combining character sequences are treated as
units, but again nothing prevents them. A good text-display engine might display the non-spacing
marks as though they were attached to a space, but this isn’t required or guaranteed.

This means, for example, that if you’re editing a document and have the insertion point to the right of
an accented character, and that character is represented in memory with a combining character
sequence, hitting the left arrow should not simply back up one code unit in the backing store—this
would let the user insert a character between the base letter and the accent or delete the base letter
without also deleting the accent.

Search routines similarly have to be careful about this: Searching for “resume” shouldn’t find
“resumé” just because the é is represented with a combining charater sequence that starts with a
normal e. You have to be careful to make sure that search hits land on combining-character-
sequence boundaries.

 Combining Character Sequences and Unicode Normalization

84 Unicode Demystified

Other than the sheer number of characters you have to deal with, combining character sequences may
be the single biggest challenge to implementing truly Unicode-friendly text processing code. In
effect, even before the introduction of surrogate pairs in Unicode 2.0, Unicode was still effectively a
variable-length encoding because of combining character sequences.

The trick is, again, to diasbuse yourself of the idea that there’s a one-to-one correspondence between
“characters” as the user is used to thinking of them and code points (or code units) in the backing
store. Unicode uses the term “character” to mean more or less “the entity that’s represented by a
single Unicode code point,” but this doesn’t always match the user’s definition of “character”: a
French speaker doesn’t see é as two characters stacked on top of each other; he sees it as a single
character.

A lot of writing about Unicode uses the term “grapheme” to mean “character as the user understands
it.” Sometimes this is sort of ambiguous—is an Indic syllable cluster (see Chapter 9) a single
“grapheme” or multiple “graphemes”?—but it’s important for Unicode-friendly applications to deal
with text in their user interfaces as a series of graphemes and not as a series of Unicode code points
(or, worse, a series of UTF-16 or UTF-8 code units).

Canonical decompositions

Combining character sequences are great for cutting down on encoding space and allowing for
representation of combinations of marks you never thought of, but they have a couple of big
disadvantages. They take up more space, and they’re harder to process, requiring more sophisticated
display technology, among other things.

For these reasons, Unicode also contains a large number of so-called “precomposed characters,” code
point values representing the combination of a base character and one or more non-spacing marks.
Many character encoding standards, including the Latin-1 encoding used in most of Europe, use
precomposed characters instead of combining character sequences. Users of these encodings are used
to needing only a single code point to represent characters like é and ä, and implementations based
on these encodings can adhere to the simple one-to-one relationship between code points and glyphs.
Going to Unicode represents a significant step in either complexity or encoding size.

With Latin-1, there’s the additional consideration that Latin-1 forms the basis of Unicode’s
representation of the Latin alphabet. You can convert between Latin-1 and Unicode simply by zero-
padding to 16 bits or truncating to 8 bits. This wouldn’t be possible if Unicode didn’t have
precomposed characters.

The rule in Unicode is that all precomposed characters are compatibility characters; that is,
everything you can represent using precomposed characters you must also be able to represent
without them. Thus, every precomposed character in Unicode has an equivalent combining character
sequence. This is known as its canonical decomposition, and a character with a canonical
decomposition is known as a canonical composite.

For instance, consider the letter é. It can be represented using a single code point…

U+00E9 LATIN SMALL LETTER E WITH ACUTE

 How Unicode non-spacing marks work

 A Practical Programmer’s Guide to the Encoding Standard

…but this representation is, technically speaking, only there for compatibility. It decomposes into the
letter é’s canonical representation:

U+0065 LATIN SMALL LETTER E
U+0301 COMBINING ACUTE ACCENT

This means that there are two perfectly legal representations in Unicode for the same character. One
of them is the canonical representation, but the other is perfectly valid (and, in practice, way more
likely to be used). And here’s the big gotcha: the two representations are absolutely equivalent. In
other words, a conforming Unicode implementation that supports all three code point values under
discussion here is supposed to display the same thing on the screen for both representations (although
few implementations actually do right now) and, more importantly, is supposed to compare the two
different sequences as equal.

There’s an important reason for this. An average user doesn’t have any direct control over how what
he types is stored in memory; that’s the province of the programmers who wrote the software he’s
using. Say I’m writing some document using WhizBangWord, and WhizBangWord stores a
combining character sequence in the document when I type the letter é. Say I decide I want to quote
something a friend wrote to me in an email and that the email program he’s using (SuperDuperMail
stores a canonical composite when you type the letter é. I paste in some text from my friend’s email
that includes the word “résumé.” Now I do a search for the word “résumé” in my document,
butWhizBangWord doesn’t find “résumé” in the document, even though my friend clearly used it in
the section I pasted.

The problem, of course, is that WhizBangWord is only searching for “résumé” using the
representation it produces. Since superduperMail uses an alternative representation, WhizBangWord
doesn’t recognize it. Meanwhile, I, the naive user who doesn’t know or care anything about how my
writing is represented inside the computer, just think my word processor is broken. This is the
behavior the Unicode standard is trying to prevent. We’ll talk more about this in Chapter 15, but the
basic rule is that code that compares strings has to be smart enough to account for the different
possible representations of the same thing in Unicode.

Dy definition, every canonical composite character in Unicode has a canonical decomposition. The
decomposition may be more than two code points long, if, for example, the original character has
more than one accent mark. The Unicode Character Databasesaves space by giving a one- or two-
code-point decomposition for every canonical composite. If a character’s decomposition is more than
two code points long, the first character in its decomposition will be another canonical composite.
Implementations following this approach have to repeatedly look up decompositions until they arrive
at a sequence consisting exclusively of non-composite characters.

Canonical accent ordering

One of the things that combining characters let you do is attach arbitrarily many combining marks to
a base character, leading to arbitrarily long combining character sequences. And since there are many
languages where a single base character has at least two diacritical marks attached to it, these
combinations do occur in practice. In some cases, there are even precomposed characters that include
multiple diacriticals.

 Combining Character Sequences and Unicode Normalization

86 Unicode Demystified

One of the crazy things about having both precomposed characters and combining character
sequences is that both can be used together to represent the same character. Consider the letter o with
a circumflex on top and a dot beneath, a letter that occurs in Vienamese. This letter has five possible
representations in Unicode:

U+006F LATIN SMALL LETTER O
U+0302 COMBINING CIRCUMFLEX ACCENT
U+0323 COMBINING DOT BELOW

U+006E LATIN SMALL LETTER O
U+0323 COMBINING DOT BELOW
U+0302 COMBINING CIRCUMFLEX ACCENT

U+00F4 LATIN SMALL LETTER O WITH CIRCUMFLEX
U+0323 COMBINING DOT BELOW

U+1ECD LATIN SMALL LETTER O WITH DOT BELOW
U+0302 COMBINING CIRCUMFLEX ACCENT

U+1ED9 LATIN SMALL LETTER O WITH CIRCUMFLEX AND DOT BELOW

All five of these representations are equivalent. All of them look like this:

You should get this glyph for any of these five internal representations, and if you compare any two
of these sequences to each other, they should compare equal.

Generally you deal with comparing alternative representations of the same thing by converting all of
them to their canonical representation and then comparing the canonical representations. This
normally involves simply taking any composite characters and decomposing them, but this example
shows it isn’t always as simple as all that.

As it turns out, the canonical decomposition of U+1ED9 LATIN SMALL LETTER O WITH
CIRCUMFLEX AND DOT BELOW is the second representation in the example: U+006F U+0323
U+0302—the letter o, followed by the underdot, followed by the circumflex.

So how do we map the other alternative representations to this one? Well, there’s another step one
must go through in addition to decomposing any canonical composites. Every Unicode character has
a property called its combining class. This is a number between 0 and 255. All non-combining
characters have a combining class of 0. Some combining characters also have a combining class of 0,
but most combining characters have some other number for their combining class.

The combining class specifies how the combining character interacts with its base character. For
example, all non-spacing marks that appear above their base character but don’t attach to it have a
combining class of 230. All marks that attach to the bottom of their base character have a combining
class of 202.

 Canonical accent ordering

 A Practical Programmer’s Guide to the Encoding Standard

So to get the canonical representation for some character, you first decompose the first character in
the sequence, and then you take all the combining marks that follow it (which may include additional
marks that followed the character you decomposed) and sort them in numerical order by their
combining classes. In our example, the underdot has a combining class of 220 and the circumflex has
a combining class of 230, so the underdot goes first. (Note that this ordering is arbitrary—there’s no
special reason why the underdot has to go first; it’s just that something has to go first and the
committee decided to have the combining classes go from bottom to top.)

Remember the part about picking up combining characters that weren’t in the original
decomposition. If you start with o-circumflex followed by the combining underdot (U+00F4
U+0323), you’d begin by decomposing o-circumflex, giving you U+006F U+0302 U+0323. You’d
then have to notice that the sequence actually also includes the underdot (U+0323), even though it
actually follows the character you decomposed (U+006F U+0302), and then sort them into the
correct order. The basic rule is that a combining character sequence goes from one character with a
combining class of 0 to the next character with a combining class of 0.25

Characters that have the same combining class don’t get reordered relative to each other when
deriving the canonical version of a combining character sequence. This is because characters with the
same combining class interact typographically. Because they interact typographically, their relative
order is important: the one that occurs first in the backing store gets drawn closest to the base
character.

25 This is actually the rule for comparing characters. Text-rendering engines will actually have to consider

longer sequences from time to time. This is because there are combining characters with a combining class

of 0. Many of these, such as Indic vowel signs, simply get treated as non-combining characters, but a few,

such as U+20DD COMBINING ENCLOSING CIRCLE, interact typographically with all other combining

marks. The circle must maintain its position in the backing store relative to the other marks so that the

rendering engine knows which marks to draw inside the circle and which to draw outside.

Double diacritics

One other interesting oddity is that there are a couple of combining characters in Unicode that
actually attach to two characters. There’s a tilde, for example, that is meant to be drawn over a pair of
letters, like so:

;;

 Combining Character Sequences and Unicode Normalization

88 Unicode Demystified

These special characters, which are used in Tagalog and in the International Phonetic Alphabet, are
treated as normal non-spacing marks—they are stored after the first of the two characters they appear
over and are just drawn so that they hang over whatever comes next.

For compatibility with some legacy encodings, the standard also includes pairs of combining
characters that when drawn next to each other (i.e., when applied to succeeding characters) produce
the same effect. You generally shouldn’t use these.

Compatibility decompositions

Canonical composites are just one kind of compatibility character; in fact, they’re only one kind of
composite character. There are also compatibility composites. In fact, Unicode is rife with
compatibility composites, which account for 3,165 assigned code point values in Unicode 3.1. All of
these characters have assigned code point values in some encoding standard in reasonably wide-
spread use. The compatibility characters are those characters from those standards that wouldn’t have
made it into Unicode on their own merits, but were given their own code point values in Unicode to
allow text to be converted from the source encodings to Unicode and back again without losing any
of of the original information (this is usually referred to as “round-trip compatibility”)., and the
compatibility composites are the compatibility characters with compatibility decompositions,
mappings to a preferred representation in Unicode.

There are a few important differences between canonical and compatibility decompositions:

x� Compatibility decompositions may lose information. Many compatibility composites decompose
to some other Unicode character plus some formatting information. The decomposition will just
be to the canonical characters; since Unicode doesn’t encode formatting information, the
additional formatting is lost. (Theoretically, a styled-text system using Unicode as its character
encoding could preserve the formatting information, but this is beyond the scope of Unicode.)

x� Canonical composites can always be decomposed into pairs of characters, with a full
decomposition achievable by repeatedly splitting characters into pairs of characters until no more
splitting is possible. This isn’t necessarily true with compatibility composites—the intermediate
forms necessary to make this possible aren’t all encoded as they are with canonical
decompositions.

The compatibility decompositions fall into sixteen rough categories, as follows:

Superscripts and subscripts. The encoding block from U+2070 to U+209F contains superscripted
and subscripted versions of the Western digits and various math symbols. There are also some
scattered in the Latin-1 block and other places. The preferred representation of these things is the
normal character codes with additional out-of-band formatting information indicating the
subscripting or superscripting.

Font variants. The Letterlike Symbols block from U+2100 to U+214F includes a bunch of symbols
that are basically letters with some kind of graphic variation. Many of these are just letters in some
particular kind of font. These are marked as compatibility composites. The preferred representation is
the regular letter plus out-of-band information indicating the font.26

26 It’s worth noting that with many of the letterlike symbols, going to an alternative representation featuring a

regular Unicode letter with styling information attached may still lose data, even though you get the same

 Compatibility decompositions

 A Practical Programmer’s Guide to the Encoding Standard

Circled characters. Unicode includes a lot of characters with circles around them. Many are
encoded in the Enclosed Alphanumerics block from U+2460 to U+24FF, and many are encoded in
the Enclosed CJK Letters and Months block from U+3200 to U+327F. The preferred representation
for all of these is their normal representation plus out-of-band information indicating that they’re
circled. (You could also represent many of these using U+20DD COMBINING ENCLOSING
CIRCLE, but the official decompositions don’t include this character.)

Halfwidth and fullwidth. The legacy East Asian standards include “fullwidth” variants of the ASCII
characters. These normally map to fixed-width glyphs that are sized to fit in the display cells
occupied by CJK ideographs, allowing them to be mixed better with the ideographs in text that is laid
out vertically. There are also various Japanese and Korean characters that are sized to fill up half a
display cell, allowing them to be laid out in pairs in vertical text. These live in the Halfwidth and
Fullwidth Forms block from U+FF00 to U+FFEF. Again, the preferred representation is the normal
representation for the characters with out-of-band information indicating how they are to be laid out.

Square forms. The legacy Japanese standards also include a large number of abbreviations, some in
Japanese characters, some in Latin letters, specially laid out so as to fit in a single display cell (many
of these consist of three or four Katakana characters arranged in a little square, hence the name).
These are all in the CJK Compatibility block from U+3300 to U+33FF. Again, the preferred
representation is the normal characters with additional out-of-band info indicating how they are to be
laid out.

Vertical forms. The CJK Compatibility Forms block from U+FE30 to U+FE4F contains a number
of Japanese punctuation marks and symbols rotated ninety degrees for use in vertically-laid-out text.
The preferred representations for these symbols are the same as for horizontally-laid-out text. The
rendering engine should be smart enough to pick the appropriate glyph for the directionality of the
text.

Small forms. The Small Form Variants block from U+FE50 to U+FE6F includes a number of ASCII
punctuation marks. Taken from the Taiwanese national standard, these are intended to be drawn in a
full CJK display cell, but using a much-smaller-than-normal glyph. As with most other compatibility
composites, these should be represented using the normal character codes and out-of-band
information indicating the desired layout.

Initial, medial, final, and isolated forms. The Arabic alphabet is always written cursively, with
most letters in a word joining to their neighbors and changing shape slightly depending on how they
join. In Arabic printing, each letter is generally considered to have four visual forms: initial, medial,
final, and isolated, depending on how the letter joins to its neighbors. Unicode just encodes the
letters, leaving it up to the rendering engine to select the appropriate glyph for each letter, but it also
includes the Arabic Presentation Forms B block (U+FE70 to U+FEFE), which has a separate code
point value for each glyph, for backward compatibility with systems whose rendering engines don’t
do this automatic glyph selection. The preferred representations of these characters are, of course, the
glyph-independent versions.

appearance. This is because the Unicode general category changes: The character goes from being a symbol

to being a letter. A lot of the time there won’t be a practical difference, but it could cause things like search

functions to work differently—searching for the word “I” in a mathcmatical paper, for example, might find

the italicized i used to represent imaginary numbers.

 Combining Character Sequences and Unicode Normalization

90 Unicode Demystified

Non-breaking characters. There are a few characters, such as U+00A0 NON-BREAKING SPACE
and U+2011 NON-BREAKING HYPHEN, that have non-breaking semantics. That is, paragraph-
layout engines are not supposed to put these characters either right before or right after a line
boundary. These are considered compatibility composites, with the preferred representation being the
normal version of the character plus out-of-band information preventing the line breaks. (Any char-
acter can be given non-breaking semantics by surrounding it with U+2060 WORD JOINER on either
side, but these characters’ decompositions don’t include this.)

Fractions. Unicode includes a number of fractions encoded as single code points. The preferred
representation of these fractions uses normal digits and U+2044 FRACTION SLASH.

Miscellaneous. Most of the remaining compatibility composites are, like the fractions, multiple
characters encoded using a single code point. Somce of these, such as the characters in Arabic
Presentation Forms A, are ligatures, special glyphs representing the combination of two or more
characters. Many, such as the Roman numerals in the Number Forms block or the parenthesized
numbers in the Enclosed Alphanumerics block, are just multiple characters laid out normally. In both
cases, the preferred representations just use multiple characters. (In the case of the ligatures, the
rendering engine is supposed to be smart enough to form the ligature automatically when it sees the
appropriate pair of characters.)

There’s also a handful of characters that are both canonical composites and compatbility composites
(that is, they have both canonical and compatibility decompositions, and they’re different). This can
happen when a character has a canonical decomposition that includes a compatibility composite. The
character’s canonical decomposition would leave this character intact, while the character’s
compatibility decomposition would start with the canonical decomposition and then find the
compatibility decomposition of the composite character within it.

Singleton decompositions

There’s also a small number of compability characters with one-character canonical decompositions,
often referred to as “singleton decompositions.” These characters count as “canonical composites,”
but are fundamentally different from the precomposed characters—the other canonical composites—
because they don’t actually represent the composition of anything. They’re more akin to the
compatibility composites, but they have canonical decompositions because replacing one of these
characters with its decomposition doesn’t lose any data.

You see this kind of thing when a character, for historical reasons, gets assigned two different code
point values in Unicode, usually because this had happened in some source standard and Unicode’s
designers wanted to maintain round-trip compatibility.

By giving one of the two code points a singleton canonical decomposition to the other one, the
Unicode standard is effectively discouraging its use by preventing it from appearing in normalized
Unicode text (we’ll get to normalization in a minute). Generally speaking unless you’re specifically
trying to maintain round-trip compatibility with some other standard, you should avoid characters
wsith singleton decompositions.

For example, the CJK Compatibility Ideographs block includes a couple hundred Chinese characters
that are also encoded in the CJK Unified Ideographs area. The duplicates in the compatibility area
are, for all intents and purposes, identical to their counterparts in the main CJK area. Unicode has
this second set of code point assignments for these characters because some source standard included
duplicate encodings for these characters. For example, the majority of them come from the Korean
KS C 5601 standard, which gave a separate code point assignment to each alternate pronunciation of

 Compatibility decompositions

 A Practical Programmer’s Guide to the Encoding Standard

the character. Unicode rejects this approach to encoding these characters, since they don’t differ in
appearance or semantics, but retains the duplicate encodings for round-trip compatibility with KS C
5601. But all of the CJK compatibility characters have singleton decompositions to their
counterparts in the main CJK Ideographs area, indicating that they really shouldn’t be used in
Unicode text unless that interoperability is really important.

Hangul

Hangul is the name of the Korean writing system. Some linguists consider it the most perfect writing
system in common use. Invented in the fifteenth century by King Sejong, it’s basically an alphabetic
system, but the letters, called jamo, are arranged into blocks representing whole syllables, probably
because of the influence of the Chinese characters. Hangul syllables look kind of like Chinese
characters and are laid out on the page in a similar fashion (in fact, Korean writing often uses
Chinese characters in addition to Hangul syllables).

Hangul jamo come in three categories, reflecting the structure of Korean pronunciation: choseong,
which are initial consonants, jungseong, which are vowels, and jongseong, which are trailing
consonants. A Korean syllable consists of a sequence of choseong, followed by a sequence of
jungseong, optionally followed by a sequence of jongseong, all arranged to fit into a single square
display cell.

Unicode provides two alternative methods of encoding Hangul. It includes a complete collection of
precomposed Hangul syllable blocks, encoded in the range from U+AC00 to U+D7FF, but also
includes codes for the individual jamo in the range from U+1100 to U+11FF. A modern Korean
syllable can be represented either with a single code point representing the whole syllable, or with a
sequence of code points for the individual jamo.

The jamo code points have conjoining semantics—they’re intended to be used together to represent
whole syllables (there’s another set of jamo, encoded from U+3130 to U+318F, which stand alone,
but they’re considered compatibility composites). The precomposed syllables are considered to be
canonical composites—they all have canonical decompositions into conjoining jamo.

The opposite isn’t true, however—it’s possible to produce sequences of conjoining jamo that can’t be
represented using the precomposed syllables. Many of these are mere nonsense, or sequences
intended to give special effects (there are invisible filler characters that can be used to represent
isloated jamo or syllable blocks with missing jamo), but there are also archaic Korean syllables that
can only be represented using the conjoining jamo. For this reason, as well as consistency with the
rest of Unicode, the conjoining jamo are the canonical representation of Korean Hangul, even though
the precomposed syllables are more commonly used.

A sequence of conjoining Hangul jamo is a combining character sequence, but it’s different from
other Unicode combining character sequences in that it doesn’t consist of a non-combining character
followed by one or more combining characters. Instead, all of the jamo sometimes function as
combining characters and sometimes as non-combining characters. Basically, all of the jamo are non-
combining characters except when they appear together. When they appear together, the Unicode
standard gives an algorithm for locating syllable breaks. (The algorithm is actually quite simple:
leading consonants are followed by vowels, which are followed by trailing consonants. The
appearance of a character out of that sequence marks the beginning of a new syllable. Since every

 Combining Character Sequences and Unicode Normalization

92 Unicode Demystified

syllable is supposed to have an initial consonant and a vowel, Unicode provides invisible filler
characters to allow the representation to be more regular.)

The canonical decomposition of a precomposed syllable always consists of a single leading
consonant, a single vowel, and, optionally, a single trailing consonant. This is possible, even for
syllables like krang, because all of the compound consonants and all of the diphthongs in Korean are
encoded as single code points. The precomposed syllables and conjoining jamo are encoded in such a
way as to allow for algorithmic conversion between the two representations. Extra work may still
have to be done, however, for some archaic Hangul syllables or nonstandard decomposed
repesentations such as representing the kr in krang using the separate k and r jamo. (The handling of
nonstandard representations of modern syllables is neither specified nor required by the standard,
although very early versions had it—it’s an additional language-specific thing an application can
handle if it wishes.)

Finally, there’s a side effect of the decomposition of precomposed Hangul syllables into conjoining
jamo. If you mix precomposed syllables and conjoining jamo in the same passage of text, they can
combine with each other. To see why, consider this character:

This character can be represented either this way…

U+B8B4 HANGUL SYLLABLE ROEN

…or this way:

U+1105 HANGUL CHOSEONG RIEUL

U+116C HANGUL JUNGSEONG OE

U+11AB HANGUL JONSEONG NIEUN

Likewise, this character…

…can be represented either this way…

U+B878 HANGUL SYLLABLE ROE

…or this way:

U+1105 HANGUL CHOSEONG RIEUL

U+116C HANGUL JUNGSEONG OE

Notice that the second sequence is a subset of the first. So if you have this sequence…

U+B878 HANGUL SYLLABLE ROE

U+11AB HANGUL JONSEONG NIEUN

…and you decompose U+B878 into conjoining jamo…

U+1105 HANGUL CHOSEONG RIEUL

 Compatibility decompositions

 A Practical Programmer’s Guide to the Encoding Standard

U+116C HANGUL JUNGSEONG OE

U+11AB HANGUL JONSEONG NIEUN

…you get the sequence we started with, the decomposed version of . This means that this

sequence…

U+B878 HANGUL SYLLABLE ROE

U+11AB HANGUL JONSEONG NIEUN

…has to be another alternate representation for . So precomposed Hangul syllables have to

combine with conjoining jamo.

For more information on Hangul, see Chapter 10.

Unicode normalization forms

Of course, an encoding that provides so many alternative ways of representing characters can give
rise to text that is much more difficult than necessary to process. In particular, comparing strings
for equality is a big challenge when significantly different sequences of bits are supposed to be
treated as equal. One way to deal with this is to require that text be normalized, or represented in a
uniform manner, or to normalize text at some well-defined point so as to make things like
comparing for equality simpler.

Of course, by defining something as the “canonical representation” of a particular idea, you’re
nominating that as the form you normalize to. In this way, Unicode 1.x and 2.x could be thought to
have either one or two normalized forms. Unicode 3.0 has four normalized forms, adding two more
and formalizing the definitions of all four. The four Unicode normalized forms are as follows:

Normalized Form D is the traditional normalized form of Unicode, where all canonical
composites (including Hangul syllables) are represented using their canonical decompositions.

Normalized Form KD also eliminates the compatibility composites (the K stands for
“kompatibility”), representing everything using both compatibility and canonical decompositions.
Form KD is not recommended for general use (e.g., for transmitting things around on the Internet)
because it potentially loses data.

Using the decomposed forms of everything, of course, makes everything bigger, which is a
common objection in areas where the cost of every additional code point is significant, such as
when transmitting things over the Internet, or for people used to using character encodings that
have only precomposed characters, so there was a strong call for a form of Unicode that favors the
composed forms of everything over the decomposed forms. Two additional normalized forms were
created in response to this need.

Normalized Form C favors the canonical-composite forms of the characters in Unicode. Of
course, this is more complicated than decomposition because there are things which can only be
represented using combining character sequences; there is no composite form that can be used as

 Combining Character Sequences and Unicode Normalization

94 Unicode Demystified

an alternative. For this reason, you get to Normalized Form C by first converting to Normalized
Form D and then composing everything it’s possible to compose.

Another additional complication with using composed characters comes if more canonical
composites are added to the standard in the future. Text which is in Normalized Form C with
version 3.0 of Unicode might not be in Normalized Form C according to a future Unicode version
with more canonical composites if the definition of Normalized Form C amounted to “compose
everything you can.” To keep the definition of Normalized Form C consistent, the allowable
canonical composites are fixed for all time to be just the ones in Unicode 3.0.27 One ironic side
effect is that a hypothetical Unicode 4.0 canonical composite would be represented by its
decomposed form in Normalized Form C.

The Internet environment is an excellent example of an environment where Unicode normalization
comes in handy. XML is a Unicode-based standard, and without requiring text to be normalized,
matching up XML tags would be very difficult if XML were to follow the Unicode equivalence
rules. The World Wide Web Consortium (W3C) deals with this by declaring a rule known as
Uniform Early Normalization, which requires that all processes that produce text in the Internet
environment produce it in normalized form. Processes that consume or pass text through (which
are generally expected to be way more common) can assume that the text they receive is already in
nornalized form and don’t have to do it themselves. This means, among other things, that they can
depend on character sequences always being represented with the same sequences of code points,
making it possible to compare two strings for equality by doing simple bvinary comparison on the
code points.

Normalized Form KC is the counterpart of Normalized Form KD, taking compatibility
decompositions into account as well. It’s a little silly to favor the compatibility composites over the
regular characters (would you want to convert two capital Is in a row into U+2161 ROMAN
NUMERAL TWO everywhere you encountered them, for example?), and Normalized Form KC
doesn’t do that.

It does the opposite. To get to Normalized Form KC, you first convert to Normalized Form KD
(compatibility-decompose everything), then substitute precomposed characters (canonical
compositions) where possible.

We’ll take an in-depth look at implementation strategies for the various pieces of Unicode
normalization—canonical decomposition, compatibility decomposition, and canonical
reordering—in Chapter 14.

Grapheme clusters

The newest version of Unicode, Unicode 3.2, introduces a new concept called the “grapheme
cluster.” Actually, the concept isn’t all that new; what Unicode 3.2 essentially does is formalize a
concept that was already out there, nailing down a more specific definition and some related
character properties and giving the concept a new name.

27 Actually, it isn’t even all the precomposed charaters in Unicode 3.0. A fair number of Unicode
3.0 characters with canonical decompositions are excluded from Normalized Form C because the
decomposed alterntives were actually considered preferable. We talk about this more in Chapter 5.

 Unicode normalization forms

 A Practical Programmer’s Guide to the Encoding Standard

A grapheme cluster is a sequence of one of more Unicode code points that are to be treated as a
single unit by various processes:

x� Text-editing software should generally allow placement of the cursor only at grapheme cluster
boundaries: Clicking the mouse on a piece of text should place the insertion point at the nearest
grapheme cluster boundary, and the arrow keys should move forward and back one grapheme
cluster at a time.

x� Text-rendering software should never put a line break in the middle of a grapheme cluster
(since the individual characters in a grapheme cluster generally interact typographically in ways
that make it difficult to separate out the pieces, you generally couldn’t put a line break in the
middle of a grapheme cluster without deforming it visually in sme way.

x� Sort orders for different languages generally give a relative ordering for grapheme clusters, not
necessarily individual characters. For instance, in Spanish, the sequence ch is treated as a
separate letter that sorts between c and d. Therefore, in Spanish, ch would generally be
considered a grapheme cluster.

x� Search algorithms should only count a matching sequence in the text being searched as a hit if it
begins and ends on a grapheme cluster boundary.

Exactly what constitutes a grapheme cluster may vary from language to language; what Unicode
3.2 attempts to do is set down a default definition of grapheme cluster that can then be tailored as
necessary for specific languages.

The term “grapheme cluster” is new in Unicode 3.2;28 in earlier versions of Unicode, the same
concept was generally just called a “grapheme,” although other phrases such as “logical character”
or “or “user character” werwe also thrown around. The problem with “grapheme” is that it has a
specific meaning in linguistics, and the Unicode definition didn’t agree completely with the
common linguistic definition. A grapheme is essentially the smallest meaning-bearing unit of a
writing system, as understood by the anverage user of that writing system.

This definition is necessarily subjective and language-specific: Is ö a single grapheme or two? An
English speaker would probably say two—an o and an umlaut, but a Swede would probably say
one: ö is a separate letter of the Swedish alphabet. A German speaker could go either way. And a
clump of letters that you might want a text editor to treat as a single unit, such as a Hindi syllable
cluster, might still be recognized by an average Hindi speaker as several letters—a cluster of
graphemes.

Again, exactly what constitutes a grapheme cluster may vary from language to language, user to
user, or even process to process. Unicode sets forth a standard default definition of a grapheme
cluster that should prevail in the absense of a more application-specific definition. A default
grapheme cluster is one of the following things:

x� A base character followed by zero or more combining marks, i.e., a normal combining
characterr sequence.

x� A Hangul syllable, whether represented using a precomposed-syllable code point, a series of
conjoining-jamo code points, or a combination of the two.

28 And may, in fact, change before you read this, although that’s somewhat doubtful. There is widespread

revulsion to this name in the Unicode community; no one really likes it (a fairly common complaint is

that it sounds like some kind of breakfast cereal—“Have you tried new Grapheme Clusters? Now with

more fiber!”), but no one can come up with anything better.

 Combining Character Sequences and Unicode Normalization

96 Unicode Demystified

x� An “orthographic syllable” in one of the Indic scripts: Such a sequence consists of a single
consonant or independent vowel, or a series of consonants joined together with virama marks,
optionally followed by a dependent vowel sign. (For more information on this, see Chapter 9.)

x� The CRLF sequence (i.e., U+000D U+000A, the ASCII carriage-return-line-feed combination)
is a grapheme cluster.

x� A user-defined grapheme cluster, which uses U+034F COMBINING GRAPHEME JOINER to
“glue” together what would otherwise be separate grapheme clusters.

Generally speaking, grapheme cluster boundaries don’t affect the way text is drawn, but there are a
few situations where it does:

x� An enclosing mark surrounds all the characters that precede it, up to the nearest preceding
grapheme cluster boundary. U+034F COMBINING GRAPHEME JOINER can thus be used to
get an enclosing mark to enclose more than one character:
U+0031 DIGIT ONE

U+0032 DIGIT TWO

U+20DD COMBINING ENCLOSING CIRCLE

…gets drawn like this:

1 2

The 1 and the 2 are separate grapheme clusters, so the circle only surrounds the 2. But if you
put a grapheme joiner between them…
U+0031 DIGIT ONE

U+034F COMBINING GRAPHEME JOINER

U+0032 DIGIT TWO

U+20DD COMBINING ENCLOSING CIRCLE

…you get this:

12

The grapheme joiner eliminates the grapheme cluster boundary between the 1 and the 2,
binding them together as a single grapheme cluster. The circle then surrounds both of them.

x� A non-spacing mark applies to all characters up to the nearest preceding grapheme cluster
boundary, provided they’re not a conventional combining character sequence (if they are, the
non-spacing mark is just part of that combining character sequence). This rule is here mainly to
say that non-spacing marks following Hangul syllables apply to the whole syllable, regardless
of how it’s represented.

The second definition is rather nebulous: What should you get if you have this, for example?

U+0061 LATIN SMALL LETTER A

U+034F COMBINING GRAPHEME JOINER

U+0065 LATIN SMALL LETTER E

U+0303 COMBINING TILDE

The answer seems to be that the tilde goes over the e: the grapheme joiner would have no effect in
this case. But it’s equally reasonable to assume that the tilde would be centered between the a and
the e, or even stretched to extend over both the a and the e: This would be a way to get more
double-diacritics without having to encode them separately. Neither seems to be the intent,
however; indeed there’s been talk of getting this effect by taking advantage of the enclosing-mark
brhavior. You’d introduce a new INVISIBLE ENCLOSING MARK character and apply the non-
spacing mark to that: In the same way that a non-spacing mark after an enclosing mark would go
outside the enclosing mark (and effectively be applied to it), the invisible enclosing mark would

 Unicode normalization forms

 A Practical Programmer’s Guide to the Encoding Standard

cause any non-spacing marks that follow it to be applied to the entire sequence of characters it
“encloses.” This isn’t in Unicode 3.2, but might be in a future version of Unicode.

The Unicode 3.2 version of the Unicode Character Database specfies three new character
properties to aid in the determination of grapheme cluster boundaries: a grapheme cluster consists
of a Grapheme_Base character followed by zero or more Grapheme_Extend characters, optionally
followed by a Grapheme_Link character, another Grapheme_Base character, and zero or more
Grapheme_Extend characters, and so on.

On top of this basic definition you have to layer some extra rules to get Hangul syllables and the
CRLF sequence to be treated as grapheme clusters. In addition, Join_Control characters are
defined as transparent to the algorithm: they neither cause nor prevent grapheme cluster
boundaries.

As some of the above discussion suggests, at the time of this writing (January 2002), the exact
semantics and behavior of grapheme clusters aren’t completely nailed down. This discussion may
well deviate some from how it ultimately comes down in the final version of Unicode 3.2.

 99

CHAPTER 5 Character Properties and the
Unicode Character Database

One of the things that makes Unicode unique is that it goes well beyond just assigning characters to
numbers. The Unicode standard also provides a wealth of information on how the characters are to
be used, both together and individually. The Unicode standard comprises not just the information in
the Unicode book, but also the Unicode Character Database, a collection of files included on the CD
that comes with the book.

The Unicode Character Database is the most active part of the standard, and actually changes more
frequently than the book does. In fact, changes to the database actually happen more often than
Unicode Technical Reports are issued. If there are significant changes to the standard, such as new
characters added, a technical report will be issued or a new book will be put out, but error fixes and
clarifications can happen to the database without changes to any other documents. Changes to the
database do cause Unicode’s update version number (the third number) to be bumped. As of this
writing (January 2002), the current Unicode version is 3.1.1, with version 3.2 in beta.

The Unicode Character Database may fairly be considered the heart of the standard. Implementations
of many processes that operate on Unicode text are based on tables of data that are generated from
the Unicode Character Database. This chapter will take an in-depth look at the Unicode Character
Database and at the various properties that each Unicode character has.

Where to get the Unicode Character Database

Since the Unicode Character Database can be updated relatively frequently, it’s usually a good idea
not to rely too heavily on the version on the CD that comes with the Unicode standard. In fact, it’s
pretty obsolete right now, as the structure of the data files was changed when Unicode 3.1 came out.

 Character Properties and the Unicode Character Database

100 Unicode Demystified

It’ll be mostly right, but may differ in some particulars from the most current version, and it’ll be
organized differently.

You can always find the most current version on the Unicode Web and FTP sites. The URL of the
Unicode Data page, which includes links to all the files, is

http://www.unicode.org/unicode/onlinedat/online.html

The current version of the Unicode Chartacter Database, specifically, is always at

http://www.unicode.org/Public/UNIDATA/

The parent directory also includes a number of other useful folder of data. Among these are the
following:

http://www.unicode.org/Public/MAPPINGS/ contains a bunch of files giving mappings of
characters between Unicode and other encoding standards. The most interesting part of this section
is the VENDORS folder, which contains mappings between Unicode and various vendor-defined
encoding schemes. The other sections are useful as well, but haven’t been updated in a long time.

http://www.unicode.org/Public/PROGRAMS/ contains sample code to do various interesting
things. It includes demonstration code in C for converting between the Unicode encoding forms, a
demonstration program for converting from SHIFT-JIS to Unicode, a sample implementation (in
Java) of the Standard Compression Scheme for Unicode, and some other stuff.

http://www.unicode.org/Public/TEXT/ contains some old Unicode Technical Reports and
some other stuff of mainly historical interest.

Finally, http://www.unicode.org/Public/BETA/ contains early versions of data files
proposed for future versions of the Unicode Character Database.

In addition to these folders, there are other folders here with version numbers in their names. These
are old updates to the Unicode Character Database. These are mainly of historical interest, but are
also useful for figuring out what changed from version to version. For instance, if you have code
based on an old version of Unicode, you can compare the files for that version to the ones for the
current version to figure out what changes you need to make to your own data tables to make them
consistent with the current version of Unicode.

The UNIDATA directory

The UNIDATA folder on the Unicode FTP/Web site
(http://www.unicode.org/Public/UNIDATA/) is the official repository of the Unicode
Character Database. Here’s a quick rundown of what’s in this directory:

x� ArabicShaping.txt is a data file that groups Arabic and Syriac letters into categories depending
on how they connect to their neighbors. The data in this file can be used to put together a
minimally-correct implementation of Arabic and Syriac character shaping.

 Unicode normalization forms

 A Practical Programmer’s Guide to the Encoding Standard

x� BidiMirroring.txt is useful for implementing a rudimentary version of mirroring. For the
characters whose glyph in right-to-left text is supposed to be the mirror image of their glyph in
left-to-right text (the characters with the “mirrored” image), this file identifies those that have
another character in Unicode that has the correct glyph in left-to-right text (or a similar glyph).
This left you implement mirroring for many (but not all) Unicode characters by simply mapping
them to other characters that have the right glyph.

x� Blocks.txt breaks the Unicode encoding space down into named blocks (e.g., “C0 Controls and
Basic Latin” or “Miscellaneous Symbols”) and specifies which block each Unicode character is
in.

x� CaseFolding.txt can be used to implement case-insensitive string comparison . It maps every
Unicode code point to a case-insensitive representation—a code point or sequence of code points
that represent the same character with case distinctions taken out (this was basically derived by
converting each character to uppercase and then converting the result to lowercase).

x� CompositionExclusions.txt lists characters with canonical decompositions that should not appear
in normalized Unicode text.

x� EastAsianWidth.txt assigns every character to a category that describes how it should be treated
in East Asian typography. This is the data file for UAX #11.

x� Index.txt is a soft copy of the character names index from the Unicode standard book. It gives
you a way to quickly look up a character’s code point value if you know its name.

x� Jamo.txt assigns each of the conjoining Hangul jamo characters a “short name” which is used to
derive names for the precomposed Hangul syllables.

x� LineBreak.txt assigns every Unicode character to a category that determines how it should be
treated by a process that breaks text up into lines (i.e., a line-breaking process uses the character
categories defined in this file to determine where to put the line breaks). This is the data file for
UAX #14.

x� NamesList.txt is the source file used to produce the code charts and character lists in the Unicode
standard. NamesList.html explains its structure and use.

x� NormalizationTest.txt is a test file that can be used to determine whether an implementation of
Unicode normalization actually conforms to the standard. It includes a bunch of unnormalized
test strings along with what they should turn into when converted to each of the Unicode
normalized forms.

x� PropertyAliases.txt, which is new in Unicode 3.2, gives abbreviated and long names for all the
Unicode character properties. The idea is that these names can be used in regular-expression
languages and other search facilities to identify groups of characters with a given property.

x� PropertyValueAliases.txt is also new in Unicode 3.2. For each property listed in
PropertyAliases.txt that isn’t a numeric or Boolean property, it gives abbreviated and long names
for all the possible values of that property. These names are intended to be used with the names
in PropertyAliases.txt to provide shorthand ways of referring to sets of characters with common
properties for regular-expression engines and similar facilities.

x� PropList.txt is one of the two main files defining character properties. It acts as a supplement to
the UnicodeData.txt file. PropList.html explains what’s in it.

x� ReadMe.txt gives the version number for the characters in the directory, along with points to
other files that explain its contents.

x� Scripts.txt groups the Unicode characters by “script,” that is, the writing system that uses it.

x� SpecialCasing.txt gives complex case mappings for various Unicode characters. It lists all the
characters that have a non-straightforward case mapping.

x� StandardizedVariants.html, which is new in Unicode 3.2, lays out just what combinations of
regular character and variation selector are legal and what glyphs they represent.

 Character Properties and the Unicode Character Database

102 Unicode Demystified

x� UnicodeCharacterDatabase.html is an overview of all the files in the Unicode Character
Database and provides references to the sections of the Unicode standard that deal with each of
them.

x� UnicodeData.txt is the original, and still primary, data file in the Unicode Character Database,
defining most of the most important character properties for each character. UnicodeData.html
explains the contents of UnicodeData.txt.

x� Unihan.txt is a huge data file containing a wealth of information about the various Han (Chinese)
characters.

In addition to the files listed above, you’ll find a bunch of files with the word “Derived” in their
names. Each of these files contains information that can be derived from information in one or more
of the files listed above (most often, UnicodeData.txt). Generally, each of these files isolates a single
character property from UnicodeData.txt and lists the characters in groups according to the value
they have for that property. This can make it easier to figure out which characters are in certain
groups, and makes some of the Unicode data easier to work with. Among the derived-data files:

x� DerivedAge.txt, which is new in Unicode 3.2, gives, for each character in Unicode, the version
of Unicode in which it was introduced.

x� DerivedBidiClass.txt groups the Unicode characters according to their directionality (i.e., how
they’re treated by the Unicode bidirectional layout algorithm). The normative versions of these
properties are in UnicodeData.txt.

x� DerivedBinaryProperties.txt lists groups of characters that have a value of “yes” for various
properties that have yes/no values. Right now, this file only lists the characters that have the
“mirrored” property, the one binary property given in UnicodeData.txt. PropList.txt gives more
binary properties, but is already formatted the same was as this file.

x� DerivedCombiningClass.txt groups characters according to their combining class, which is
officially specified in UnicodeData.txt.

x� DerivedCoreProperties.txt lists characters belong to various general groups (e.g., letters,
numbers, identifier-starting characters, identifier-body characters, etc.). The information in this
file is derived from information in UnicodeData.txt and PropList.txt.

x� DerivedDecompositionType.txt groups characters with decompositions according to the kind of
decomposition they have (canonical versus compatibility). For the compatibility composite
characters, it further breaks them down according to the type of their compatibility decomposition
(that is, what information it loses). This information is derived from UnicodeData.txt.

x� DerivedJoiningGroup.txt and DerivedJoiningType.txt both present information in the
ArabicShaping.txt file organized in a different way. DerivedJoiningGroup.txt groups Arabic and
Syriac letters according to their basic shape, and DerivedJoiningType.txt groups them according
to the way they join to their neighbors.

x� DerivedLineBreak.txt presents the same information as LineBreak.txt, but organizes it
differently: Instead of listing the characters in code-point order and giving each one’s line-break
category, it lists the categories and then lists the characters in each category.

x� DerivedNormalizationProperties.txt gives groups of characters that can be used to optimize
implementations of Unicode normalization.

x� DerivedNumericType.txt and DerivedNumericValues.txt group together various characters
that represent numeric values. DerivedNumericType.txt groups them together according to
whether they are decimal digits or something else, and DerivedNumericValues.txt groups them
together by the numeric values they represent. Both are derived from UnicodeData.txt.

x� DerivedProperties.html is an overview document explaining the contents of the other derived-
data files.

 Unicode normalization forms

 A Practical Programmer’s Guide to the Encoding Standard

You’ll often see the filenames of the files in the UNIDATA directory with versions numbers
appended (there are also version numbers in the comments in the files). These version numbers are
keyed to a particular version of Unicode: UnicodeData-3.1.1.txt, for example, would be the version
of UnicodeData.txt that goes with version 3.1.1 of the Unicode standard. You can’t always rely on
this, however, since not every file changes with every new version of Unicode (there is no
UnicodeData-3.1.1.txt, for example—the Unicode 3.1.1 data changes were in other files). You’ll
also sometimes see one-digit version numbers on some of the files—originally some of the files,
especially those that are keyed to Unicode Technical Reports, used a different numbering scheme.
The changed for each data file as its corresponding Technical Report got adopted into the standard
(i.e., turned into a Unicode Standard Annex).

In the sections below, we’ll take a closer look at the most important of the files in the Unicode
Character Data, and at the properties they define.

UnicodeData.txt

The nerve center of the Unicode Standard is the UnicodeData.txt file, which contains most of the
Unicode Character Database. As the database has grown, and as supplementary information has been
added to the database, various pieces of it have been split out into separate files, but the most
important parts of the standard are still in UnicodeData.txt.

The designers of Unicode wanted the database to be as simple and universal as possible, so it’s
maintained as a simple ASCII text file (we’ll gloss over the irony of having the Unicode Character
Database stored in an ASCII text file). Again, for ease of parsing, this file is a simple semicolon-
delimited text file. Each record in the database (i.e., the information pertaining to each character) is
separated from the next by a newline (ASCII LF, hex 0x0B), and each field in a record (i.e., each
property of a single character) is separated from the next by a semicolon.

It’s not beautiful, and it’s not cutting-edge, but it has the major advantage of being a format that is
readable and parsable by just about anything. These days, of course, they could have also used
XML, and this is discussed from time to time, but compatibility with existing software that reads this
file and easy diff-ability between versions are compelling reasons to keep it in the format it’s in.
Besides, it’s almost trivially easy to write a program to convert between this format and an XML-
based format.

Here are a few sample records from the database:

0028;LEFT PARENTHESIS;Ps;0;ON;;;;;Y;OPENING PARENTHESIS;;;;

0033;DIGIT THREE;Nd;0;EN;;3;3;3;N;;;;;

0041;LATIN CAPITAL LETTER A;Lu;0;L;;;;;N;;;;0061;

022C;LATIN CAPITAL LETTER O WITH TILDE AND MACRON;Lu;0;L;00D5

0304;;;;N;;;;022D;

0301;COMBINING ACUTE ACCENT;Mn;230;NSM;;;;;N;NON-SPACING ACUTE;Oxia;;;

2167;ROMAN NUMERAL EIGHT;Nl;0;L;<compat> 0056 0049 0049 0049;;;8;N;;;;2177;

A fair amount of the information is immediately accessible (or at least gets that way with practice),
but it’s easy to get lost in the semicolons. Here’s the record for the letter A with the fields labeled:

 Character Properties and the Unicode Character Database

104 Unicode Demystified

0041;LATIN CAPITAL LETTER A;Lu;0;L;;;;;N;;;;0061;

Code point value

Name

General Category
Combining Class

Bidirectional Category
Decomposition
Decimal digit value

Digit value
Numeric value

Mirrored
Unicode 1.0 name

10646 comment field
Uppercase mapping

Lowercase mapping
Titlecase mapping

So, this tells us that the Unicode code point value U+0041 has the name LATIN CAPITAL LETTER
A. It has a general category of “uppercase letter” (abbreviated “Lu”), it’s not a combining mark (its
combining class is 0), it’s a left-to-right character (abbreviated “L”), it’s not a composite character
(no decomposition), it’s not a numeral or digit (the three digit-value fields are all empty), it doesn’t
mirror (abbreviated “N”), its name in Unicode 1.0 was the same as its current name (empty field), it
maps to itself when being converted to uppercase or titlecase (empty fields), and it maps to U+0061
(LATIN SMALL LETTER A) when being converted to lowercase.

In order from left to right, the properties defined in UnicodeData.txt are:

x� The character’s code point value (technically, this isn’t a property; it’s the value we’re assigning
properties to), expressed as a four-to-six-digit hexadecimal numeral.

x� The character’s name.

x� The character’s general category. This tells you whether the character is a letter, a digit, a
combining mark, and so on.

x� The character’s combining class. This value is used to order combining marks when converting
Unicode text to one of the Unicode normalized forms.

x� Bidirectional category. This value specifies the character’s directionality and is used by the
bidirectional text layout algorithm.

x� Decomposition. For decomposing characters, the characters in the decomposition and a tag
indicating the decomposition type.

x� Decimal digit value. If the character can be used as a decimal digit, the numeric value it
represents.

x� Digit value. If the character can be used as a digit (decimal or not), the numeric value it
represents.

x� Numeric value. If the character can be used alone as a numeral, the numeric value it represents.

x� Mirrored. Says whether the character adopts a mirror-image glyph when surrounded by right-to-
left text.

x� Unicode 1.0 name. If the character existed in Unicode 1.0 and had a different name, its old name.

x� 10646 comment field. If the character has a comment attached to it in the ISO 10646 standard,
it’s given here.

x� Uppercase mapping. If the character maps to a different character when converted to uppercase,
that character is given here.

 UnicodeData.txt

 A Practical Programmer’s Guide to the Encoding Standard

x� Lowercase mapping. If the character maps to a different character when converted to lowercase,
that character is given here.

x� Titlecase mapping. If the character maps to a different character when converted to titlecase, that
character is given here.

So if we go back to our sampling of entries, we can see interpret it a little more clearly:

x� U+0028’s current name is LEFT PARENTHESIS, but it used to be STARTING PARENTHESIS.
It’s a member of the “starting punctuation” (Ps) category, has a combining class of 0, does mirror
(“Y”), and has neutral (“ON”) directionality.

x� U+0033 DIGIT THREE is a decimal digit (“Nd”), has weak left-to-right directionality (“EN”),
doesn’t mirror (“N”), and has a numeric value of 3.

x� U+0041 LATIN CAPITAL LETTER A is an uppercase letter (“Lu”), has strong left-to-right
directionality (“L”), and maps to U+0061 LATIN SMALL LETTER A when converted to lower
case.

x� U+022C LATIN CAPITAL LETTER O WITH TILDE AND MACRON is an uppercase letter
with strong left-to-right directionality, maps to U+022D when converted to lower case, and has a
canonical decomposition to U+00D0 U+0304.

x� U+0301 COMBINING ACUTE ACCENT is a non-spacing mark (“Mn”) with a combining class
of 230 (which means it appears above the base character), it’s transparent to the bi-di algorithm
(“NSM”), and is the same as the Greek oxia according to ISO 10646.

x� U+2167 ROMAN NUMERAL EIGHT is a letter number (“Nl”) with a numeric value of 8. It
maps to a Roman number made out of lower-case letters (U+2177) when mapped to lower case,
and it has a compatibility decomposition to “VIII” (U+0056 U+0049 U+0049 U+0049).

We’ll actually take a closer look at each of these properties and how they’re specified later in this
chapter.

PropList.txt

The UnicodeData.txt file is supplemented with a variety of other files that supply additional
information about Unicode characters. A bunch of these properties (e.g., East Asian width, Jamo
short name, etc) have their own files, but a bunch of them are given in PropList.txt. In particular,
PropList.txt lists so-called “binary” properties, categories a character is either in or it isn’t. (For
example, it’s either a digit or it isn’t.)

PropList.txt has the format used for most of the other files: Each line represents either a single
character (in which case it starts with that character’s code point), or a range of characters (in which
case it starts with the starting and ending code points in the range, separated with “..”). there’s then a
semicolon and the property’s value. Usually the line ends with a comment that gives the character’s
name for readability. (Comments are set off with pound signs.)

For example, here are the first two entries in PropList.txt:

0009..000D ; White_space # Cc [5] <control>..<control>

0020 ; White_space # Zs SPACE

The first line assigns the property “White_space” to the code point values from U+0009 to U+000D.
The comment indicates the code points in this range have the “Cc” general category (we’ll talk about

 Character Properties and the Unicode Character Database

106 Unicode Demystified

that later in this chapter), there are five characters in the range, and the characters at the beginning
and end of the range are control characters.

The second line assigns the property “White_space” to the code point value U+0020. The comment
indicates that U+0020’s name is SPACE and that it belongs to the “Zs” category.

Files with this format are either ordered by code point value (e.g., LineBreak.txt) or by category
value. PropList.txt is sorted by category.

Here’s a rundown of the properties defined in PropList.txt:

x� White_space. Characters that are considered “white space.” This includes spaces and line and
paragraph separators, along with control characters that had these functions in older standards.

x� Bidi_Control. Special invisible formatting codes that affect the behavior of the bidirectional
layout algorithm.

x� Join_Control. Special invisible formatting codes that affect the glyph selection process (by
causing characters to join together or split apart).

x� Dash. Dashes and hyphens.

x� Hyphen. Hyphens and characters that behave like hyphens.

x� Quotation_Mark. Quotation marks.

x� Terminal_Punctuation. Punctuation marks that occur at the end of a sentence or clause.

x� Other_Math. Characters that can be used as mathematical operators but weren’t given the
“Mathematical symbol” (“Sm”) general category.

x� Hex_Digit. Characters that are used as digits in hexadecimal numerals.

x� ASCII_Hex_Digit. ASCII characters in the Hex_Digit category.

x� Other_alphabetic. Alphabetic characters that weren’t assigned to one of the “letter” general
categories.

x� Ideographic. The Han characters and radicals. All of the characters with the Radical and
Unified_Ideograph properties also have this property.

x� Diacritic. Diacritical marks.

x� Extender. Characters that elongate, either graphically or phonetically, the letters that precede
them.

x� Other_Lowercase. Characters that weren’t assigned to the “lowercase letter” (“Ll”) general
category that are still considered lowercase.

x� Other_Uppercase. Characters that weren’t assigned to the “uppercase letter” (“Lu”) general
category that are still considered uppercase.

x� Noncharacter_Code_Point. Code point values that are specifically called out by the standard as
not representing characters and not being legal in Unicode text.

The Unicode 3.2 version of PropList.txt adds a number of new character properties. At the time of
this writing, Unicode 3.2 was still in beta, so the list of properties may change, as may the characters
assigned to them. But as of the beta version of Unicode 3.2, they were:

x� Other_Grapheme_Extend. Characters with the Grapheme_Extend property that don’t
automatically get this property by virtue of belonging to some class. Grapheme extenders are
characters that always occur in the same grapheme cluster as the character that precedes them.

x� Grapheme_Link. Characters that cause both the preceding and following characters to be
considered part of the same grapheme cluster.

 General category

 A Practical Programmer’s Guide to the Encoding Standard

x� IDS_Binary_Operator. Ideographic description characters that take two operands. This
propery is here to aid code the interprets ideographic description sequences. See Chapter 10 for
more on ideographic description sequences.

x� IDS_Trinary_Operator. Ideographic description characters that take three operands. This
propery is here to aid code the interprets ideographic description sequences. See Chapter 10 for
more on ideographic description sequences.

x� Radical. Characters that are parts of Han characters. This property also exists mostly to aid in
interpreting ideographic description sequences.

x� Unified_Ideograph. Full-blown Han characters.

x� Other_Default_Ignorable_Code_Point. Invisible formatting characters and other special
characters that should be ignored by processes that don’t know specifically how to handle them
(instead of, say, trying to draw them). This category also included a bunch of unassigned code
points that are being set aside now to represent only characters that also should be ignored by
processes that don’t recognize them.

x� Deprecated. Characters whose use is strongly discouraged. Because of Unicode’s stability
policies, this is as close as you can get to simply removing a character from the standard.

x� Soft_Dotted. Characters whose glyphs include a dot on top that disappears when a top-joining
diacritical mark is applied. These characters are all variants of the Latin lower-case i and j.

x� Logical_Order_Exception. Characters that break Unicode’s normal rule about repersenting
things in logical order. This category currently consists of the Thai and Lao left-joining vowel
marks, which, unlike all other Indic vowel marks, precede the consonants they modify instead of
following them. For more on this, see the Thai and Lao sections of Chapter 9.

General character properties

Each character has a set of properties that serve to identify the character. These include the name,
Unicode 1.0 name, Jamo short name, ISO 10646 comment, block and script.

Standard character names
First among these properties, of course, is the character’s name, which is given both in the book and
in the UnicodeData.txt file. The name is always in English, and the only legal characters for the name
are the 26 Latin capital letters, the 10 Western digits, and the hyphen. The name is important, as it’s
the primary guide to just what character is meant by the code point. The names generally follow some
conventions:

x� For those characters that belong to a particular script (writing system), the script name is included
in the character name.

x� Combining marks usually have “COMBINING” in their names. Within certain scripts, combining
marks’ names may contain the word “MARK” instead. Vowel signs have the phrase “VOWEL
SIGN” in their names.

x� Letters have names containing the word “LETTER.” Syllables have names that usually include
either the word “LETTER” or the word “SYLLABLE”. Ideographs have names that contain the
word “IDEOGRAPH.”

x� Uppercase letters have the word “CAPITAL” in their names. Lowercase letters have the word
“SMALL” in their names.

x� Digits have the word “DIGIT” in their names.

 Character Properties and the Unicode Character Database

108 Unicode Demystified

Unicode 2.0 was the first version of Unicode that was unified with the ISO 10646 Universal
Character Set standard. As part of the unification process, many characters got new names. For
instance, U+0028 LEFT PARENTHESIS was called OPENING PARENTHESIS in Unicode 1.0.
Sometimes the new names are more European-sounding than the old ones: For example, U+U+002E
PERIOD became U+002E FULL STOP. For those characters that changed names in Unicode 2.0,
their original names are shown in the “Unicode 1.0 name” field in UnicodeData.txt. If this field is
blank, the character either didn’t exist in Unicode 1.0, or it had the same name then that it does now.

The renaming that happened as part of the unification with ISO 10646 was a very unusual
occurrence. The names are now carved in stone. No character’s name will ever be changed in future
versions of the standard. This occasionally means that a character’s semantics will drift out of sync
with its name, but this is very rare.

Algorithmically-derived names
You’ll notice some entries in UnicodeData.txt that look like the following:

4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;;

9FA5;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;;

The “name” is enclosed in angle brackets. These entries always occur in pairs. The first entry in the
pair has a “name” that ends in “First,” and the second entry has a “name” ending in “Last.” These
pairs of entries mark the beginnings and endings of ranges of characters that have exactly the same
properties. Rather than have nearly-identical entries for every code point from U+4E00 to U+9FA5,
for example, the database abbreviates the range by using a pair of entries such as these. The proper-
ties shown for these entries apply to every character in the range. The one exception is the name
property, which is instead algorithmically generated according to rules in the Unicode standard.

There are ten elided ranges of characters in the Unicode 3.0.1 database:

x� The CJK Unified Ideographs Area, running from U+4E00 to U+9FA5.

x� The CJK Unified Ideographs Extension A area, running from U+3400 to U+4DB5.

x� The Hangul Syllables area, running from U+AC00 to U+D7A3.

x� The high-surrogate values for non-private-use characters (i.e., Planes 1 through 14), which run
from U+U800 to U+DB7F.

x� The high-surrogate values for private-user characters (i.e., Planes 15 and 16), which run from
U+DB80 to U+DBFF.

x� The low-surrogate values, which run from U+U+DC00 to U+DFF.

x� The Private Use Area, running from U+E000 to U+F8FF.

x� The CJK Unified Ideographs Extension B area, running from U+20000 to U+2A6D6.

x� The Plane 15 Private Use Area, running from U+F0000 to U+FFFFD.

x� The Plane 16 Private Use Area, running from U+100000 to U+10FFFD.

The code points in some of the elided ranges don’t have character names (or any other properties,
really—their code point values are assigned to a special category, but that’s it). The private-use
characters just have a “private use” property. The surrogate code units aren’t really characters at all,
but the code point values corresponding to themare put in one of a few special “surrogate” categories
for the benefit of UTF-16-based applications that want to treat surrogate pairs as combining character
sequences.

 General category

 A Practical Programmer’s Guide to the Encoding Standard

The other elided ranges have algorithmically-derived character names. For the three CJK Unified
Ideographs ranges, the algorithm for deriving the name of an individual character is simple: it’s “CJK
UNIFIED IDEOGRAPH–”, plus the code point value in hex. For example, the name of U+7E53 is
“CJK UNIFIED IDEOGRAPH-7E53”. Simple.

The characters in the final elided range, the Hangul syllables, have a more complicate algorithm for
deriving their names. It takes advantage of another property of Unicode characters, the “Jamo short
name,” which is given in the Jamo.txt file.

Most characters’ Jamo short names is blank because they’re not Hangul jamo (the alphabetic units
that combine together to make Hangul syllables). But the characters in the Hangul Jamo block use
this property. For them, this property specifies an abbreviated name for that character.

You get the name of a Hangul syllable by decomposing it into jamo and then concatenating the short

names together. For example, consider the character U+B8B4 (). This character decomposes into

three characters, as follows:

U+1105 HANGUL CHOSEONG RIEUL ()

U+116C HANGUL JUNGSEONG OE ()

U+11AB HANGUL JONSEONG NIEUN ()

U+1105 has the short name R, U+116C has the short name OE, and U+11AB has the short name N.
You concatenate these together and add “HANGUL SYLLABLE” to get the name of the syllable, so

the name of the character U+B8B4 () is HANGUL SYLLABLE ROEN.

Control-character names
The code points corresponding to the C0 and C1 ranges from ISO 2022 (U+0000 to U+001F and
U+0080 to U+009F) also get special treatment. They’re put in a special “control character” category
and aren’t given names (the UnicodeData.txt file gives “<control>” as their names. Officially,
Unicode doesn’t assign semantics to these code points, but preserves them for backward
compatibility with the various ISO 2022-compatible standards.

Unofficially, these code points are usually given the semantics they’re given in ISO 6429, the same
as most one-byte character encodings do. This is reflected in their Unicode 1.0 names, which follow
that convention. Over time, various pieces of the Unicode standard have started officially assigning
specific semantics to these code points—the Unicode line breaking algorithm treats U+000D and
U+000A as carriage return and line feed characters. The Unicode bidirectional layout algorithm
treats U+0009 as the tab character, and so on. Despite their lack of official names and their
assignment to the special “control character” category, these characters have, over time, picked up
other properties that show their true meanings.

ISO 10646 comment
In a few cases, there are comments attached to a character in the ISO 10646 code charts. These are
usually alternate names for the character, similar to the informative notes in the character listings in
the Unicode standard. For example, U+1095 LATIN SMALL LETTER HV has an ISO 10646
comment of “hwair,” the common name for this letter. These comments from ISO 10646 are
preserved in the “ISO 10646 comment” field in UnicodeData.txt.

 Character Properties and the Unicode Character Database

110 Unicode Demystified

Block and Script
The 21-bit Unicode encoding space is divided up into “blocks,” ranges of code point values with
similar characteristics. For example, the range of code point values from U+0000 to U+007F is the
“C0 Controls and Basic Latin” block, U+0400 to U+04FF is the Cyrillic block, U+20A0 to
U+20CF is the Currency Symbols block, and so on. The official names and boundaries of all the
blocks in the Unicode standard is given in the Blocks.txt file.

Implementations have, in the past, attempted to identify the more important characteristic—which
writing system a character belongs to—by finding out what block it’s in. This is dangerous, because
sometimes not everything in a block matches the name of the block. There are currency symbols
outside the Currency Symbols block, for example. The Basic Latin block doesn’t just include Latin
letters, but a bunch of other characters (digits, punctuation marks, etc.). The Arabic Presentation
Forms A block contains two characters (the ornate parentheses) that are “real” characters and not just
presentation forms.

What people are usually after when they’re looking at what block a character is in is what writing
system, or “script,” the character belongs to. For example, is this code point a Latin letter, a Greek
letter, a Chinese ideograph, a Hangul syllable, or what?

This information is given in the Scripts.txt file, which assigns every character to a script. Instead of
treating the entire Basic Latin (i.e., ASCII) block as belonging to the Latin script, for example, only
the letter A through Z and a through z are assigned to the Latin script.

Only letters and diacritical marks are assigned to scripts. The combining and enclosing marks are
given a special “script” property—“INHERITED,” which indicates that these code points take on the
script of the characters they’re attached to.

Scripts.txt doesn’t include every character in Unicode. Symbols, punctuation marks, and digits that
are used with more than one writing system aren’t assigned to a script—their “script” property is
effectively blank.

General Category

After the code point value and the name, the next most important property a Unicode character has is
its general category. There are seven primary categories: letter, number, punctuation, symbol, mark,
separator, and miscellaneous. Each of these subdivides into additional categories.

Letters
The Unicode standard uses the term “letter” rather loosely in assigning things to the general category
of “letter.” Whatever counts as the basic unit of meaning in a particular writing system, whether it
represents a phoneme, a syllable, or a whole word or idea, is given the “letter” category. The one big
exception to this rule are marks that combine typographically with other characters, which are
categorized as “marks” instead of “letters.” This includes not only diacritical marks and tone marks,
but also vowel signs in those consonantal writing systems where the vowels are written as marks
applied to the consonants.

 General category

 A Practical Programmer’s Guide to the Encoding Standard

Some writing systems, such as the Latin, Greek, and Cyrillic alphabets, also have the concept of
“case,” two series of letterforms used together, with one series, the “upper case,” used for the first
letter of a sentence or a proper name, or for emphasis, and the other series, the “lower case,” used for
most other letters.

Uppercase letter (abbreviated “Lu” in the database). In cased writing systems, the uppercase
letters are given this category.

Lowercase letter (“Ll”). In cased writing systems, the lowercase letters are given this category.

Titlecase letter (“Lt”). Titlecase is reserved for a few special characters in Unicode. These
characters are basically all examples of compatibility characters— characters that were included for
round-trip compatibility with some other standard. Every titlecase letter is actually a glyph
representing two letters, the first of which is uppercase and the second of which is lowercase.

For example, the Serbian letter nje (��FDQ�EH�WKRXJKW�RI�DV�D�OLJDWXUH�RI�WKH�&\ULOOLF�OHWWHU�Q�� ��DQG�
WKH�&\ULOOLF�VRIW�VLJQ�� ���:KHQ�6HUELDQ�LV�ZULWWHQ�XVLQJ�WKH�/DWLQ�DOSKDbet (Croatian, which is almost
the same language, is), this letter is written using the letter nj. Existing Serbian and Croatian
standards were designed so that there was a one-to-one mapping between every Cyrillic character
used in Serbian and the corresponding Latin character used in Croatian. This required using a single
character code to represent the nj digraph in Croatian, and Unicode carries that character forward.
Capital Nje in Cyrillic (��WKXV�FDQ�FRQYHUW�WR�HLWKHU�1-�RU�1M�LQ�/DWLQ�GHSHQGLQJ�RQ�WKH�FRQWH[W��7KH�
fully-uppercase form, NJ, is U+01CA LATIN CAPITAL LETTER NJ, and the combined upper-
lower form, U+01CB LATIN CAPITAL LETTER N WITH SMALL LETTER J, is considered a
“titlecase” letter.

7KHUH�DUH�WKUHH�6HUELDQ�FKDUDFWHUV�WKDW�KDYH�D�WLWOHFDVH�/DWLQ�IRUP�� ��OMH��ZKLFK�FRQYHUWV�WR�OM��� �
�QMH��ZKLFK�FRQYHUWV�WR�QM���DQG� �G]KH��ZKLFK�FRQYHUWV�WR�Gå��

These were the only three titlecase letters in Unicode 2.x. Unicode 3.0 added a bunch of Greek letters
that also fall into this category. Some early Greek texts represented certain diphthongs by writing a
small letter iota underneath the other vowel rather than after it. For example, you’d see “ai” written as

. If you just capitalized the alpha (“Ai”), you’d get the titlecase version: . In the fully-uppercase

version (“AI”), the small iota becomes a regular iota again: . These characters are all in the
Extended Greek section of the standard and are only used in writing ancient Greek texts. In modern
Greek, these diphthongs are just written using a regular iota: “ai” is just written as .

Modifier letter (“Lm”). Just as we have things you might conceptually think of as “letters” (vowel
signs in various languages) classified as “marks” in Unicode, we also have the opposite. The modifier
letters are independent forms that don’t combine typographically with the characters around them,
which is why Unicode doesn’t classify them as “marks” (Unicode marks, by definition, combine
typographically with their neighbors). But instead of carrying their own sounds, the modifier letters
generally modify the sounds of their neighbors. In other words, conceptually they’re diacritical
marks. Since they occur in the middle of words, most text-analysis processes treat them as letters, so
they’re classified as letters.

The Unicode modifier letters are generally either International Phonetic Alphabet characters or
characters that are used to transliterate certain “real” letters in non-Latin writing systems that don’t
seem to correspond to a regular Latin letter. For example, U+02BC MODIFIER LETTER
APOSTROPHE is usually used to represent the glottal stop, the sound made by (or, more accurately,

 Character Properties and the Unicode Character Database

112 Unicode Demystified

the absence of sound represented by) the Arabic letter alef, and so the Arabic letter is often
transliterated as this character. Likewise, U+02B2 MODIFIER LETTER SMALL J is used to
represent palatalization, and thus is sometimes used in transliteration as the counterpart of the
Cyrillic soft sign.

Other letter (“Lo”). This is a catch-all category for everything that’s conceptually a “letter,” but
which doesn’t fit into one of the other “letter” categories. Letters from uncased alphabets like the
Arabic and Hebrew alphabets fall into this category, but so do syllables from syllabic writing systems
like Kana and Hangul, and so do the Han ideographs.

Marks
Like letters, marks are part of words and carry linguistic information. Unlike letters, marks combine
typographically with other characters. For example, U+0308 COMBINING DIAERESIS may look
like this: ¨ when shown alone, but is usually drawn on top of the letter that precedes it: U+0061
LATIN SMALL LETTER A followed by U+0308 COMBINING DIAERESIS isn’t drawn as “a¨”,
but as “ä”. All of the Unicode combining marks do this kind of thing.

Non-spacing mark (“Mn”). Most of the Unicode combining marks fall into this category. Non-
spacing marks don’t take up any horizontal space along a line of text—they combine completely with
the character that precedes them and fit entirely into that character’s space. The various diacritical
marks used in European languages, such as the acute and grave accents, the circumflex, the diaeresis,
and the cedilla, fall into this category.

Combining spacing mark (“Mc”). Spacing combining marks interact typographically with their
neighbors, but still take up horizontal space along a line of text. All of these characters are vowel
signs or other diacritical marks in the various Indian and Southeast Asian writing systems. For
example, U+093F DEVANAGARI VOWEL SIGN I (•) is a spacing combining mark: U+0915
DEVANAGARI LETTER KA followed by U+093F DEVANAGARI VOWEL SIGN I is drawn as
••—the vowel sign attaches to the left-hand side of the consonant.

Not all spacing combining marks reorder, however: U+0940 DEVANAGARI VOWEL SIGN II (•)
is also a combining spacing mark. When it follows U+0915 DEVANAGARI LETTER KA, you get
••—the vowel attaches to the right-hand side of the consonant, but they still combine
typographically.

Enclosing mark (“Me”). Enclosing marks completely surround the characters they modify. For
example, U+20DD COMBINING ENCLOSING CIRCLE is drawn as a ring around the character
that precedes it. There are only ten of these characters: they’re generally used to create symbols.

Numbers
The Unicode characters that represent numeric quantities are given the “number” property
(technically, this should be called the “numeral” property, but that’s life). The characters in these
categories have additional properties that govern their interpretation as numerals. All of the
“number” subcategories are normative. This category subdivides as follows:

�

 General category

 A Practical Programmer’s Guide to the Encoding Standard

Decimal-digit number (“Nd”). The characters in this category can be used as decimal digits. This
category includes not only the digits we’re all familiar with (“0123456789”), but similar sets of digits
used with other writing systems, such as the Thai digits (“ÑÒÓÔÕÖ×ØÙÚ”).

Letter number (“Nl”). The characters in this category can be either letters or numerals. Many of
these characters are compatibility composites whose decompositions consist of letters. The Roman
numerals and the Hangzhou numerals are the only characters in this category.

Other number (“No”). All of the characters that belong in the “number” category, but not in one of
the other subcategories, fall into this one. This category includes various numeric presentation forms,
such as superscripts, subscripts, and circled numbers; various fractions; and numerals used in various
numeration systems other than the Arabic positional notation used in the West.

Punctuation
This category attempts to make sense of the various punctuation characters in Unicode. It breaks
down as follows:

Opening punctuation (“Ps”). For punctuation marks, such as parentheses and brackets, that occur
in opening-closing pairs, the “opening” characters in these pairs are assigned to this category.

Closing punctuation (“Pe”). For punctuation marks, such as parentheses and brackets, that occur in
opening-closing pairs, the “closing” characters in these pairs are assigned to this category.

Initial-quote punctuation (“Pi”). Quotation marks occur in opening-closing pairs, just like
parentheses do. The problem is that which is which depends on the language. For example, both
French and Russian use quotation marks that look like this: «» But they use them differently.

«In French, a quotation is set off like this.»

»But in Russian, a quotation is set off like this.«

This category is equivalent to either Ps or Pe, depending on the language.

Final-quote punctuation (“Pf”). This is the counterpart to the Pi category, and is also used with
quotation marks whose usage varies depending on language. It’s equivalent to either Ps or Pe
depending on language. It’s always the opposite of Pi.

Dash punctuation (“Pd”). This category is self-explanatory: It encompasses all hyphens and dashes.

Connector punctuation (“Pc”). Characters in this category, such as the middle dot and the
underscore, get treated as part of the word they’re in. That is, they “connect” series of letters together
into single words. This_is_all_one_word. An important example is U+30FB KATAKANA
MIDDLE DOT, which is used like a hyphen in Japanese.

 Character Properties and the Unicode Character Database

114 Unicode Demystified

Other punctuation (“Po”). Punctuation marks that don’t fit into any of the other subcategories,
including obvious things like the period, comma, and question mark, fall into this category.

Symbols
This group of categories contains various symbols.

Currency symbol (“Sc”). Self-explanatory.

Mathematical symbol (“Sm”). Mathematical operators.

Modifier symbol (“Sk”). This category contains two main things: the “spacing” versions of the
combining marks and a few other symbols whose purpose is to modify the meaning of the preceding
character in some way. Unlike modifier letters, modifier symbols don’t necessarily modify the
meanings of letters, and don’t necessarily get counted as parts of words.

Other symbol (“So”). Again, this category contains all symbols that didn’t fit into one of the other
categories.

Separators
These are characters that mark the boundaries between units of text.

Space separator (“Zs”). This category includes all of the space characters (yes, there’s more than
one space character).

Paragraph separator (“Zp”). There is exactly one character in this category: the Unicode
paragraph separator (U+2029), which, as its name suggests, marks the boundary between paragraphs.

Line separator (“Zl”). There’s also only one character in this category: the Unicode line separator,
(U+2028) which, as its name suggests, forces a line break without ending a paragraph.

Even though the ASCII carriage-return and line-feed characters are often used as line and paragraph
separators, they’re not put in either of these categories. Likewise, the ASCII tab character isn’t
considered a Unicode space character, even though it probably should. They’re all put in the “Cc”
category.

Miscellaneous
There are a number of special character categories that don’t really fit in with the others. They are as
follows:

Control characters (“Cc”). The codes corresponding to the C0 and C1 control characters from the
ISO 2022 standard are given this category. The Unicode standard doesn’t officially assign any
semantics to these characters (which include the ASCII control characters), but most systems that use
Unicode text treat these characters the same as their counterparts in the source standards. For
example, most processes treat the ASCII line-feed character as a line or paragraph separator.

 General category

 A Practical Programmer’s Guide to the Encoding Standard

The original idea was to leave the definitions of these code points open, as ISO 2022 does, but over
time, various Unicode processes and algorithms have attached semantics to these code points,
effectively nailing the ISO 6429 semantics to many of them.

Formatting characters (“Cf”). Unicode includes some “control” characters of its own: characters
with no visual representation of their own which are used to control how the characters around them
are drawn or handled by various processes. These characters are assigned to this category.

Surrogates (“Cs”). The code points in the UTF-16 surrogate range belong to this category.
Technically, the code points in the surrogate range are treated as unassigned and reserved, but
Unicode implementations based on UTF-16 often treat them as characters, handling surrogate pairs
the same way combining character sequences are handled.

Private-use characters (“Co”). The code points in the private-use ranges are assigned to this
category.

Unassigned code points (“Cn”). All unassigned and non-character code points, other than those in
the surrogate range, are given this category (these code points aren’t listed in the Unicode Character
Database—their omission gives them this category—but are listed explicitly in
DerivedGeneralCategory.txt).

Other categories

Over time, it’s become necessary to draw finer distinctions between characters than the general
categories let you do, and it’s also been noticed that there’s some overlap between the general
categories. Another set of categories, defined mostly in PropList.txt, has been created to capture
these distinctions. Among the other categories:

x� Whitespace. A lot of processes that operate on text treat various characters as “whitespace,”
important only insofar as it separates groups of other characters from one another. In Unicode,
“whitespace” can be thought of mainly as consisting of the characters in the “Z” (separator)
categories. But this is one of those cases of the ISO control characters having meaning—most
processes want the code points corresponding to the old ASCII and ISO 8859 whitespace
characters (TAB, CR, LF, FF, and NEL) treated as whitespace as well. This property
encompasses all of these characters.

x� Bi-di control and join control. These categories isolate out a few of the characters in the format-
control (“Cf”) category that control the behavior on certain specific text processes (in this case,
the bi-di algorithm and the glyph selection process).

x� Dash and hyphen. These categories not only break down the dash-punctuation (“Pd”) category
into dashes and hyphens, but also encompass a few characters from the connector-puctuation
(“Pc”) category that get used as hyphens (specifically, the Katakana middle dot we looked at
earlier).

x� Quotation marks brings together all the characters from the Ps, Pe, Pi, Pf, and Po categories that
represent quotation marks.

x� Terminal punctuation isolates out those characters in the other-punctuation (“Po”) category that
represent sentence- or clause-ending punctuation.

x� Math brings together all the characters that represent mathematical symbols. This includes not
only those characters assigned to the math-symbol (“Sm”) category, but characters from the other

 Character Properties and the Unicode Character Database

116 Unicode Demystified

categories that have other uses beyond their use as math symbols. The non-Sm characters with
the Math property are assigned to the “Other_Math” property in PropList.txt.

x� Hex digit and ASCII hex digit single out the characters that can be used as digits in hexadecimal
numerals.

x� Alphabetic singles out alphabetic and syllabic characters. It encompasses everything in the
“letter” (“L”) categories other than the characters with the “ideographic” property, plus all the
combining marks and vowel signs used with them. PropList.txt lists all the characters with the
“alphabetic” property that aren’t in one of the L categories and assigns them to the
“Other_Alphabetic” category.

x� Ideographic isolates out those characters in the “other letter” (“Lo”) category that represent
whole words or ideas (basically, the Chinese charaxcters).

x� Diacritic brings together those characters from the modifier-letter (“Lm”), modifier-symbol
(“Sk”), non-spacing-mark (“Mn”), and combining spacing-mark (“Mc”) categories that are used
as diacritical marks.

x� Extender isolates those characters from the modifier-letter (“Lm”) category (plus one character—
the middle dot—from the other-punctuation (“Po”) category) that elongate, either phonetically or
graphically, the letter that precedes them.

x� Uppercase and Lowercase bring together all the upper- and lower-case letters. PropList.txt
supplements the characters assigned to these general categories (“Lu” and “Ll”) with characters
from other categories whose forms are the forms of upper- or lower-case letters (it assigns these
extra characters to the “Other_Uppercase” and “Other_Lowercase” categories).

x� Noncharacter code points isolates out the code point values from the “unassigned” (“Cn”)
category that are illegal code point values in Unicode text (as opposed to merely not having a
character assigned to them yet).

Again, Unicode 3.2 adds a few new properties to the mix. At the time Unicode 3.2 entered beta,
these included:

x� Default-ignorable code points are code points or characters that should simply be ignored by
processes that don’t know about them. For example, the default behavior of a rendering process,
when confronted with a code point it doesn’t recognize, is to draw some kind of “missing” glyph.
If the characrter has this property, it should instead just not draw anything. This category
basically consists of characters in the “formatting character” (“Cf”) or “control character” (“Cc”)
general categories, plus a bunch of characters called out specifically in PropList.txt as
“Other_Default_Ignorable_Code_Point.” This is one of the few properties that is actually given
to unassigned code points; this is so that current implementations can “do the right thing” even
with future default-ignorable characters that may be added to the standard.

x� Soft-dotted calls out characters whose glyphs include a dot that disappears when certain
diacritical marks are applied. This basically means the lowercase Latin letters i and j: If you
apply an acute accent to the letter i, for example, the dot disappears: í. This property exists to
make case-mapping algorithms easier.

x� Logical-order exceptions are the few characters that break Unicode’s logical-order rule: This
basically means the left-joining Thai and Lao vowel marks, which precede in memory the
consonants they attach to, rather than following them, as every other Indic vowel mark does. This
property exists to make life easier for the Unicode Collation Algorithm, some rendering
algorithms, and possibly other processes that care about backing-store order. For more on Thai
and Lao, see Chapter 9.

x� Deprecated characters are characters that Unicode’s designers would remove from the standard if
they could. They’re retained for backward compatibility, but their use and interpretation is
strongly discouraged.

 PropList.txt

 A Practical Programmer’s Guide to the Encoding Standard

x� Radical, CJK_Unified_Ideograph, IDS_Binary_Operator, and IDS_Trinary_Operator are
used to help interpret ideograph description sequences. See Chapter 10 for more information
onideographic dewcription sequences.

The DerivedCoreProperties.txt file explicitly lists the characters in the Math, Alphabetic, Uppercase,
and Lowercase categories, along with the characters that are legal in various positions in a
programmatic identifier according to the Unicode identifier guidelines (see Chapter 17).

Properties of letters

We looked at a bunch of letter-related properties in the preceding sections: First, there are the various
subdivisions of the “letter” category (Lu, Ll, Lt, Lm, and Lo). Then there are the Alphabetic and
Ideographic categories. Finally, there’s the case: defined by the Lu, Ll, and Lt general categories and
also by the separate Uppercase and Lowercase categories.

For cased letters (i.e., characters in the Lu, Ll, and Lt) categories, Unicode provides additional
information about how the characters in the different cases relate to each other. In particular, it
provides information on how to map a character to its counterpart in the opposite case (or in
titlecase), and a set of mappings that allow you to normalize away case differences when comparing
strings.

Each character has uppercase, lowercase, and titlecase mappings in UnicodeData.txt. If the character
should be replaced with another character when converted to uppercase, lowercase, or titlecase, the
code point value for the character it should be replaced with appears in the appropriate place in
UnicodeData.txt.

So the entry for U+0061 LATIN SMALL LETTER A (a) gives U+0041 (A) as its uppercase and
titlecase mappings. (The titlecase mapping is the same as the uppercase mappings for all but a
handful of characters.) The entry for U+0393 GREEK CAPITAL LETTER GAMMA (��JLYHV�
8���%��� ��DV�LWV�ORZHUFDVH�PDSSLQJ�

Converting a string to uppercase or lowercase is simple—just replace every character in the string
with is uppercase or lowercase mapping (if it has one). Converting to titlecase is almost as simple—
replace the first letter of every word with its titlecase mapping.

SpecialCasing.txt
But the mappings aren’t always as simple as they appear at first glance. The mappings in the
UnicodeData.txt file are always single-character mappings. Sometimes a character expands into two
characters when its case is changed. Sometimes a mapping is conditional—the mapping is different
depending on the context or language.

These special mappings are relegated to their own file—SpecialCasing.txt. Like UnicodeData.txt,
SpecialCasing.txt is structured as a series of one-line entries for the characters, each consistsing of a
semicolon-delimited series of fields. The first field is the code point value the mappings are being
specified for. The next three fields are the lowercase, titlecase, and uppercase mappings for the
characters, each of which is a space-delimited series of code point values. There’s an optional fifth
field—a comma-delimited series of tags indicating the context in which that particular set of

 Character Properties and the Unicode Character Database

118 Unicode Demystified

mappings happens. As always, the line may end with a comment, which is set off from the actual
data with a pound sign (#).

Here’s an example entry:

00DF; 00DF; 0053 0073; 0053 0053; # LATIN SMALL LETTER SHARP S

This is the entry for the German ess-zed character (ß), which generally functions like a double s (in
classical German spelling, the ss form was used after short vowels and the ß form after long vowels,
although the ss form is gradually being used for both, while the ß form is gradually falling into
disuse). First we have the character itself, U+00DF. Next, we have its lowercase mapping. Since it’s
already a lowercase letter, its lowercase mapping is also 00DF. The titlecase mapping (which should
never occur in practice, since ß never occurs at the beginning of a word) is Ss, U+0053 U+0073. The
uppercase mapping is SS, U+0053 U+0053.

There are several tags used for context-sensitive mappings29:

x� Final_Sigma is used for the Greek letter sigma and indicates that the mapping is effective when
the letter is the last letter in the word but not the only letter in the word.

x� More_Above indicates the mapping is effective only when the character has one or more top-
joining combining marks after it.

x� After_Soft_Dotted indicates the mapping is effective only when the character follows a
Soft_Dotted character (basically, an i or j).

x� Before_Dor indicates the mapping is effective only when the character precedes U+0307
COMBINING DOT ABOVE.

In addition, the condition list may include one or more two-letter abbreviations for languages (the
abbreviations come from the ISO 639 standard), which state that a particular mapping only happens
if the text is in that language.

The last three of these conditions are used in Lithuanian-specific case mappings: in Lithuanian, the
letter i keeps its dot when an accent is applied to it, an effect that can be achieved by adding U+0307
COMBINING DOT ABOVE. These conditions are used to control when this extra character should
be added and removed.

Here’s a classic example of the use of the special conditions:

03A3; 03C2; 03A3; 03A3; Final_Sigma; # GREEK CAPITAL LETTER SIGMA

03A3; 03C3; 03A3; 03A3; # GREEK CAPITAL LETTER SIGMA

7KHVH�WZR�HQWULHV�DUH�IRU�WKH�*UHHN�FDSLWDO�OHWWHU�VLJPD�� ��8���$�����7KLV�OHWWHU�KDV�WZR�ORZHU-case
IRUPV��RQH�� ��8���&���WKDW�DSSHDUV�RQO\�DW�WKH�HQGV�RI�ZRUGV��DQG�DQRWKHU�� ��8���&���WKDW�DSSHDUV�
at the beginning or in the middle of a word. The FINAL_SIGMA at the end of the first entry
indicates that this mapping only applies at the end of a word (and when the letter isn’t also the only
letter in the word). The second entry, which maps to the initial/medial form of the lowercase sigma, is
commented out (begins with a #) because this mapping is in the UnicodeData.txt file.

29 These are the tags in the Unicode 3.2 version of SpecialCasing.txt, which simplifies the approach used in the

Unicode 3.1 version (but produces the same effect). It’s possible that these tags will change before Unicode

3.2 is final.

 PropList.txt

 A Practical Programmer’s Guide to the Encoding Standard

And here’s the other classic example:

0049; 0131; 0049; 0049; tr Not_Before_Dot; # LATIN CAPITAL LETTER I

0069; 0069; 0130; 0130; tr; # LATIN SMALL LETTER I

0131; 0131; 0049; 0049; tr; # LATIN SMALL LETTER DOTLESS I

0130; 0069; 0130; 0130; tr; # LATIN CAPITAL LETTER I WITH DOT ABOVE

The “tr” in the conditions column tells us that these are langage-specific mappings for Turkish. In
7XUNLVK��WKHUH¶V�DQ�H[WUD�OHWWHU��Õ��8�������WKDW�ORRNV�OLNH�D�ORZHU-case i with the dot missing. This
letter’s upper-case counterpart is what we’d normally think of as the capital I: (U+0049). The regular
lowercase i (U+0069) keeps the dot when converted to uppercase so that you can tell the two letters
DSDUW��ø��8���������$JDLQ��WKH�ODVW�WZR�PDSSLQJV�LQ�WKH�H[DPSOH�DUH�FRPPHQWHG�RXW�EHFDXVH�WKH\¶UH�
covered in UnicodeData.txt.

CaseFolding.txt

CaseFolding.txt is used for case-insensitive string comparisons. It prescribes a language-independent
mapping for each character that erases case distinctions. Generally, it maps each character to its
lowercase equivalent, but it includes some extra mappings that map some lowercase letters to variant
forms (for example, ß maps to “ss”). Generally, the mappings were derived by converting everything
to uppercase using the mappings in the UnicodeData.txt and SpecialCasing.txt files and then back to
lowercase using just the UnicodeData.txt file. Each entry consists of the original code point value, a
code (“C,” “F,” “S,” or “I”) indicating the type of mapping, and the mapping (one or more code point
values). The code tells you whether the mapping causes the text to get bigger (“F”) or not (“C”). In
cases where the standard mapping causes the text to expand, a second mapping that doesn’t change
the text length is provided (and tagged with “S”). (The Turkish I mappings are called out with an “I”
tag, since they can cause funny things to happen.)

For more information on case mapping, see Chapter 14. For more information on string comparisons,
including case folding, see Chapter 15.

Properties of digits, numerals, and mathematical symbols

We looked at a bunch of number-related properties earlier in this chapter: First, there are the various
numeric general categories (“Nd,” “Nl,” and “No”). There are also the hex-digit properties and the
Math property.

For characters in the “N” categories (characters that are used to represent numeric values), there are
three additional properties that indicate the numeric value they represent. These properties are given
in the UnicodeData.txt file.

Characters that can be used as decimal digits (generally, the characters in the “Nd” category,
although some “No” characters also) have a decimal digit value property indicating the value the
character has when used as a decimal digit. This is shown in the UnicodeData file as an ASCII
decimal digit. For example, the Western digit “2”, the Arabic digit “”, and the Thai digit “Ó” all

represent the value 2 in numeration systems that use Arabic positional notation, and thus all have the
decimal-digit-value property of 2. All characters with a decimal-digit-value property are identified as
“decimal” in the DerivedNumericProperties.txt file.

 Character Properties and the Unicode Character Database

120 Unicode Demystified

Characters that can be used as digits in any numeration system, including decimal, have a digit value
property indicating their numeric value when used as digits. This is shown in the UnicodeData file as
a decimal numeral using ASCII digits. The decimal-digit characters all have a digit value that’s the
same as their decimal-digit value. The only characters that have a digit value but not a decimal-digit
value are certain presentation forms of the decimal digits (circled, parenthesized, followed by a
period, etc.). The idea here is that these characters represent whole numerals, not just digits, but are
technically still decimal digits. The DerivedNumericProperties.txt file identifies these characters as
“digit.”

Finally, all other characters representing numeric values have a numeric value propty that gives the
numeric value they represent. This is given in the UnicodeData.txt file as a decimal numeral using
ASCII digits. These characters also show up in DerivedNumericProperties.txt as “numeric.”
Characters in this category include digits from numeration systems that don’t use Arabic positional

notation, such as the Ethiopic 10 symbol () or the Tamil 100 symbol (); presentation forms of

numbers 10 and above (such as the circled 13); Roman numerals; and fractions. If the numeric value
is a fraction, it’s shown as a fraction in the UnicodeData file, using the ASCII slash as the fraction
bar. For example, the character ½ has a numeric value of “1/2”, as shown in the UnicodeData file.

The DerivedNumericValues.txt file lists all characters with the numeric property according to their
numeric values.

Sometimes, characters in the “letter” categories are used as digits or numerals. For instance, the Latin
letters are often used as digits in numerals with radices above 10 (such as the letters A through F
being used to represent digit values from 11 to 15 in hexadecimal notation). The Latin letters are also
used in Roman numerals. Ancient Greek and Hebrew texts used the letters in their respective
alphabets to form numerals. And various Han ideographs are used to represent numeric values (and
sometimes even used as decimal digits). All of these applications are considered specialized uses by
Unicode, and the Unicode standard gives none of these characters numeric properties.

We’ll look more closely at the various number characters in Unicode in Chapter 12.

Layout-related properties

The Unicode characters have a bunch of properties associated with them that specify how various
processes related to text rendering (i.e., drawing text on the screen or on paper) should handle them.

Bidirectional layout
The Unicode standard includes a very detailed specification of how characters from right-to-left and
left-to-right writing systems are to be arranged when intermixed when they appear together in a
single line of text. Central to this specification are the characters bi-di categories, which are given in
the UnicodeData.txt file using these codes:

L Strong left-to-right characters.

R or AL Strong right-to-left characters.

EN and AN Digits, which have weak left-to-right directionality.

ES, ET, and CS Punctuation marks used with numbers. Treated like digits when they occur

 PropList.txt

 A Practical Programmer’s Guide to the Encoding Standard

as part of a number and like punctuation the rest of the time.

WS and ON Neutrals. Whitespace and punctuation, which take on the directionality of
the surrounding text.

NSM Non-spacing marks, which take on the directionality of the characters they
attach to.

B and S Block and segment separators, which break text up into units that are
formatted independently of each other by the bi-di algorithm.

BN Invisible formatting characters that are invisible to the bi-di algorithm.

LRE, RLE, LRO,
RLO, and PDF

Special formatting characters that override the default behavior of the bi-di
algorithm for the characters they delimit.

Bi-di category is officially specified in the UnicodeData.txt file, but is also listed in the
DerivedBidiClass.txt file, which groups characters according to their bi-di category.

The characters in the LRE, RLE, LRO, RLO, and PDF categories—the invisible control characters
that affect the bi-di algorithm’s treatment of other characters—have the “Bidi_Control” property in
PropList.txt.

For a conceptual overview of the bi-di algorithm see chapter 8. For in-depth information on
implementing the bi-di algorithm, including more detailed treatment of these categories, see Chapter
16.

Mirroring
Another important property related to the bi-di algorithm is the “mirrored” property. This is also
specified in the UnicodeData.txt file as a “Y” or “N” in the “mirrored” column. (The
DerivedBinaryProperties.txt file also lists all the characters with the “mirrored” property.)

A “Y” means that the character has the “mirrored” property. Characters with the “mirrored” property
have a different glyph shape when they appear in right-to-left text than they have when they appear in
left-to-right text. Usually the two glyphs are mirror images of each other, which is where the word
“mirrored” comes from.

Consider the parentheses. The same code, U+0028, is used to represent the mark at the beginning of
a parenthetical expression (the character is called “LEFT PRENTHESIS” rather than “STARTING
PARENTHESIS”, its old name, an unfortnate side effect of the ISO 10646 merger) regardless of the
direction of the surrounding text. The concave side always faces the parenthetical text (the text that
comes after it). In left-to-right text that means it looks like this: (

In right-to-left text, it has to turn around, so it looks like this:)

Not all of the characters that mirror come in pairs. For those that do, the BidiMirroring.txt file gives
the code point value of the character with the mirror-image glyph (for U+0028 LEFT
PARENTHESIS, this, of course, would be U+0029 RIGHT PARENTHESIS, and vice versa). Some

 Character Properties and the Unicode Character Database

122 Unicode Demystified

of the mappings in BidiMirroring.txt are tagged as “[BEST FIT]”, meaning the match is only
approximate. The file also lists all the characters with the “mirrored” property that can’t be mirrored
simply by mapping them to another character.

Atabic contextual shaping
The letters of the Arabic and Syriac alphabets join together cursively, even in printed text. Because
of this, they adopt a different shape depending on the surrounding characters. The ArabicShaping.txt
file provides information that can be used to implement a simple glyph-selection algorithm for Arabic
and Syriac.

Each line gives information for one character and consists of four fields separated with semicolons:

x� The code point value.

x� An abbreviated version of the character’s name.

x� A code indicating the character’s joining category. R means the character can connect to the
character on its right, D means the character can connect to characters on both sides, and U means
the character doesn’t connect to characters on either side. L could conceivably be used for
characters that only connect to neighbors on the left, but there are no characters in this category.
C is also used for characters that cause surrounding characters to join to them but don’t change
shape themselves. (There’s also a T category for characters that are transparent to the shaping
algorithm, but they’re not listed in this file.)

x� The name of the character’s joining group. A lot of Arabic letters share the same basic shape and
are differentiated from one another by adding dots in various places. This column identifies the
character’s basic shape (this is usually the name of one of the letters with that shape).

Characters not listed in ArabicShaping.txt either have a joining type of T (transparent, basically all
the non-spacing marks and invisible formatting characters) or U (non-joining, basically everything
else).

DerivedJoiningType.txt repeats information from ArabicShaping.txt, but organizes it by joining type
rather than by code point value. DerivedJoiningGroup.txt does the same thing for joining groups.

It’s important to note that the information from ArabicShaping.txt is informative, not normative. It
basically represents a minimal set of information necessary to produce legible Arabic.
Implementations can, and often do, go to more trouble and produce better-looking text. For more
information on Arabic and Syriac, see Chapter 8.

Two invisible formatting characters that affect the joining behavior of the surrounding text are given
the Join_Control property in PropList.txt.

East Asian width
Just as Middle Eastern typography introduces interesting rendering challenges, so does East Asian
typography, where lines of text often run vertically from the top of the page to the bottom.

Traditionally, Chinese characters (and, often, the characters used with them) are effectively
monospaced: all the characters fit inside the same-size box (which is usually, but not always, square).
When Western text is mixed with Asian text, decisions have to be made about how to lay out the
mixture. Western letters can be blown up to fill an entire display cell or can be left as their normal

 PropList.txt

 A Practical Programmer’s Guide to the Encoding Standard

proportionally-spaced selves. Similarly, sometimes multiple Asian characters are placed together in
a single cell to represent an abbreviation.

Originally, no special distinction between the two behaviors was enshrined in the Asian encoding
standards, but one evolved: The JIS X 0201 and 0208 standards both include the Latin alphabet and
the Katakana characters, so encoding schemes based on both, such as SHIFT-JIS, wound up
encoding these characters twice: once as single-byte values and again as double-byte values (i.e.,
pairs of 8-bit code units). Over time, the single-byte codes came to represent half-width (or
“hankaku”) glyphs, which are either proportionally spaced or sized to fill half a standard display cell,
and the double-byte codes came to represent full-width (“zenkaku”) glyphs, which fill a whole
display cell.

Some characters in Unicode are specifically categorized as half-width or full-width, but most are
either implicitly one or the other or have ambiguous semantics. The EastAsianWidth.txt file nails
down all these semantics by giving each character one of the following codes:

F Explicitly full-width (has “FULLWIDTH” in its name)
H Explicitly half-width (has “HALFWIDTH” in its name)
W Implicitly full-width
Na Implicitly half-width
A Ambiguous. Generally half-width, but full-width in an East Asian context.
N Neutral. Never occurs in East Asian typography. Treated same as Na.

This information is also in DerivedEastAsianWidth.txt, which lists everything in order by width
category rather than by code point value. For more information on the East Asian Width property,
see Chapter 10.

Line breaking property
Another integral part of the process of rendering text is breaking up long passages of text into lines.
The Unicode standard also specifies how a line breaking process should treat the various characters.
This information is in LineBreak.txt, which includes both normative and informative line-breaking
categories. The normative categories are as follows:

BK Forces a line break.

CR Carriage return. Same as BK, except when followed by LF.

LF Line feed. Same as BK, but causes CR to behave differently. (The CR-LF combination we
all know and love from DOS thus gets treated as a single line terminator, not two.)

CM Combining mark. Never a break before; otherwise transparent.

SG High surrogate. No break before a low surrogate.

SP Space. Generally, a break is allowed after a series of spaces.

ZW Zero-width space. Generally, the same as SP.

GL Non-breaking (“glue”). Never a break before or after.

 Character Properties and the Unicode Character Database

124 Unicode Demystified

CB Contingent break opportunity. Breaks depend on info outside the text stream.

The informative properties give a good default line-break behavior, but implementations are free to
do a better (or more language-specific) job if they want to go to more trouble.

As with the other properties, there’s a DerivedLineBreak.txt file that gives the same information as
LineBreak.txt, but organized by category rather than code point value.

For more information on line breaking, including information on the other categories, see Chapter 16.

Normalization-related properties

We already looked at the Unicode normalization forms and at basically how Unicode normalization
works. A lot of the Unicode Character Database is given over to this important topic, so we’ll take a
closer look at the normalization-related properties here. For more information on decomposition and
normalization refer back to Chapter 4. For in-depth information on implementing Unicode
normalization, see Chapter 14.

Decomposition
As we saw before, many Unicode characters are said to “decompose”: that is, they’re considered
equivalent to (and, generally speaking, less preferable than) other Unicode characters or sequences of
other Unicode characters. For those characters that decompose, the UnicodeData.txt file gives their
decomposition.

For canonical composites, the decomposition is either a single Unicode code point value (a singleton
decomposition) or two Unicode code point values, the first of which may itself have a canonical
decomposition (this is this way to save space and to help implementations that also want to save
space). To get the full canonical decomposition for a character thus means performing the
decomposition recursively until you arrive at a sequence of non-decomposing characters.

Compatibility decompositions, on the other hand, can be any number of characters long. This is
because the intermediate forms necessary to have every decomposition be two characters long, don’t
always exist.

The same field in UnicodeData.txt is used for both canonical and compatibility decompositions, since
a single character can only have one or the other, not both. The decomposition is preceded with a tag
to specify what kind of decomposition it is.

Decomposition type
The decomposition in UnicodeData.txt for each character is optionally preceded by a tag that
specified the type of the decomposition. If the tag is missing, it’s a canonical decomposition. If the
tag is present, it’s a compatibility decomposition and the tag is there to give you an idea of what type
of information would be lost if you converted the character to its compatibility decomposition. The
tags are as follows:

 PropList.txt

 A Practical Programmer’s Guide to the Encoding Standard

 identifies a compatibility composite that’s equal to its compatibility decomposition plus some
additional font or styling information (for example, a script or black-letter variant of some letter used
as a symbol).

<noBreak> identifies a variant of a space or hyphen that prevents line breaks. A no-break variant is
the same as its compatibility decomposition with U+2060 WORD JOINER both before and after it.
(U+2060 isn’t included in the decomposition, however.)

<initial>, <medial>, <final>, and <isolated> are used with the presentation forms of the Arabic
letters to identify which particular glyph for the letter the presentation form is intended to represent.

<circle> identifies characters that are equivalent to their compatibility decomposition with a circle
drawn around it. The same effect can be achieved (for single characters) by following the character
with U+20DD COMBINING ENCLOSING CIRCLE, but this character isn’t included in the
decomposition.

<super> and <sub> mark characters that are the same as their compatibility decompositions drawn
as superscripts or subscripts.

<vertical> is used to identify presentation forms for various punctuation marks used with East Asian
text. These presentation forms are equivalent to the glyphs that are to used for their compatibility
mappings when used in vertical text (this generally means they’re roughly equivalent to the
horizontal forms rotated ninety degrees).

<wide> marks fullwidth (zenkaku) variants of various Latin characters used in East Asian text.

<narrow> identifies halfwidth (hankaku) variants of various Japanese characters used in
abbreviations.

<small> identifies small variants of various ASCII punctuation marks and symbols sometimes used
in Chinese text.

<square> indicates that the character is equivalent to the characters in its compatibility
decomposition arranged in a single square East Asian display cell. It’s used for various abbreviations
used in East Asian text.

<fraction> identifies the “vulgar fractions,” single code points representing fractions, which can all
be represented using U+2044 FRACTION SLASH (which is included in these characters’
decompositions).

<compat> precedes all compatibility decompositions that don’t fit into one of the other categories.

The decomposition types are informative and somewhat approximate. These is a
DerivedDecompositionType.txt file that organizes the Unicode characters according to their
decomposition type (if they decompose).

 Character Properties and the Unicode Character Database

126 Unicode Demystified

Combining class
The combining class is a number that says how a combining character interacts typographically with
the character it attaches to. This is used primarily to arrange a series of combining characters into
canonical order.

All non-combining characters have a combining class of 0. A fair number of combining marks also
have a combining class of 0—this indicates that the mark combines typographically with its base
character in a way that should prevent reordering of any marks attached to the same character. For
example, the enclosing marks have a combining class of 0. Any combining marks that follow the
enclosing mark shouldn’t be reordered to appear before the enclosing mark in storage, since whether
they appear before or after the enclosing mark in storage controls whether or not they’re drawn inside
the enclosing mark.

Here’s a quick breakdown of the combining classes:

0 Non-combining characters, or characters that surround or become part of the base
character

1 Marks that attach to the interior of their base characters, or overlay them

7-199 Various marks with language- or script-specific joining behavior

200-216 Marks that attach to their base characters in various positions

218-232 Marks that are drawn in a specific spot relative to their base characters but don’t touch
them

233-234 Marks that appear above or below two base characters in a row

240 The iota subscript used in ancient Greek

For the more general combining classes, they are arranged like this:

7

200 202 204

20
8 210

212 214 216

218 220 222

22
4 226

228 230 232

7

200 202 204

20
8 210

212 214 216

218 220 222

22
4 226

228 230 232

233

234

Again, there’s a DerivedCombiningClass.txt file that organizes the characters by combining class
rather than by code point value.

 PropList.txt

 A Practical Programmer’s Guide to the Encoding Standard

Composition exclusion list
This CompositionExclusions.txt file contains the composition exclusion list for Unicode Normalized
Form C. Form C favors composed forms over decomposed forms for characters that can be
represented either way. This file lists canonical composites that can’t appear in text normalized for
Form C.

Why would you exclude certain canonical composites from Normalized Form C? There are four
main groups of excluded characters:

Script-specific exclusions. For some writing systems, the more common way of representing the
character is with the decomposed form, and converting to the composed form doesn’t actually help
anyone.

Singleton decompositions. Some characters have a single-character canonical decomposition. In
these cases, the “composite” form is just an equivalent character that was given a separate code point
value for compatibility. The “decomposed” form is the form that should almost always be used.

Non-starter decompositions. The composite character has a decomposition whose first character
doesn’t have a combining class of 0—that is, it’s a composite combining character. What we really
want to do with these characters is have them be incorporated into a composite form that includes the
base character. A composite combining mark is still a combining mark, and since the idea behind
Form C (in general) is to get rid of combining marks when possible, composing things into composite
combining marks doesn’t help.

Post-composition version characters. The most important category consists of canonical
composites added to Unicode after Unicode 3.0. Normalized Form C is defined only to use caonical
composites from Unicode 3.0. This is for backward compatibility. If you didn’t exclude new
canonical composites, you could take a file in Unicode 3.0 (or an earlier version), convert it to
Normalized Form C, and change the file’s Unicode version. If the file was produced by a program
that only understood Unicode 3.0, converting it to Form C could make the file (or at least certain
characters in the file) unreadable to the program that produced it. To get around this problem,
Normalized Form C can’t convert to canonical composites that are added to future versions of
Unicode. The CompositionExclusions file refers to these characters as “post-composition version
characters.”

There are thirteen post-composition version characters in the Unicode 3.1 version of
CompositionExclusions.txt. These are all precomposed versions of the musical symbols in the new
Musical Symbols block. (All of the characters in these characters’ decompositions are also new for
Unicode 3.1, so it probably would have been safe not to put them in the composition exclusion list,
but it’s important to uphold the rules anyway.)

Normalization test file
NormalizationTest.txt is a fairly exhaustive set of test cases for implementations of Unicode
normalization. It gives a bunch of sequences of Unicode characters, along with what you should get
when you convert each of them to each of the Unicode normalized forms. It can be used (in fact, it
should be used) to test normalization implementations for conformance.

We look at this file in a lot more detail in Chapter 14.

 Character Properties and the Unicode Character Database

128 Unicode Demystified

Derived normalization properties
Finally, there’s the DerivedNormalizationProperties.txt file, which contains a bunch of categories
that can be used to optimize normalization implementations:

x� The Full_Composition_Exclusion category (or “Comp_Ex” in versions of Unicode before 3.2)
includes characters that can’t occur in any of the normalized Unicode forms.

x� The NFD_NO category lists characters that can’t occur in Normalized Form D. If you’re
normalizing to Form D, you can leave characters alone until you hit a Comp_Ex or NFD_NO
character.

x� The NFC_NO category lists characters that can’t occur in Normalized Form C. If you’re
normalizing to Form C, you can leave characters alone until you hit a Comp_Ex or NFC_NO
character.

x� The NFC_MAYBE category lists characters that usually don’t occur in Normalized Form C. If
you’re normalizing to Form C and hit an NFC_MAYBE character, you may have to check context
to determine if you have to do anything.

x� The NFKD_NO category lists characters that can’t occur in Normalized Form KD.

x� The NFKC_NO and NFKC_MAYBE categories are analogous to NFC_NO and NFC_MAYBE
for Normalized Form KC.

x� The Expands_On_NFD category lists characters that turn into more than one character when
converted to Normalized Form D.

x� The Expands_On_NFC category lists characters that turn into more than one character when
converted to Nornalized Form C.

x� The Expands_On_NFKD category lists characters that turn into more than one character when
converted to Normalized Form KD.

x� The Expands_On_NFKC category lists characters that turn into more than one character when
converted to Normalized Form KC.

x� The FNC category lists characters where you get a different result if you convert them to
Normalized Form KC than you get if you first case-fold them (using the mappings in
CaseFolding.txt) and then map them to Normalized Form KC. For each character, the mapping
straight from the original character to the case-folded Normalization Form KC version is also
included, allowing you to fast-path these two conversions.

All of these categories can be (and, in fact, were) derived from the actual normalizations in
UnicodeData.txt. You can use them in a normalization implementation to help avoid doing
unnecessary work.

Grapheme-cluster-related properties

Unicode 3.2 introduces a few new properties intended to nail down how text is parsed into grapheme
clusters:

x� Grapheme_Base includes all the characters that aren’t in one of the other categories.
Grapheme_Base characters are grapheme clusters unto themselves unless connected to other
characters with Grapheme_Extend or Grapheme_Link characters.

x� Grapheme_Extend includes all combining marks and a few other characters that go in the same
grapheme cluster as the character that precedes them.

x� Grapheme_Link includes Indic viramas and the combining grapheme joiner, which cause the
characters that precede and follow them to belong to the same grapheme cluster.

 PropList.txt

 A Practical Programmer’s Guide to the Encoding Standard

Unihan.txt

Finally, there’s the Unihan.txt file. One of the most important scripts in Unicode is the Chinese
characters (the “Han characters” or “CJK Ideographs”). Unicode 3.1 includes over 70,000 Han
characters, and these characters have additional properties beyond those assigned to the other
Unicode characters.

Chief among these properties are mappings to various source standards. This is the way Unicode
defines the meanings of the various Han characters: it specifies exactly where they came from. This
also lets you see just which characters from which source standards got unified together in Unicode.
All of these mappings, plus a lot of other useful data, are in Unihan.txt.

For each Han character, the Unihan.txt gives at least some of the following pieces of information:

x� Mappings to codes for the same character in a huge number of national and vendor character
encoding standards from various Asian countries.

x� Mappings to entries for the character in a wide variety of dictionaries.

x� Mappings between equivalent Simplified Chinese and Traditional Chinese characters.

x� Mappings between other variant forms of the same character.

x� Pronunciations of the character in various languages.

x� An English definition of the character.

x� The character’s stroke count.
For more information on the Han characters and Han unification, see Chapter 10.

 131

CHAPTER 6 Unicode Storage and
Serialization Formats

As we saw earlier on, the Unicode standard comprises a single, unified coded character set
containing characters from most of the world’s writing stsrems. The past few chapters—indeed, most
of this book—focus on the coded character set. But Unicode also comprises three encoding forms
and seven encoding schemes, and there are a number of other encoding forms and schemes out there
that aren’t actually part of the Unicode standard but are frequently used with it.

�

The encoding forms and schemes are where the rubber meets the road with Unicode. The coded
character set takes each character and places it in a three-dimensional encoding space consisting of
seventeen 256 × 256 planes. The position of a character in this space—its code point value—is
given as a four- to six-digit hex value ranging from zero to 0x10FFFF, a 21-bit value.

The Unicode character encoding forms (or “storage formats”) take the abstract code point values and
map them to bit patterns in memory (“code units”). The Unicode character encoding schemes (or
“serialization formats”) take the code units in memory and map them to serialized bytes in a serial,
byte-oriented medium such as a disk file or a network connection. Collectively, these different
encoding forms and schemes are called the Unicode Transformation Formats (or “UTFs” for short).

The mappings from abstract code point values to serialized bytes is sometimes straightforward and
sometimes not. The variety of different storage and serialization formats exist because depending on
the application, you may want to make different tradeoffs between things like compactness, backward
compatibility, and encoding complexity. In this chapter, we’ll look at all of them, and in Chapter 14
we’ll go back and look at way of actually implementing them.

 Unicode Storage and Serialization Formats

132 Unicode Demystified

A historical note

It’s important to note that much of the terminology surrounding the presentation of Unicode in bits is
relatively new, going back only a few years in Unicode’s history, and some of the terms we discuss
here were originally called by different names.

When it was first designed, Unicode was a fixed-length 16-bit standard. The abstract encoding space
was sixteen bits wide (a single 256 × 256 plane), and there was basically one character encoding
form—a straightforward mapping of 16-bit code points to 16-bit unsigned integers in memory.
There was one official encoding scheme, which prefixed a special sentinel value to the front of the
Unicode file to allow systems to auto-detect the underlying byte order of the system that created the
file.

Fairly early on in the life of the standard, it became clear that a special encoding system based on
Unicode but tailored for backward compatibility with ASCII was important to have. This encoding
went through several names and incarnations before coming to be called UTF-8. The term “UTF”
(“Unicode Transformation Format”) came from the fact that the encoding was an algorithmic
transformation you could perform on the 16-bit Unicode values.

By the time Unicode 2.0 came out, it was clear that an encoding space with only 65,536 cells wasn’t
going to be big enough, and the “surrogate mechanism” was invented: It reserved 2,048 positions in
the encoding space and designated that they were to be used in pairs: one from the 1,024 “high
surrogate” values followed by one from the 1,024 “low surrogate” values. The surrogates were
meaningless in themselves, but pairs of surrogates would be used to represent more characters.

The ISO 10646 standard had started with a 31-bit encoding space—32,768 256 × 256 planes. It had
two encoding forms: UCS-4, which mapped the 31-bit abstract code point values to 32-bit unsigned
integers in memory (the extra bit—the sign bit—was always off, allowing a UCS-4 value to be stored
in either signed or unsigned integer types with no change in numeric semantics), and UCS-2, which
allowed Plane 0 to be represented with a 16-bit serialized value simply by lopping off the top two
zero bytes of the abstract code point value.

Unicode 2.0 with the surrogate mechanism made it possible for Unicode to cover the first seventeen
planes of the ISO 10646 encoding space: Plane 0 with a simple Unicode code point, and Planes 1
through 16 with surrogate pairs. Originally, this wasn’t thought of as extending Unicode to a 21-bit
encoding space: some characters were just represented with two code points. But the mapping from
surrogate pairs to Planes 1 through 16 of the ISO 10646 encoding space , and the abstract code point
values from ISO 10646 took hold in Unicode parlance, where they were called “Unicode scalar
values.”

The surrogate mechanism was adopted into the ISO 10646 standard as “UTF-16,” and this name
began to take hold in the popular parlance. By the time Unicode 3.0 came out, Unicode was being
described as having a 21-bit encoding space, and UTF-16 was put on an equal footing with UTF-8 as
alternative ways to represent the 21-bit abstract Unicode values in bits. The “Unicode scalar value”
became the “code point value” (a code point was now 21 bits wide instead of 16) and the term “code
unit” was coined to refer to the 16-bit units from UTF-16 (or the bytes of UTF-8). A third form,
UTF-32, was added to Unicode later as a counterpart to UCS-4 from the ISO 10646 standard, and
several new serialization formats were introduced. Meanwhile, WG2 agreed to limit ISO 10646 to
the same 21-bit encoding space Unicode was using, and we get to today’s situation.

 How Unicode non-spacing marks work

 A Practical Programmer’s Guide to the Encoding Standard

Throughout the discussion that follows, I’ll try to refer back to the history as it’s important, or when
older terms may still be in common use.

UTF-32

The simplest (and newest) of the Unicode encoding forms is UTF-32, which was first defined in
Unicode Standard Annex #19 (now officially part of Unicode 3.1). To go from the 21-bit abstract
code point value to UTF-32, you simply zero-pad the value out to 32 bits.

UTF-32 exists for three basic reasons: 1) It’s the Unicode standard’s counterpart to UCS-4, the four-
byte format from ISO 10646, 2) it provides a way to represent every Unicode code point value with a
single code unit, which can make for simpler implementations, and 3) it can be useful as an in-
memory format on systems with a 32-bit word length. Some systems either don’t give you a way to
access individual bytes of a 32-bit word or impose a performance penalty for doing so. If memory is
cheap, you can gain performance by storing text internally as UTF-32.

UTF-32 and UCS-4 didn’t historically refer to the same thing: Originally, UCS-4 mapped ISO
10646’s 31-bit encoding space to a 32-bit value, while UTF-32 mapped Unicode’s 21-bit encoding
space to a 32-bit value. In other words, the values from 0x110000 to 0x7FFFFFFF were legal UCS-4
code unit values but not legal UTF-32 code unit values (values of 0x80000000 and above were
illegal in both encodings).

ISO 10646 still conceptually has a 31-bit encoding space, but WG2, the group behind ISO 10646,
has agreed to restrict actual allocation of code point values to characters to just the first seventeen
planes, making UCS-4 and UTF-32 functionally identical from here on out.

The big downside to UTF-32, of course, if that it wastes a lot of space. Eleven bits in every code unit
are always zero and effectively wasted. In fact, since the vast majority of actual text makes use only
of characters from the BMP, sixteen bits of the code unit are effectively wasted almost all the time.30
And you don’t generally gain a lot in implementation efficiency, since a single character as the user
sees it might still be represented internally with a combining character sequence. That is, even with
UTF-32 you may have to deal with single “characters” as the user sees it being represented with
multiple code units (the fact that Unicode considers each of these units to be a “character” isn’t
generally all that helpful).

30 Theoretically, of course, you could save some of that space by using 24-bit code units, but this has never been

seriously suggested because no machine architecture can comfortably handle 24-bit values except by

padding them out to 32 bits. A 24-bit encoding would thus effectively be limited to use as a serialization

format, and there are more compact ways to represent Unicode in serialized data.

 Unicode Storage and Serialization Formats

134 Unicode Demystified

UTF-16 and the surrogate mechanism

So that brings us to UTF-16. UTF-16 is the oldest Unicode encoding form, although the name
“UTF-16” only goes back a couple years.

UTF-16 maps the 21-bit abstract code point values to sequences of 16-bit code units. For code point
values in the BMP, which represent the vast majority of characters in any typical written document,
this is a straightfoward mapping: you just lop the five zero bits off the top:

A
000041

0 0000 0000 0000 0100 0001
0 0 0 0 4 1

0000 0000 0100 0001
0 0 4 1

0041

For characters from the supplementary planes, the transformation is more complicated. To represent
supplementary-plane characters, Unicode sets aside 2,048 code point values in the BMP and reserves
them. These 2,048 code point values will never be assigned to actual characters, which frees up their
corresponding 16-bit code unit values to be used for the supplementary-plane characters.

The reserved code point values run from U+D8000 to U+DFFF. This range is called the “surrogate
range,” and code unit values in this range are called “surrogates.” The name is somewhat historical.
Originally the surrogates were thought of as full-fledged code point values that “stood in” or “acted
as surrogates” for supplementary-plane characters. Now they’re just reserved code point values.

The surrogate range is divided in half. The range from U+D800 to U+DBFF contains the “high
surrogates” and the range from U+DC00 to U+DFFF contains the “low surrogates.” A
supplementary-plane character is represented with a single code unit value from the high-surrogate
range followed by a single code unit value from the low-surrogate range (a so-called “surrogate
pair”). Unpaired or out-of-order surrogates are illegal and don’t represent anything.

The mapping from a supplementary-plane character to a surrogate pair is rather complicated. First,
you subtract 0x10000 from the original code point value to get a 20-bit value. You then split the
result into two ten-bit sequences. The first ten-bit sequence becomes the lower ten bits of the high-
surrogate value, and the second ten-bit sequence becomes the lower ten bits of the low-surrogate
value. For U+E0041 TAG LATIN CAPITAL LETTER A, that mapping looks like this:

 UTF-16 and the surrogate mechanism

 A Practical Programmer’s Guide to the Encoding Standard

A
0E0041

0 1110 0000 0000 0100 0001
0 E 0 0 4 1

D C 4 1

DC41

1101 0000 00

1101 1011 0100 0000 1101 1100 0100 0001

D B 4 0

DB40

So U+E0041 turns into 0xDB40 0xDC41 when converted to UTF-16.

People have objected to the surrogate mechanism as a corruption of the original Unicode ideal, which
was to have a fixed-length 16-bit encoding. They’re right, of course, that a compromise had to be
made here, but they’re wrong in thinking this opens up the whole can of worms that usually comes
with variable-length encoding schemes.

In a typical variable-length encoding, you can’t tell anything by looking at a single code unit (which
is usually a byte). That byte may be a character unto itself, the second byte of a two-byte character, or
in some cases the first byte of a two-byte character. You could only tell whether you were actually at
the beginning of a character or not by looking at context. And if you lost a byte of the text in
transmission, it could throw off the reading process, making it see the rest of the text as random
garbage.

UTF-16 gets around this problem by using distinct ranges of values to represent one-unit characters,
first units of two-unit characters, and second units of two-unit characters. A high-surrogate value can
only be the first unit of a two-unit character, a low-surrogate value can only be the second unit of a
two-unit character, and a non-surrogate value can only be a single-unit character. If you ever see an
unpaired surrogate, it’s an error, but the only character that gets corrupted is the character the
surrogate represented half of: the surrounding text remains intact.

ISO 10646 specifies an encoding form called UCS-2, which also uses 16-bit code units. It’s
important to note that UCS-2 is not the same thing as UTF-16. The difference is the surrogate
mechanism. UCS-2 can only represent BMP characters, every code point is represented with a single
code unit, and the code units from U+D800 to UDFFF just aren’t used. Supplementary-plane
characters simply can’t be represented using UCS-2. In other words, UTF-16 is UCS-2 plus the
surrogate mechanism. (Since prior to Unicode 3.1 there were no characters in the supplementary
planes, a lot of Unicode implementations didn’t actually support the surrogate mechanism; you’ll
sometimes see these characterized as “supporting UCS-2” as a euphemistic way of saying they don’t
handle surrogate pairs.)

Some developers object to the additional code complexity involved in supporting UTF-16 as a
representation format, but this shouldn’t generally be all that big a deal. The reason for this is that

 Unicode Storage and Serialization Formats

136 Unicode Demystified

code points outside the Basic Multilingual Plane are only used for relatively rare characters. Mostly,
the non-BMP range will contain characters for historical (i.e., dead) languages, specialized sets of
symbols, and very specialized control signals. Except for scholarly documents in certain fields, non-
BMP characters will never occur, or will occur only extremely rarely. Even in such specialized
documents, they’ll generally only show up in examples and other places where they’ll be the minority
of the text.

The one big exception to this is the CJK ideographs, which are living characters used to write living
(and, in fact, thriving) languages. Even here, however, the most common characters (tens of
thousands of them) are encoded in the BMP. Most ideographic text should only make occasional
forays outside the BMP to get the characters they need. The biggest thing that’ll require frequent trips
outside the BMP is certain people’s names, as the naming of children is the single biggest source of
newly-coined ideographs. But even here, the number of times someone’s name appears in a
document about him or her is still way less than the number of times other words occur.

Another thing to keep in mind is that most of the processing required to handle surrogate pairs in
memory is also required to support combining character sequences. There are certain operations that
require a little more support to handle surrogate pairs, but for the most part, systems that correctly
handle combining character sequences should also work right with surrogate pairs.

Endian-ness and the Byte Order Mark

Most experienced programmers are familiar with the concept of byte order, or “endian-ness.” Most
personal-computer architectures of today evolved from old machine architectures that had an 8-bit
word length. While their modern counterparts have longer word lengths, they still allow access to
individual 8-bit fragments of a word. In other words, successive memory-address values refer to
successive 8-bit fragments of words, not successive whole words. A 32-bit word on most modern
machines thus takes up four memory locations.

How a 32-bit value is distributed across four eight-bit memory locations (or how a 16-bit value is
distributed across two eight-bit memory locations) varies from machine architecture to machine
architecture. That is, if you write 0xDEADBEEF into memory location 0, you’re actually writing
values into memory locations 0, 1, 2, and 3. Some machines, such as the PowerPC and SPARC
families of processors, store the most significant byte of the word in the lowest-numbered memory
location— that is, memory location 0 would contain 0xDE, and memory location 3 would contain
0xEF. These architectures are said to be big-endian. Other machines, such as the Intel x86/Pentium
family of processors, store the most-significant byte of the word in the highest-numbered memory
location— that is, memory location 0 would contain 0xEF and memory location 3 would contain
0xDE. These architectures are said to be little-endian.

When a program is operating in memory, endian-ness isn’t important. In our example, if you write a
32-bit value (say, 0xDEADBEEF) to memory location 0, you just do it, and it’s of no concern to you
which memory location contains which byte. Later you read the value from memory location 0 back
and it comes back as 0xDEADBEEF, just as you wrote it, again without your needing to be aware of
which bytes were stored in which specific memory locations. This is because those memory locations
will always be treated in a consistent manner. They’re either always going to be accessed by the same
processor, or at least they’re shared by multiple processors that all share the same architecture. You
only get in trouble in the rare instances when you sometimes treat memory locations 0 to 3 as a single
32-bit value and sometimes treat them as something else (e.g., four eight-bit values or two 16-bit
values).

 Endian-ness and the byte order mark

 A Practical Programmer’s Guide to the Encoding Standard

Where endian-ness starts to be an issue is when you start transferring data from a single computer’s
memory to some other location, such as another computer or a storage device. Writing data to the
disk or sending it over a communications link of some kind requires serializing it: writing it out as a
series of values of the same size. Again, since the smallest “word” size on most modern machines is
eight bits, this means writing and reading the data as a sequence of bytes.

This, of course, requires taking all of the units that are longer than 8 bits and breaking them up into
series of bytes. This requires you to make a decision as to which order you’re going to write the bytes
in when you break up a larger value.

This is pretty much always done in order from lowest-numbered memory location to highest-
numbered memory location. This again means that if the same computer both writes something to the
disk and reads it from the disk, or if two computers of the same processor architecture share a file
over a network, endian-ness again isn’t an issue, but if processors of different architectures share data
over a network, or if you share data on a removable medium between machines of different
architectures, you can run into serious trouble…

…unless, of course, you’ve secured some kind of an agreement beforehand as to what the serialized
format’s byte order is, or provided some way for the reading process to detect it.

Unicode does both of these things. It defines two encoding schemes based UTF-16: UTF-16BE and
UTF-16LE, which are, respectively, the big-endian and little-endian versions of UTF-16. Since this
distinction in meaningless in memory, the in-memory representation is just called UTF-16; UTF-
16BE and UTF-16LE are only used to refer to UTF-16 text in some kind of serialized format, such as
a disk file.

“UTF-16” can also be used to refer to serialized UTF-16, giving you a third encoding scheme.
Unicode provides a mechanism for automatically detecting the endian-ness of serialized UTF-16 text
whose endian-ness isn’t announced by the enclosing protocol. This mechanism is called the byte-
order mark, or “BOM” for short. (“BOM” is pronounced “bomb,” not “bee-oh-em,” so [WARNING:
lame humor follows] be careful discussing Unicode serialization while passing through airport
security checkpoints.)

The code point U+FEFF is designated as the Unicode byte-order mark. Its byte-swapped counterpart,
0xFFFE, on the other hand, is not a legal Unicode value. Thus, if a file you’re reading contains any
0xFFFEs, you know it’s either not Unicode text, or it’s the wrong endian-ness and you need to byte-
swap all the incoming character codes to get real Unicode. The writing process would include BOMs
to allow this detection to happen on the receiving end.

The convention, thus, is to start off a Unicode text file (or a transmission including Unicode text)
with a BOM anytime there’s no external mechanism available to specify its endian-ness. So a file or
transmission tagged as “UTF-16” rather than “UTF-16BE” or “UTF-16LE” would be expected to
begin with a BOM. (The other formats could also begin with a BOM, but it’d be redundant.) If it
doesn’t, the convention is to assume it’s UTF-16BE.

Since the BOM is useful as a way to announce the endian-ness of a Unicode text file, it can also be
useful for telling whether a text file is a Unicode file in the first place, or for telling the difference
between different variant versions of Unicode. You can find more information on how this works
under “Detecting Unicode storage formats” below.

 Unicode Storage and Serialization Formats

138 Unicode Demystified

You need to be somewhat careful when using the BOM, however, because it has a double meaning.
In Unicode 1.0, the code point U+FEFF only had the single meaning. It was a byte-order mark and
only a byte-order mark. In normal Unicode text processing, it was simply a no-op.

But beginning in Unicode 2.0, the code point U+FEFF also acquired the semantic “zero-width non-
breaking space” (often abbreviated “ZWNBSP”). A zero-width non-breaking space is used to “glue”
two characters together. It has no visual representation, but will prevent a text processor that supports
it from breaking a line between the characters on either side of the ZWNBSP. You might use it, for
example, in the word “e-commerce” to keep “e-” from getting stranded on a line by itself, or to keep
a Chinese phrase together on one line (Chinese text can usually have line breaks in the middle of
words and phrases). When ZWNBSP occurs between two characters that naturally stick together on a
single line (e.g., the letters in any English word), it has no effect.

Of course, if the ZWNBSP occurs at the beginning of a document, it’s basically a no-op since there’s
nothing to “glue” the first character to. But, if you concatenate two Unicode text files together using
something like the Unix utility cat, you’re now inadvertently gluing the last character of the first file
to the first character of the second file.

Because of this, the double meaning of U+FEFF quickly came to be seen as a mistake. So starting in
Unicode 3.2, the “zero-width nono-breaking space” meaning of U+FEFF is deprecated. Despite the
name (which unfortunately can’t change), U+FEFF goes back to being only a byte-order mark. A
new character, U+2060 WORD JOINER, has been introduced in Unicode 3.2 to take over the task of
“gluing” two words together on a single line. Conforming Unicode implementations are now allowed
to convert U+FEFF ZERO WIDTH NO-BREAK SPACE to U+2060 WORD JOINER.

Of course, you also run into the endian-ness problem in UTF-32, so there are also three character
encoding schemes based on UTF-32: UTF-32BE, UTF-32LE, and tagged UTF-32, which work the
same way as their UTF-16-based counterparts.

UTF-8

Then there’s UTF-8, the 8-bit Unicode encoding form. UTF-8 was designed to allow Unicode to be
used in places that only support 8-bit character encodings. A Unicode code point is represented using
a sequence of anywhere from 1 to 4 8-bit code units.

One vitally important property of UTF-8 is that it’s 100% backward compatible with ASCII. That is,
valid 7-bit ASCII text is also valid UTF-8 text. This means that UTF-8 can be used in any
environment that supports 8-bit ASCII-derived encodings and that environment will still be able to
correctly interpret and display the 7-bit ASCII characters. (The characters represented by byte values
where the most significant bit is set, of course, aren’t backward compatible—they have a different
representation in UTF-8 than they do in the legacy encodings.)

So Unicode code point values from U+0000 to U+007F are mapped to UTF-8 in a very
straightforward manner:

 UTF-8

 A Practical Programmer’s Guide to the Encoding Standard

000041

0 0000 0000 0000 0100 0001
0 0 0 0 4 1

0100 0001
4 1

41

A

You simply isolate the last seven bits and zero-pad it out to eight bits.

Code point values from U+0080 to U+07FF take two bytes, as follows:

000416

0 0000 0000 0100 0001 0110
0 0 0 4 1 6

1001 0110

9 6

96

1101 0000

D 0

D0

The last six bits, plus 0x80, become the second byte, and the next five bits, plus 0xC0, become the
first byte.

Code point values from U+0800 to U+FFFF (the rest of the BMP) turn into three-byte sequences, as
follows:

005C71

0 0000 0101 1100 0111 0001
0 0 5 C 7 1

1011 0001

B 1

B1

1110 0101

6

E6

E
1011 0001

B 1

B1

 Unicode Storage and Serialization Formats

140 Unicode Demystified

The first four bits, plus 0xE0, become the first byte, the next six bits, plus 0x80, become the second
byte, and the last six bits, plus 0x80, become the last byte.

Finally, the code points in Planes 1 through 16 (the non-BMP characters) turn into four-byte
sequences, as follows:

0E0041

0 1110 0000 0000 0100 0001
0 E 0 0 4 1

1000 0001

8 1

81

A

1110 0000

0

E0

E
1000 0001

8 1

81

1111 0011

3

F3

F

The first three bits, plus 0xF0, become the first byte, and the other three bytes each consists of the
next six bits from the original code point, plus 0x80.

This actually can extend all the way out to cover the entire 31-bit ISO 10646 range, using 5- and 6-
byte sequences. But this is mostly of historical interest (and to explain old UTF-8 implementations)
now that WG2 has committed to never put any characters into Planes 18 and above.

As with UTF-16, UTF-8 avoids many of the problems with other multi-byte encodings by ensuring
that different ranges of values are used in different positions in the character:

00–7F Single-byte character
80–BF Trailing byte
C0–DF Leading byte of two-byte character
E0–EF Leading byte of three-byte character
F0–F7 Leading byte of four-byte character
F8–FB Illegal (formerly leading byte of five-byte character)
FC–FD Illegal (formerly leading byte of six-byte character)
FE–FF Illegal

The only ambiguous thing here is the trailing byte. You can tell a byte is a trailing byte, but you
can’t tell which byte of the character it is, or how many bytes the character is. But because of UTF-
8’s design, you know you’ll never have to scan forward or back more than three bytes to find out.

One side effect of UTF-8’s design is that many code points can more than one potential repre-
sentation in UTF-8. For example, U+0041 could be represented not only as 0x41, but also as 0xC1
0x81 or 0xE0 0x81 0x81. The standard stipulates that the shortest possible representation for any
code point is the only legal one. Prior to Unicode 3.1, it was legal for UTF-8 implementations to
interpret these so-called “non-shortest form” byte sequences. This created a potential security hole,
so Unicode 3.1 tightened the definition to disallow both interpretation and generation of non-
shortest-form sequences.

 UTF-8

 A Practical Programmer’s Guide to the Encoding Standard

There’s another version of “non-shortest-form” UTF-8 that also needs to be dealt with: representation
of supplementary-plane characters using six-byte sequences. For example, instead of representing
U+E0041 in UTF-8 as 0xF3 0xE0 0x81 0x81, as in the example above, you could conceivably
represent it as 0xED 0xAD 0x80 0xED 0xB1 0x81, which is what you get if you convert it first to
UTF-16, producing 0xDB40 0xDC41, and then convert the two surrogate code units to UTF-8.

Even Unicode 3.1’s tightening of the UTF-8 definition still premitted this: as with other non-shortest-
form sequences, it was illegal to produce byte sequences like this, but legal to interpret them.
Unicode 3.2 closes this loophole: UTF-8 sequences representing code point values in the surrogate
range (U+D800 to U+DFFF) are now completely illegal. That is, any three-byte UTF-8 sequence
whose first byte is 0xED and whose second byte is anything from 0xA0 to 0xBF is illegal.

Since conversion of code points to UTF-8 results in a sequence of bytes, UTF-8 is effectively a
character encoding scheme unto itself, and not just a character encoding form.

CESU-8

Draft Unicode Technical Report #26 proposes an encoding scheme with the rather unwieldy name of
“Compatibility Encoding Scheme for UTF-16: 8-biit,” or “CESU-8” for short.

CESU-8 is a variant of UTF-8. It treats the BMP characters the same, but deals with the
supplementary-plane characters differently. In CESU-8, supplementary-plane characters are
represented with six-byte sequences instead of four-byte sequences. In other words, the six-byte
representation of supplementary-plane characters that is now illegal in UTF-8 is the preferred
representation of these characters in CESU-8.

CESU-8 is what you get if you convert a sequence of Unicode code point values to UTF-16 and then
convert the UTF-16 code units to UTF-8 code units as if they were code points. Supplementary-
plane characters thus get turned into pairs of three-byte sequences, where each three-byte sequence
represents a surrogate.

U+E0041 TAG LATIN CAPITAL LETTER A, which is 0xDB40 0xDC41 in UTF-16 and 0xF3
0xE0 0x81 0x81 in UTF-8, is 0xED 0xAD 0x80 0xED 0xB1 0x81.

CESU-8 is what you get if your program uses UTF-16 as its internal representation format and its
conversion to UTF-8 doesn’t know about surrogate pairs (either because it was written before the
surrogate mechanism was devised or because it was written by someone who assumed there’d never
be character allocations in the supplementary planes). It’s safe to say it’ll never get accepted as an
official part of the standard, but it might get blessed as a technical report as a way of documenting the
internal behavior of a lot of existing systems.

UTF-EBCDIC

One of the main uses of UTF-8 is to allow the use of Unicode text in systems that were designed for
ASCII text. This is why regular ASCII text is also legal UTF-8. UTF-8 isn’t the first international

 Unicode Storage and Serialization Formats

142 Unicode Demystified

character encoding to be in some way backwards-compatible with ASCII—quite a few encodings for
various languages are backwards-compatible with ASCII in the same way and for the same reason.

Well, the other 8-bit encoding for Latin text that has huge bodies of text encoded in it is EBCDIC,
IBM’s Extended Binary-Coded Decimal Information Code. There’s a lot of legacy data out there in
EBCDIC, and a lot of legacy systems that are designed to assume that textual data is encoded in
EBCDIC. UTF-EBCDIC (sometimes called “UTF-8-EBCDIC”), much like UTF-8, is designed to
allow the use of Unicode in environments originally designed for EBCDIC.

EBCDIC isn’t just ASCII with the characters listed in a different order; it includes characters that
aren’t in ASCII and leaves out characters that ASCII includes. Classical EBCDIC used an 8-bit byte,
but encoded only 109 characters,, leaving “holes” in the encoding space. Later versions of EBCDIC
filled in the “holes,” extending EBCDIC to a full 256-character encoding. As there are variant
versions of 8-bit ASCII that put different characters into the space above 0x7F, so too are there
different variants of EBCDIC that fill in the “holes” with different characters.

There’s a set of 65 control signals and 82 printing characters that are common to all current variants
of EBCDIC, distributed across the 8-bit encoding space. UTF-EBCDIC aims to preserve these
values, using the remaining values to encode the rest of the Unicode characters as multi-byte
combinations. It does this through the use of a two-step process that makes use of an intermediate
format called “UTF-8-Mod” or “I8”.

I8 is similar to UTF-8, except that the transformation to I8 not only preserves all of the values from
0x00 to 0x7F as single-byte sequences, but also the values from 0x80 to 0x9F (the “C1 controls”
from the Latin-1 character set). This range covers all of the EBCDIC control characters, as well as all
of the printing characters that EBCDIC and ASCII have in common. It then proceeds in UTF-8 style
to encode the other Unicode code points as multi-byte sequences. Like UTF-8, I8 is designed so that
the leading byte of a multi-byte sequence indicates how many bytes are in the sequence, and so that
completely distinct ranges of byte values are used for single-byte characters, leading bytes of multi-
byte sequences, and trailing bytes of multi-byte sequences. Because I8 preserves a greater range of
values as single-byte sequences, the remaining Unicode characters may map to sequences of up to
five bytes. (In UTF-8, characters in the BMP mapped to up to three bytes, with the non-BMP range
taking four bytes; in UTF-EBCDIC, characters in the BMP may map to up to four bytes, and non-
BMP characters may map to either four- or five-byte sequences.)

The mapping from I8 to actual UTF-EBCDIC is a simple and reversible table lookup: The single-
byte values are mapped to the values the corresponding characters have in EBCDIC, and the bytes of
the multi-byte characters are mapped into the remaining spaces. The resulting text can be handled
properly by most processes expecting to see regular EBCDIC text.

Unlike UTF-8, you can’t tell by doing simple bit masking whether an individual byte of a UTF-
EBCDIC sequence is a character unto itself or part of a multi-byte sequence, but since you can tell
this from looking at an I8 sequence, and since you can get from I8 to UTF-EBCDIC with a simple
table lookup, you can also use a simple table lookup to identify the leading, trailing, and standalone
bytes in a UTF-EBCDIC sequence.

I8, by the way, is an intermediate representation only, and not a character encoding form unto itself.
Also, UTF-EBCDIC is suitable for use only in homogeneous EBCDIC-based systems and not for
general interchange. In particular, you can’t use UTF-EBCDIC in an ASCII or UTF-8-based
environment.

 UTF-EBCDIC

 A Practical Programmer’s Guide to the Encoding Standard

Because UTF-EBCDIC is designed only for internal use on EBCDIC-based systems and not for
interchange, it’s not an official part of the Unicode standard It’s published as Technical Report #16
as a way of officially documenting the practice for people writing code for EBCDIC-based systems

UTF-7

There are other, less common, Unicode transformation formats you might run across. The most
common of these is UTF-7, which was designed for use in environments that were designed
specifically for 7-bit ASCII and can’t handle 8-bit characters. In particular, the original version of the
Simple Mail Transfer Protocol (SMTP), which is still in common use, wouldn’t work with 8-bit
character values and required this approach.

UTF-7 does this by using a scheme similar to the numeric-character reference scheme used in HTML
and XML: most of the ASCII characters are just themselves, but a few are used to signal sequences
of characters that specify otherwise unrepresentable Unicode values. Thus, unlike the other Unicode
transformation formats, UTF-7 is a stateful encoding, with values whose interpretation depends on
context. (By way of analogy, consider the “<” sequence in HTML: to tell whether the “l” is a real
letter l or not, you have to scan both directions to see if it occurs between a & and a ;—trailing bytes
in UTF-8 could be thought of as “stateful” because you can’t tell specifically which position they
occupy in the sequence, but you know they’re trailing bytes, and the number of characters that you
have to examine in order to find the beginning of the sequence is bounded.)

UTF-7 represents the letters A through Z and a through z, the digits 0 through 9, certain punctuation
marks (in particular, “,()’-./:?”, plus, optionally, a number of other characters), and the space, tab,
carriage return, and line feed the same way they’re represented in ASCII. The other Unicode
characters are represented using a variant of the Base64 encoding: the + character signals the
beginning of a sequence of Base64 text. A sequence of Base64 ends when a non-Base64 character is
encountered. The – character can be used to force a switch out of Base64.

UTF-7 uses a modified version of Base64 that avoids using the = character, since the = character has
a special meaning in some of the places where UTF-7 was intended to be used.

UTF-7 was never part of the Unicode standard and was never published as a Unicode Technical
Report, but was published by the Internet Engineering Task Force as RFC 2152 (and earlier as RFC
1642). These days, it’s pretty much been supplanted by regular Base64, MIME, and various other
protocols. For more on Unicode in Internet mail, see Chapter 17.

Standard Compression Scheme for Unicode

One of the major reasons for resistance to Unicode when it first came out was the idea of text files
taking up twice as much room as before to store the same amount of actual information. For
languages like Chinese and Japanese that were already using two bytes per character, this wasn’t a
problem, but the idea of using two bytes per character for the Latin alphabet was anathema to a lot of
people.

The concern is certainly legitimate: the same document takes up twice as much space on a disk and
twice as long to send over a communications link. A database column containing text would now take

 Unicode Storage and Serialization Formats

144 Unicode Demystified

twice as much disk space. In an era of slow file downloads, for example, the idea of waiting twice as
long to download an email message is pretty unpalatable when it already takes too long. The idea that
processing speed, transmission speed across networks, and disk space all increase so rapidly that “it
won’t be a problem in a couple years” always rang hollow to me. Just because I have more disk space
doesn’t mean I want to waste it.

Of course, these days processing speed, disk space, and even modem speeds are such that sending,
receiving, and storing text isn’t all that big a deal. Even long text documents don’t take up much
room. The bandwidth problems we’re running up against today don’t have anything to do with
sending text back and forth—they have to do with sending graphics, sound, and video back and forth.
Today the size premium that Unicode imposes doesn’t seem like a big deal, although it certainly did
ten years ago when Unicode was getting its start.

However, it’s still a big deal when you have really large concentrations of text in one place. If you’re
General Motors and you’ve got millions of parts to keep track of, doubling the size of the
“Description” field in your part database is going to have a big impact. If you’re a big wire service
and you’re sending an endless stream of news stories out over the wire to your subscribers, doubling
the size of all of your news stories is going to have a huge impact.

The Unicode standard has always been silent on this issue, saying that compression was a “higher-
level protocol” and that there were plenty of effective compression algorithms out there that could
take care of this problem. True enough, although using something like Lempel-Ziv-Welch
compression to compress simple text files seems a little like overkill and introduces noticeable
hassle. If all you’re trying to do is get back to about the same level of efficiency you had when you
were using a single-byte encoding and do it in a way that makes it simple to compress and decom-
press, the standard compression algorithms don’t offer a lot of relief.

Many people started using UTF-8 for this purpose. It’s easy enough to compress and decompress,
and it represents ASCII text with the same efficiency as ASCII. Besides, it’s less work to retrofit
things to use UTF-8 than to go whole-hog with UTF-16 or UTF-32.

The last reason is certainly true enough, and is one reason why UTF-8 will always be with us, and is
likely to always be the most popular way of exchanging Unicode data between two entities in a
heterogeneous environment. But UTF-8 does impose a small penalty on Latin-1 text. In languages
like Spanish and French that use a lot of accented letters, the fact that an accented letter uses two
bytes in UTF-8 and only one in Latin-1 begins to make a noticeable difference.

And it doesn’t help speakers of non-Latin languages. Greek, for example, takes two bytes per
character in UTF-8 but only one in a native Greek encoding. Worse yet, Japanese, Chinese, and
Korean, which generally take two bytes per character in their native legacy encodings, take three
bytes per character to represent in UTF-8! Finally, there are some languages, such as Thai, that take
only one byte per character in their native legacy encodings that also take three bytes in UTF-8.

The bottom line is that using UTF-8 for compression is a very Eurocentric (even English-centric)
thing to do. For English, UTF-8 has the same storage efficiency as the legacy encoding, and twice the
efficiency of UTF-16, and for most other European languages, UTF-8 imposes maybe a 15% penalty
over the legacy encoding, but that’s still better than the 100% penalty UTF-16 imposes. But for
Greek, Cyrillic, Hebrew, Arabic, and a couple other languages, UTF-8 and UTF-16 impose the same
penalty over the native encoding. For Japanese and Chinese, UTF-16 imposes little or no storage
penalty, but UTF-8 imposes a 50% penalty. And for Thai, UTF-16 imposes a 100% penalty over the
legacy encoding, but UTF-8 imposes a 200% penalty over the native encoding!

 Standard Compression Scheme for Unicode

 A Practical Programmer’s Guide to the Encoding Standard

So unless you know you’ll always be restricted to working in just the languages where UTF-8 gives
you good efficiency, UTF-8 isn’t effective as a means of saving space.

Earlier I mentioned how going from ASCII to UTF-16 would really hurt you if you were a wire
service sending out thousands of new stories and other information every day. Well, it was a wire
service, Reuters, that first put forth a solution to the problem, a simple and efficient compression
scheme for Unicode that was the forerunner of what is now known as the Standard Compression
Scheme for Unicode, or SCSU for short.

SCSU is a relatively simple compression scheme designed specifically for Unicode text. It takes
advantage of the properties of Unicode text to achieve its efficiencies, and produces results that are
generally comparable in size to the legacy encodings. Text in SCSU can then be compressed with a
general-purpose compression scheme such as LZW to achieve even greater compression ratios (in
fact, LZW will generally do a better job on SCSU-encoded Unicode than on regular UTF-16 or UTF-
8).

SCSU is a file format, not an algorithm. It lends itself to a multitude of different compression
algorithms that can trade off compression speed versus compactness in different ways. The algorithm
for decompressing SCSU, on the other hand, remains the same and is simple and straightforward
(JPEG and MPEG compression are designed around the same principle: one simple way to
decompress, lots of different ways to compress).

SCSU is a stateful encoding, meaning it has “modes” and you can’t jump into the middle of an
SCSU-compressed file and tell what you’re looking at without potentially seeking all the way back to
the beginning. This means it’s generally suitable as an interchange or storage format, but not terribly
well-suited to internal processing.

SCSU has two basic modes: single-byte mode and Unicode mode. In single-byte mode, the ASCII
printing characters and the most common ASCII control characters are represented as themselves.
This means that most ASCII text files (those that only use the most common control characters) are
interpretable as SCSU.

The byte values from 0x80 to 0xFF, as usual, are where most of the magic happens. Unlike in Latin-1
and most other encodings, where they have a fixed interpretation, and unlike in UTF-8, where they
have no meaning by themselves but are used in variable-length combinations to form characters, the
values from 0x80 to 0xFF have a variable interpretation in SCSU. Their default interpretation is the
same as in Latin-1, so most Latin-1 text files are interpretable as SCSU (remember that Latin-1 is not
interpretable as UTF-8).

Remember, however, that only the most common ASCII control characters are represented
unchanged. The others are used by the compression algorithm for various things. One set of control
characters is used to control the interpretation of the values from 0x80 to 0xFF. In all cases, these
values are used to represent a contiguous range of 128 characters from somewhere in the Unicode
encoding range. This range is called a “window” and the default window is the Latin-1 range. There
are a bunch of predefined windows that cover other interesting ranges, such as the Cyrillic window or
the Hebrew window. You can represent text that all falls into one 128-character range of Unicode
characters simply by having one control character in the stream to set the appropriate window and
then using the values from 0x80 to 0xFF to represent the characters in that window.

 Unicode Storage and Serialization Formats

146 Unicode Demystified

If the Unicode text being encoded spans more than one window (the ASCII window doesn’t count,
since it’s always accessible), you intersperse more control codes to shift the window back and forth.
There are also “quote” control characters that shift the window only for the very next character
instead of for all following characters.

SCSU also lets you define windows, so that if the characters you need to encode aren’t in any of the
predefined windows, you can define one that does cover them and have characters that take you to it.

Of course, there are scripts, the Han characters being the most notable example, that span a much
larger range than 128 characters and for which the window-shifting scheme would be unwieldy. This
is why SCSU has a Unicode mode. You include a control character that shifts into Unicode mode,
and the bytes that follow are interpreted as big-endian UTF-16 (there’s a range of byte values that are
used as control codes in Unicode mode to allow you to shift back into byte mode). There’s also a
code that shifts into Unicode mode for a single Unicode character, rather than for all following text.

This scheme is relatively easy to implement a decoder for, and allows for considerable discretion in
the design of encoders. A simple encoder could simply shift to Unicode mode at the beginning of the
text stream and pass the rest of the text through unchanged, taking care to insert appropriate escape
characters if the input text includes the tag values that SCSU uses in Unicode mode. Or a simple
encoder could pass through Latin-1 characters unchanged and insert the quote-single-Unicode-
character tag before each non-Latin-1 character in the input stream. A sophisticated encoder, on the
other hand, can make extensive use of all of the features of the encoding, combined with lots of
lookahead when examining the input stream, to achieve very high levels of compression.

A good SCSU encoder should be able to produce results for most text that are similar in size to the
same text encoded in the common legacy formats. SCSU-encoded text will almost always offer a
significant savings over regular UTF-16 or UTF-8 text, and should almost never (with a well-
designed encoder) impose a penalty of more than a few bytes.

For more on implementing SCSU, see Chapter 14.

BOCU

An interesting alternative to SCSU for Unicode compression was proposed in a recent paper on
IBM’s developerWorks Web site.31 It’s called “Binary Ordered Compression for Unicode,” or
“BOCU” for short. It provides compression ratios comparable for SCSU, but with a number of
interesting advantages. Chief among them: a set of Unicode strings encoded in BOCU sorts in the
same order as the unencoded strings would, making it useful for encoded short snippets of text in
environments where the sort order is still important (think database applications). The algorithm is
also a lot simpler than SCSU.

The basic idea is that instead of independently transforming each code point to a sequence of bytes
using some fixed mapping, you transform each code point to a sequence of bytes by subtracting it
from the preceding code point in the text and encoding the difference as a series of bytes. BOCU
arranges things so that differences of plus or minus 0x3F or less are represented with single bytes,
differences of plus or minus 0x40 to 0x2F3F are represented with two-byte sequences, and larger

31 Mark Davis and Markus Scherer, “Binary-Ordered Compression for Unicode,” IBM DeveloperWorks,

http://www-106.ibm.com/developerworks/unicode/library/u-binary.html.

 Standard Compression Scheme for Unicode

 A Practical Programmer’s Guide to the Encoding Standard

differences are represented with three-byte sequences. The lead bytes of these sequences are then
arranged in such a way as to preserve the relative sorting order or unencoded strings.

If, instead of just subtracting the current character from the preceding character, you adjust the value
you subtract from to be in the middle of its Unicode block and consider a little more context than just
the immediately preceding character, you can arrive at an encoding that’s almost as efficient as SCSU
(and in some cases, more so).

Variants of BOCU is used internally in parts of the International Components for Unicode, the
popular Unicode support library. It’s unclear whether it’ll catch on to a greater extent, but it’s an
interesting idea worth thinking about if you need the things it can give you.

Detecting Unicode storage formats

The Unicode 2.0 standard, in its discussion of the byte-order mark, talked about how it could be used
not just to tell whether a Unicode file was the proper endian-ness, but whether it was a Unicode file
at all. The idea is that the sequence 0xFE 0xFF (in Latin-1, a lowercase y with a diaeresis followed
by the lowercase Icelandic letter “thorn”) would pretty much never be the first two characters of a
normal ASCII/Latin-1 document. Therefore, you could look at something you knew was a text file
and tell what it was: If the first two bytes were 0xFE 0xFF, it was Unicode; if 0xFF 0xFE, it was
byte-swapped Unicode, and if anything else, it was whatever the default encoding for the system was.

As Unicode transformation formats have proliferated, so too has the idea of using the byte-order
mark at the beginning of the file as a way of identifying them. The current chart looks like this:

If the file starts with… …the file contains…
0xFE 0xFF UTF-16
0xFF 0xFE byte-swapped UTF-16
0x00 0x00 0xFE 0xFF UTF-32
0xFF 0xFE 0x00 0x00 byte-swapped UTF-32
0xEF 0xBB 0xBF UTF-8
0xDD 0x73 0x73 0x73 UTF-EBCDIC
0x0E 0xFE 0xFF SCSU (recommended; others are possible)
anything else non-Unicode or untagged Unicode

The basic rule behind the use of these things is simple: If there’s any other way to specify (or tell)
which format some piece of text is in, don’t rely on the byte-order mark. If the byte-order mark isn’t
there, then you’re stuck. You don’t know what the file is. If the byte-order mark is there, there’s still
the remote possibility the file’s in some other format and just happens to start with those bytes (for
example, is a file that starts with 0x0000 0xFEFF a UTF-32 file starting with a byte-order mark or a
UTF-16 file starting with a null character and a zero-width non-breaking space?).

In other words, use some means other than looking at the text itself to identify what the encoding is.
Designing a system, for example, that uses “.txt” as the filename extension for all Unicode text files
and then looks for the BOM to tell whether it’s UTF-16, UTF-8, or ASCII isn’t terribly bulletproof.
Instead, use different extensions (or different types, if you’re using a typed file system), allow only
one or two types, rely on the user to tell you, or something else like that.

 Unicode Storage and Serialization Formats

148 Unicode Demystified

If you adopt some kind of protocol that requires that the byte-order mark always be there, you’re
effectively specifying a higher-level protocol for specifying the character encoding. In other words,
the file isn’t really a Unicode text file anymore; it’s in a format that contains text in some Unicode
format, preceded by a tag telling what the format is (to handle the BOM correctly, you’ve pretty
much got to treat it this way to begin with). There are various higher-level protocols available already
(XML, for example) that do this just as well.

The basic philosophy to follow in most situations is to treat the different Unicode transformation
formats as entirely distinct character encodings or code pages, no more related than Latin-1 and
Latin-2. The byte-order mark only works for telling apart different forms of Unicode; something like
XML allows you to also tell these forms of Unicode apart from whole other encoding schemes.
Process text internally in one format (for example, UTF-16 in the native byte order) and treat
incoming data in all other formats, be they different flavors of Unicode or different encodings
altogether, as a code-conversion problem.

S E C T I O N I I

Unicode in Depth
A Guided Tour of the Character Repertoire

 151

CHAPTER 7 Scripts of Europe

Okay, having taken a look at the overall architecture of Unicode and the various aspects of the
Unicode standard that are relevant no matter what you’re doing with it, it’s time to take a closer look.
The next six chapters will be a guided tour through the Unicode character repertoire, highlighting
characters with special properties and examining the specifics of how Unicode is used to represent
various languages.

Unicode is organized into blocks, with each block representing characters from a specific writing
system, or script. In each of the following chapters, we’ll look at collections of scripts with similar
properties. First we’ll look at the issues they have in common with one another, and then we’ll look
at the unique characteristics of each individual script. Along the way, we’ll stop to discuss any
characters with special properties you may have to know about.

This section will concentrate mostly on the characters that make up “words” in the various languages
(i.e., letters, syllables, ideographs, vowel points, diacritical marks, tone marks, and so forth), but will
also include a chapter that deals with digits, punctuation, symbols, and so forth. We’ll also highlight
interesting digits, punctuation marks, and symbols that belong to specific scripts as we go through the
individual scripts.

The Western alphabetic scripts

It’s entirely possible that one of the reasons computer technology flourished so much in the United
States (and, later, Europe) before it caught on in other places has to do with our system of writing
(this is not, of course, to discount all of the other reasons, such as economic factors, World War II,

 Scripts of Europe

152 Unicode Demystified

etc.). Compared to many other writing systems, the Latin alphabet is simple and lends itself well both
to mechanical means of reproduction and to various types of automated analysis.

The classic twenty-six-letter Latin alphabet, as used to write English, is pretty simple. There are only
twenty-six letters, a very manageable number, and very few typographic complications. The letters
represent both consonant and vowel sounds, unlike most other writing systems, and they lay out very
simply, marching from left to right across the page, one after another. The letters don’t change shape
depending on the letters around them, they don’t change order depending on context, they don’t
combine together into ligatures, and they don’t carry complex systems of marks with them to indicate
meaning. Words are always separated with spaces, making it easy to detect word boundaries.

Of course, not all of these things are true all the time, and there was a time in history when each of
them was false. All of the writing systems used in the West and Middle East evolved out of the
Phoenician alphabet, which was written from right to left and didn’t have vowels. The Greek
alphabet was the first one to assign real letters to vowel sounds, and the Latin alphabet picked it up
from there. Originally, the Greek alphabet was also written from right to left, but a form of writing
called boustrophedon developed. In boustrophedon, lines of text alternated direction: one line would
run from right to left, then the next line would run from left to right, then the next from right to left
again, and so on in zigzag fashion down the page. Gradually, this died out and all lines were written
from left to right.

Boustrophedon was generally seen just in Greek writing, but there are early examples of Etruscan
and Latin writing that use it, so it’s not 100% unheard-of for Latin-alphabet text to be written right to
left. Spaces between words also weren’t always used. This doesn’t appear to have become common
practice until around the 8th century or so. You see spaces in some earlier writing, and you also see
dots between words, but you very frequently see earlier writing where the words just all run together
and you have to know the language to know the word boundaries.

There are also plenty of cases in which the shapes of the letters can change depending on context. In
handwritten English text, for example, the letters don’t all join the same way, giving rise to variations
in the shapes of the letters. For example, at least in the way I learned to write, the letters b and o join
to the succeeding letter above the baseline, rather than at the baseline. This changes the shape of the
next letter slightly to account for the higher joiner:

[It’d be really nice if we could replace this drawing with either an example from a font that
does this, or a better-looking example done by someone with decent handwriting.]

Note how the shape of the letter “n” changes: The “a” joins to the “n” along the baseline (and the first
“n” joins to the second “n” along the baseline). But the “o” joins to the “n” above the baseline.

There are other cases where the letters change shape. In boustrophedon, the shape of a letter on a
right-to-left line was the mirror image of its shape on a left-to-right line, enabling the reader to tell
easily the direction of a given line of text. As recently as two hundred years ago, there were two
forms of the letter s, one that was used at the end of a word and one that was used at the beginning or
in the middle of a word (in fact, this is still true in the Greek alphabet). In modern ornamental type-
faces, you’ll still see special versions of certain characters that are intended to be used at the ends of
words.

And of course, in good typography, letters still sometimes combine into ligatures. We’ve talked
about the fi and fl ligatures already. In older writing, ae and oe ligatures were also common, and
other forms, such as ct and st, still happen in ornamental typefaces.

 The Western alphabetic scripts

 A Practical Programmer’s Guide to the Encoding Standard 153

As for systems of marks, you do occasionally see diacritic marks on letters in English words (such as
in the word “naïve”), although they’re almost never required to understand the text (we still
recognize “naive”). This isn’t true in most other languages that use the Latin alphabet, but in almost
all of them (Vietnamese being the big exception), the number of letter-mark combinations is pretty
small.

The point is not that the various more complex typographical effects never happen in English or
other languages using the Latin alphabet, but that they’re not required. Modern English text is
perfectly legible with absolutely no typographic interaction between characters, no diacritical marks,
and strict left-to-right ordering. In fact, you can go further: you can eliminate the one wrinkle unique
to the Greek and Latin family of scripts—upper- and lower-case forms—and you can even make all
the characters the same width so that they line up as if they were written on graph paper, and the text
is still perfectly legible.

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

…may not look as nice as…

The quick brown fox jumps over the lazy dog

[It’d be better to find an expert-set font with some real ligatures and swashes, but I don’t have
access to any right now (if we have to change the text of the example to show off the ligatures
and swashes better, that’s fine).]

…but no one who reads English would look at it and have trouble figuring out what it says. With
many other writing systems, this isn’t true.

These characteristics lend themselves well to mechanical processing, making it possible, for example,
to build a typewriter for the Latin alphabet (the Arabic, Devanagari, and Chinese writing systems, in
contrast, don’t lend themselves at all well to being written with a typewriter).

This chapter covers the main writing systems used to write the languages of Europe: the Latin, Greek,
Cyrillic, Armenian, and Georgian alphabets, along with the International Phonetic Alphabet. These
writing systems share the following characteristics: simple left-to-right line layout, minimal (or no)
typographic interaction between characters, minimal (or no) use of diacritical marks, and spaces
between words. Most of these writing systems are descended in some way from the Greek alphabet.
In addition, this chapter covers the collections of diacritical marks used with these (and some other)
writing systems.

The Latin alphabet

Since this is an English-language book directed primarily toward an English-speaking audience, and
since the bulk of text stored in computer systems today is still in English or other European
languages, the logical place to begin our tour of the Unicode character repertoire is with the Latin
alphabet.

The Latin alphabet is called that, of course, because it was originally used to write Latin (it’s also
frequently called the Roman alphabet because it was developed by the ancient Romans). The Latin
alphabet evolved out of the Etruscan alphabet, which in turn evolved from the Greek alphabet. Later,
some letters that weren’t used in Etruscan were borrowed straight into the Latin alphabet from the

 Scripts of Europe

154 Unicode Demystified

Greek alphabet. The Latin alphabet acquired the form we’re familiar with sometime around the 1st
century BC. It originally had twenty-three letters:

A B C D E F G H I K L M N O P Q R S T V X Y Z

In fact, Y and Z were late additions that were only used for words borrowed in from Greek. The
letters I and V were used as both consonants and vowels, and J and U were just variant forms of I and
V. W was just a special ornamental ligature that was used when two Vs appeared next to each other.
It wasn’t until the Renaissance that I and U became consistently used as vowels and J, V, and W as
consonants. That gave us the twenty-six-letter Latin alphabet we’re so familiar with today:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The lower-case versions of the letters date back to about the third or fourth century AD, but were
originally just variant forms of the capital letters. Capital and small letters were being used
simultaneously the way they are now somewhere around the eighth century.

The Latin alphabet spread throughout Europe first with the spread of the Roman Empire and later
with the spread of the Roman Catholic Church. In more recent times, it has been applied to a wide
variety of non-European languages as well. Today, the Latin alphabet is used to write more different
spoken languages than any other single writing system.

Since ASCII is the most common character encoding scheme used in computers today, and forms the
basis for so many other encoding systems, the designers of Unicode decided to adopt the ASCII
character repertoire directly into Unicode unchanged. Not only do the characters appear in Unicode
in the same order, but they even have the same numeric code-point values (zero-extended out to 21
bits, of course). In this way, converting between ASCII and UTF-16 or UTF-32 is a simple matter of
zero-padding out to the appropriate length or truncating to 8 bits, and converting between ASCII and
UTF-8 is a no-op.

ASCII includes fifty-two letters: the upper- and lower-case versions of the twenty-six Latin letters.
Unfortunately, only two modern languages use the original Latin alphabet with no additional letters:
English and Dutch. Even English historically had other letters in its alphabet.

With a couple of notable exceptions, no single language that uses the Latin alphabet adds more than a
handful of extra letters. However, they don’t all add the same extra letters (many languages don’t use
all twenty-six letters of the basic Latin alphabet either).

For instance, Spanish, Italian, Portuguese, French, and many other languages all use accent marks on
some vowels to clarify pronunciation or distinguish between two similar words (or forms of the same
word). So in addition to the regular twenty-six letters, you also need the five vowels with acute and
grave accents: á, é, í, ó, ú, à, è, ì, ò, ù.

French and Portuguese also use the circumflex accent, giving us five more letters: â, ê, î, ô, û.
German, French, Portuguese, and a number of other languages also use the diaeresis, adding six more
letters: ä, ë, ï, ö, ü, ÿ. (You may think of the ¨ symbol as an “umlaut.” The terms “umlaut” and
“diaeresis” both usually refer to the same mark—a double dot—used to mean different things. The
Unicode standard chose to use “diaeresis” as a generic name for the double dot.)

Most of the forms we’ve just discussed may not technically rise to the definition of “different letters.”
In most languages that use these marks, they’re just considered marks that get applied to the letters:
“é” is seen by French speakers as “e with an acute accent,” for example. Unicode supports this type
of thinking through the use of combining character sequences: there’s a character code that represents
the acute accent and can be used in conjunction with the other letters. However, because it’s more

 The Latin alphabet

 A Practical Programmer’s Guide to the Encoding Standard 155

convenient for most kinds of processing, most character encoding standards just dedicate a new code
point value to the accented forms of the various letters. Unicode allows this too in most cases, for
backward compatibility.

Then there are additional characters that really do count as different letters in various languages. The
letters ä and ö, for example, are thought of as marked forms of a and o by German speakers, but as
entirely different letters by Swedish speakers. In addition, German adds the letter ß (“ess-zed” or
“sharp s,” originally a ligature of “ss” or “sz”) to its alphabet. Danish, Swedish, and Norwegian add
the letter å. Danish and Norwegian also add the letter ø. French adds the letters ç and œ. Icelandic
adds æ (which also appears in Norwegian), ý, þ, and ð. The last two characters, called “thorn” and
“edh,” were also used in Old English. Portuguese adds ã and õ, and Spanish adds ñ.

As you go further beyond the Western European languages, or back into historical writing system, or
look at phonetic notations, the number of new letters and variants begins to increase much more
quickly. The Unicode standard includes 819 Latin letters. We’ll take a quick look at all of them.

The Latin-1 characters
Unicode didn’t actually adopt the ASCII characters directly in unchanged, as I said above. They
adopted in the characters from the ISO 8859-1 standard unchanged. ISO 8859-1 incorporated the 128
ASCII characters unchanged and added 128 more. Unicode preserves all 256 of these characters in
their original order and with their original numeric code-point values (zero-padded to 21 bits). You
can convert between ISO 8859-1 and UTF-16 or UTF-32 by zero-padding to the appropriate number
of bits or truncating to 8 bits. (Conversion between Latin-1 and UTF-8 is, unfortunately, more
complicated.)

ISO 8859-1 is the most well-known of the ISO 8859 family of character encoding standards first put
together by the European Computer Manufacturers’ Association (ECMA) in the mid-1980s. ISO
8859 is a family of fourteen encoding standards that together provide a way to encode the characters
of every (or at least almost every) language used in Europe. Each ISO 8859 standard is a superset of
the ASCII standard: the 7-bit values from 0x00 to 0x7F represent the same characters they do in
ASCII. The standards vary in their treatment of the other 128 values—the ones from 0x80 to 0xFF.
Out of the 14 standards in the ISO 8859 family, ten of them are variations of the Latin alphabet (the
other four are Greek, Cyrillic, Arabic, and Hebrew). These are commonly referred to as “Latin-1,”
“Latin-2,” “Latin-3,” and so on through “Latin-9.” ISO 8859-1, also known as Latin-1, covers the
languages of Western Europe. It’s probably the most widespread 8-bit ASCII-based encoding
standard, and was the original base encoding for the HTML standard and various other Internet
standards.

The Latin-1 standard was designed to cover the main Western European languages: English, French,
Italian, Spanish, Portuguese, German, Dutch, Swedish, Danish, Norwegian, Icelandic, and Finnish. It
includes all the extra letters discussed in the previous section—á, à, â, ä, ã, å, æ, ç, ð, é, è, ê, ë, í, ì, î,
ï, ñ, ó, ò, ô, ö, õ, ø, ß, þ, ú, ù, û, ü, ý, and ÿ—except for œ. Except for ß, which doesn’t have an
uppercase form, and ÿ, Latin-1 provides both upper- and lower-case version of all these letters.

The Latin Extended A block
There’s considerable overlap between the character repertoires of the other ISO 8859 encodings, and
none of them seemed to be used often enough to justify keeping their arrangements intact in Unicode
the way ISO 8859-1’s arrangement was. The letters from the ISO Latin-2, Latin-3, Latin-4, and
Latin-5 (i.e., 8859-2, 8859-3, 8859-4, and 8859-9 respectively) that didn’t also appear in Latin-1
were combined together into Unicode’s Latin Extended A block, which extends from U+0100 to
U+017F. Duplicates and non-letters (in addition to characters that were already in the Latin-1 block)

 Scripts of Europe

156 Unicode Demystified

were removed, and the remaining letters were arranged in alphabetical order. Unlike in the ASCII
and Latin-1 blocks, case pairs are adjacent, rather than being arranged into two separate series, one
for lowercase letters and one for uppercase letters.

In addition to the letters from the Latin-2, Latin-3, Latin-4, and Latin-5 standards, the designers of
Unicode added other related letters that are used in the various European languages, including some
overlooked characters from French (œ) and Finnish (š DQG�å���DQG�D�IHZ�RWKHUV�

The Latin Extended A block brings to the party all the additional letters necessary to write Croatian
�ü��þ�� ��ã��å���&]HFK��þ�� �� �� �� ��ã�� �� ��å���(VSHUDQWR�� �� �� �� �� �� ���(VWRQLDQ��ã��å���)UHQFK��œ, Ÿ),
)LQQLVK��ã��å�, Greenlandic (�� �� ���+XQJDULDQ�� � ���/DWLQ�� �� �� �� �� �� �� �� �� �� ���/DWYLDQ�� �� �� ��
�� �� �� �� �� �� ���/LWKXDQLDQ�� �� �� �� �� �� ���0DOWHVH�� �� �� �� ���3ROLVK�� ��ü�� ��á�� �� �� �� ���5RPDQLDQ�
� ��ú�� ���6DPL�� �� �� ���6ORYDN��þ�� �� �� �� ��ã�� ��å���6ORYHQLDQ��þ�� ��å���7XUNLVK��÷��Õ��ø��ú���:HOVK�
(� ���DQG�PDQ\�RWKHU�ODQJXDJHV�

A couple other characters which aren’t strictly necessary are also included: There is a single code
(U+0149) representing n preceded by an apostrophe (��What’s intended for Afrikaans, but this is
better represented by two separate code points: one for the apostrophe and one for the n (U+02BC
U+006E). In Catalan, a centered dot is often placed between two ls (i.e., O��WR�LQGLFDWH�WKH\�VKRXOG�EH�
given the l sound instead of the y or ly sound that a double l normally has in Spanish and Catalan.
The Latin Extended A block includes a single code point (U+013F and U+0140) representing an l
followed by a centered dot (���WKLV��WRR��LV�EHWWHU�UHSUHVHQWHG�XVLQJ�WZo code points (for example,
U+006C U+00B7). Finally, a single code point representing i followed by j (��8������DQG�
U+0133) is provided for use in Dutch, because these two letters often form a ligature in Dutch, but
it’s better to just use the regular i and j with a font that automatically forms the ligature. These
characters are drawn from the ISO 6937 standard, a character encoding standard for videotext
applications that never caught on in the computer world.

Also included is a code point (U+017F) representing the “long s” (����DQ�DOWHUQDWH�JO\SK�IRU�WKH�
lowercase s. Up until fairly recently, this glyph was used at the beginning or the middle of a word,
and what we now know as the lowercase s was used only at the end of a word. In handwritten text,

this glyph just looks like an elongated s (), and this form is still used as a character in the

International Phonetic Alphabet (the integral sign in mathematics is basically this same glyph). But in
printing, the bottom on the s was cut off, with a serif added, making it look like an f without the
crossbar (or, in some fonts, an f with only part of the crossbar). This style was in effect during the
American Revolution, which is why you see things like “Prefident” and “Congrefs” in the
Constitution and Declaration of Independence. The long s is still used in the Fraktur typefaces often
used to print German. Technically, this is a compatibility character, and one should represent the
letter s using its normal code-point value and rely on the rendering engine or font to select the right
glyph. Occasionally (such as in writing this paragraph), this code-point value is useful when you
specifically want this glyph.

It’s worth taking a second to look at one character in the Latin Extended A block. Consider for a
momeQW�8������/$7,1�&$3,7$/�/(77(5�'�:,7+�6752.(�� ��,W�ORRNV�H[DFWO\�OLNH�8���'��
LATIN CAPITAL LETTER ETH, and, for that matter, like U+0189 LATIN CAPITAL LETTER
AFRICAN D. Even though these three characters look exactly the same and never occur in the same
language, they’re not unified into a single code point value. This is because they have very different
uses, and in particular because their lower-case forms are very different: The lower-case form of
8������LV�8�������ZKLFK�ORRNV�OLNH�WKLV�� ��7KH�ORZHU-case form of U+00D0 is U+00F0, which

looks like this: ð. And the lower-case form of U+0189 is U+0256, which looks like this: .

 The Latin alphabet

 A Practical Programmer’s Guide to the Encoding Standard 157

$QRWKHU�FKDUDFWHU�LQ�WKH�/DWLQ�([WHQGHG�$�EORFN�WKDW�GHVHUYHV�D�FORVH�ORRN�LV�WKH�OHWWHU�Õ��8������
LATIN SMALL LETTER DOTLESS I, which is used in Turkish and Azeri (when Azeri is written
with the Latin alphabet). Despite its name, this letter isn’t really an i at all, but a completely different
vowel. The fact that the new vowel’s glyph was basically created by dropping the dot from the lower-
case i poses a bit of a problem when it comes to deciding what the upper-case forms of these two
letters should be. Logically, what we normally think of as the uppercase I, which doesn’t have a dot,
EHFRPHV�WKH�XSSHUFDVH�Õ�LQ�7XUNLVK�RU�$]HUL��7R distinguish it, the uppercase form of i has a dot in
WKHVH�WZR�ODQJXDJHV��ø��7KLV�IRUP�LV�UHSUHsented in Unicode as U+0130 LATIN CAPITAL LETTER
I WITH DOT ABOVE.

This poses a problem when mapping between uppercase and lowercase. Now you need to know the
language. In every language but Turkish and Azeri, i maps to I when going from lowercase to
XSSHUFDVH��EXW�LQ�7XUNLVK�DQG�$]HUL��L�PDSV�WR�ø��,Q�HYHU\�ODQJXDJH�EXW�WKHVH�WZR��,�PDSV�WR�L�ZKHQ�
going from uppercase to lowercase, but in these two languages, ,�PDSV�WR�Õ��,W�FRXOG�EH�DUJXHG�WKDW�LW�
would make more sense to just have U+0049 LATIN CAPITAL LETTER I have a different glyph
�L�H���ø��LQ�7XUNLVK�DQG�$]HUL�DQG�LQWURGXFH�WZR�QHZ�FRGHV�WKDW�DOZD\V�UHSUHVHQW�WKH�XSSHU- and
lower-FDVH�IRUPV�RI�WKH�OHWWHU�Õ, but the ISO 8859 encodings opted for the alternative case-mapping
behavior instead, and Unicode does it the same way out of respect for existing practice.

The Latin Extended B block
Things start to get more exotic, and arguably somewhat more disorganized, with the Latin Extended
B block. Latin Extended B, which extends from U+0180 to U+024F, contains a large variety of
miscellaneous Latin letters that come from a wide variety of sources. They include not only more
letter-diacritic combinations, but several letters with multiple diacritics, letters with interesting
typographic changes, such as upside-down or mirror-image letters or letters with elongated strokes,
and whole new letters, some borrowed in or adapted from other alphabets, some old letters that have
fallen into disuse, and some totally new coinages.

Among the characters in this block are letters used to write various African and Native American

languages (such as U+0181, ; U+0188, ; U+0194, ; U+01B7,), various less-common

European languages, including the Celtic languages covered by the ISO 8859-14 (“Latin-8”)
standard, archaic characters formerly used to write various languages, including such Old English

characters as wynn () and yogh (), letters used in transcribing text in languages that don’t

normally use the Latin alphabet, and various phonetic symbols that aren’t part of the current
International Phonetic Alphabet.

Unicode’s designers have tried to keep this section in alphabetical order and to keep case pairs
together, but this block has ended up arranged into several alphabetical series, reflecting groups of
letters added at different times, and sometimes case pairs have wound up widely separated, as
sometimes a character added at one time for one purpose where it doesn’t have a case partner turns
out to also be used for another purpose where it does have a case partner. For example, there are a lot
of characters that were originally added as part of the International Phonetic Alphabet, which is
always lower-case, that are also used in the normal writing of some languages, where they have
uppercase counterparts. In these situations, the lowercase version of the letter is in the IPA block (see
below) and the uppercase version is in this block.

Among the characters in this section are the various characters used in the Pinyin system of
transcribing Chinese into Latin letters, various characters for Zhuang (the largest non-Chinese
language spoken in China—it’s actually related to Thai), less-common Slovenian, Croatian, and
Romanian letters, letters for Livonian (a rapidly dying minority language spoken in Latvia and
related to Estonian), and some of the letters necessary for Vietnamese (this block rounds out the basic

 Scripts of Europe

158 Unicode Demystified

Vietnamese alphabet—with the characters in this block, plus the ones in the previous blocks, you can
write Vietnamese, needing the combining marks only to add tone marks to the vowels).

There are a few characters in this block that deserve a closer look. From U+01C4 to U+01CC and
U+01F1 to U+01F3 are the Croatian digraphs. Serbo-Croatian is written using both the Latin and
Cyrillic alphabets: The Serbs and Montenegrins use the Cyrillic alphabet, and the Croats and Bosnian
Muslims use the Latin alphabet, although most Serbo-Croatian speakers can read both alphabets.
Serbo-Croatian spelling is standardized so that there’s a simple one-to-one mapping between the
letters in the Serbian (i.e., Cyrillic) alphabet and the Croatian (i.e., Latin) alphabet. Because of this,
converting from the Serbian spelling of a word to the Croatian spelling is a simple affair.

One thing that complicates this is that three of the letters in the Serbian alphabet map to pairs of
OHWWHUV�LQ�WKH�&URDWLDQ�DOSKDEHW��WKH�OHWWHU� �EHFRPHV�Gå��WKH�OHWWHU� �EHFRPHV�OM��DQG�WKH�OHWWHU� �
becomes nj. It’s, of course, simpler for a computer to switch between the Serbian and Croatian
alphabets if the letter pairs in the Croatian alphabet are represented using a single code point, which
was done some vendor standards. For compatibility, single code points representing these letter pairs
(or “digraphs”) are also included in the Latin Extended B block, although it’s generally better to use
the separate letters instead.

Each of these letter pairs comes in three flavors: one with two capital letters (the “uppercase”
version), which is intended to be used when all of the letters in the word are capitalized, one with two
small letters, and one with the first letter capitalized and the second letter small (the “titlecase”
version), intended to be used when only the first letter of the word is capitalized. Both the full-
uppercase and titlecase versions of the letter map to the uppercase version in the Serbian alphabet.

(It’s interesting to note that the ij digraph in the Latin Extended A block, used in Dutch, doesn’t have
a titlecase version. This is because when it appears at the beginning of a word, both the I and the J
are actually capitalized, as in “IJssel Meer.”)

Another interesting letter to take note of is U+01C3, the letter !. No, this isn’t an exclamation point.
It’s a letter. It represents the retroflex click, the sound you make by pushing your tongue against the
back of your upper gums and pulling it away quickly. It’s a letter (and a sound) in several African
languages. This is an example of how the principle of unification is applied: This character has
exactly the same glyph as the exclamation point, but completely different semantics leading to its
being treated differently by various processes operating on text (as a letter rather than as a
punctuation mark). Because Unicode encodes semantics rather than appearance, these two uses aren’t
unified into a single code-point value.

This is also an example of one of the pitfalls you can run into using Unicode: because they look the
same, it’s very likely that some users, depending on the software they’re using, will type the
exclamation point where they really mean to type the retroflex-click character, and so processes
operating on the text may actually need to detect and account for this erroneous use of the
exclamation point. There are numerous groups of Unicode characters that potentially have this
problem.

The Latin Extended Additional block
The Latin Extended Additional block can be considered a block of compatibility characters, and so
was positioned at the end of the General Scripts Area, rather than with the other Latin blocks at the
beginning. It contains a bunch of extra accented forms of the Latin letters that are used in various
languages. These characters resulted from the merger with ISO 10646, and, except for the ones that
obviously come from ISO8859-14, no records were kept on their original sources.

 The Latin alphabet

 A Practical Programmer’s Guide to the Encoding Standard 159

There aren’t any characters in this block that can’t be represented using a combining character
sequence—new Latin characters that can’t be represented using a combining character sequence are
added to the end of the Latin Extended B block instead. Thus, none of the characters in the Latin
Extended Additional block are strictly necessary. They’re here for compatibility with existing
standards or to make life easier for implementations that can’t support combining character
sequences.

The Latin Extended Additional block is arranged into two alphabetical series with case pairs adjacent
to each other. The first series contains a miscellany of accented Latin letters. The second series is
dedicated specifically to Vietnamese. All of the bDVLF�OHWWHUV�RI�WKH�9LHWQDPHVH�DOSKDEHW��D� �k�E�F�G� �
H�r�J�K�L�N�O�P�Q�R�{� �S�T�U�V�W�X� �Y�[�\��DUH�HQFRGHG�LQ�WKH�RWKHU�/DWLQ�EORFNV��EXW�WR�SXW�WRQH�PDUNV�
on the vowels, you have to use combining character sequences. (Vietnamese is a tonal language—the
way in which a word is said, what English speakers think of an intonation, is part of the
pronunciation in Vietnamese and many other Asian languages. Different intonations on the same
syllable actually make different words. Tone marks are used to distinguish between intonations.
There are five tone marks in Vietnamese, and they’re all attached to the vowel: � � � � ���7KH�/DWLQ�
Extended Additional block includes all of the Vietnamese vowels with each of the tone marks applied
to them.

The International Phonetic Alphabet
The International Phonetic Alphabet, or “IPA,” is an international standard system of symbols for
notating the sound of human speech. Real alphabets are basically phonetic in character, but tend over
time to acquire non-phonetic properties—the pronunciation of a word changes over time, but its
spelling doesn’t. The phonetic dimension is lost or obscured, but the spelling may still tell you
something about the meaning or etymology of the word in question. IPA doesn’t mess with any of
this; it’s simply a system for linguists, speech pathologists, dialogue coaches, and others interested in
the mechanics or sound of speech to accurately notate how somebody says something.

IPA was first developed in 1886 and has undergone many revisions since then. It’s based on the Latin
alphabet, but includes lots of modified forms of letters. Sometimes, glyphs that would normally be

thought of as simply typographic variants of the same letter, such as a and , are different symbols

in IPA, representing different sounds. There generally isn’t a systematic connection between the
shapes of the characters in IPA and the sounds they represent, other than that the symbol for a
particular sound is usually based on the shape of some Latin letter that has that sound or a similar
sound. In a lot of cases, this means that lots of symbols based on a particular letter arise: sometimes
these are variant type styles, sometimes the letter is reversed or turned upside-down, and sometimes
the basic shape of the letter is altered: for example, a stroke is elongated or a tail or hook of some
kind is added. Some Greek letters are also borrowed into the IPA.

IPA also isn’t a completely exact method of notating speech sounds. One of the guiding principles
behind it was that if you had a collection of similar sounds, they’d only be given different symbols if
some language treated them as different sounds. For example, consider the aspirated and unaspirated
versions of the t sound: both sounds are formed by pressing your tongue against the back of your
upper jaw, applying some air pressure from your diaphragm, and then letting the air escape by
pulling the tongue away. The aspirated form allows some extra air to escape, producing a more
explosive sound. The t at the beginning of toy is an aspirated t, while the t in stamp is an unaspirated
t. English doesn’t make a distinction between these sounds; we use one in certain places, such as at
the beginnings of words, and the other in other places, but we consider both to be the same sound.
Quite a few other languages have both of these sounds and consider them to be different sounds,
represented with different letters, so the IPA gives them different symbols. Because the IPA covers
so many languages, this then gives us symbols that allow us to make a useful distinction between the

 Scripts of Europe

160 Unicode Demystified

initial t in most English words, which is aspirated, and the initial t in most Italian words, which isn’t,
even though both languages consider themselves to have just one t sound.32

These types of distinctions aren’t always available in IPA, leading to the use of all kinds of auxiliary
marks to help clarify various distinctions. Specialized symbols for things like disordered speech are
also used by specialized users. The bottom line is that there are dozens of ways of transcribing the
same utterance using IPA, and which one is used depends on who’s doing the transcribing and why
they’re doing the transcribing.

In Unicode, a good many of the IPA characters are encoded in the various Latin blocks we’ve
already discussed, or in the Greek blocks. Many are simply unadorned Latin letters, and many others
are variants that were already being used as letters is some language. Unicode doesn’t make a
distinction between regular letters and IPA symbols, although it doesn’t make a distinction between
IPA symbols and other kinds of symbols, such as the distinction between the “esh” character— the

elongated s used to represent the sh sound in sheep ()—and the integral sign, which looks just like

it (this character is different from the long s we discussed earlier, which has the same shape in
handwritten writing, but a different shape when printed (����7KLV�PHDQV�WKHUH¶V�QR�,3$�EORFN�
containing all the IPA characters. Instead, there’s an IPA Extensions block, running from U+0250 to
U+02AF, which contains just the IPA symbols that hadn’t already been encoded somewhere else.

IPA is a caseless script—effectively, all IPA characters are lowercase. Even in cases where the
capital form of a letter is used to make some kind of phonemic distinction with the lowercase form, a
small-cap form (a version of the capital letter altered to fit the normal dimensions of a lowercase
letter) is always used. At various times, IPA characters used in transcription become part of the
normal alphabet for writing some language (this has happened with a number of African languages,
for example). In these cases, the IPA character picks up an uppercase form when it passes into
common usage. Since the uppercase forms aren’t really IPA characters, they’re encoded in the Latin
Extended B block rather than with their “mates” in the IPA Extensions block. The Unicode standard
includes cross-references for these case pairs.

Because the IPA characters are unified with the normal Latin and Greek letters, it doesn’t make a lot
of sense to give the IPA Extensions block an ordering based on the character’s pronunciations.
Instead, they’re arranged in rough alphabetical order according to the regular Latin letters they most
resemble. As with the Latin Extended B block, the IPA Extensions block includes a couple of
alphabetic series for historical reasons.

One essential feature of IPA is the use of various diacritical marks and other markings to clarify the
meanings of the primary “letter” symbols. These extra marks aren’t encoded into the IPA Extensions
block either. Instead, they’re kept with the other diacritical marks in the Combining Diacritical Marks
and Spacing Modifier Letters blocks, which are discussed in the next section.

32 This is perhaps not exactly the best of examples: The IPA doesn’t really have two different symbols for these

two sounds. It’s got one symbol—not too surprisingly, the letter t—for the “unvoiced alveolar plosive.” It

then adds a second symbol—a superscript h—to show aspiration. So the t at the beginning of toy is actually

represented in IPA with two symbols: th.

Diacritical marks

One of the principles Unicode is built on is the idea of dynamic composition—you can represent the
marked form of a letter using two code points, one representing the letter followed by another one
representing the mark.

 Diacritical marks

 A Practical Programmer’s Guide to the Encoding Standard 161

Quite a few of the letters in the various Latin blocks are marked forms—base letters with some kind
of mark applied. All of these characters can be represented using two code points. To make this
possible, Unicode includes a whole block of characters—the Combining Diacritical Marks block,
which runs from U+0300 to U+036F. The characters in this block are special because they
specifically have combining semantics. They always modify the character that precedes them in stor-
age. This means that these characters are generally never to be considered alone, except for the
purpose of figuring out that they have combining semantics. Instead, the combination of a combining
mark and the character it follows are to be treated as a single character by any code processing the
text. This single character has the combined semantics of its two constituent characters and is called a
combining character sequence. More than one combining mark can be applied to the same
character—a sequence of combining marks are all considered to combine with the character that
precedes the first combining mark. If several marks in the sequence are supposed to attach to the
same part of the base character, the one that occurs first in storage is the one drawn closest to the
base character, with the others radiating outward.

Technically, combining marks aren’t “characters” at all. Instead, they’re code points that modify the
semantics of other characters in some prescribed way. But it’s simpler to just call them “characters”
like everything else.

For an exhaustive treatment of combining character sequences, see Chapter 4.

There are combining marks scattered all throughout the Unicode standard. Generally speaking,
combining marks used with only one particular script are included in that script’s encoding block.
What’s encoded in the Combining Diacritical Marks block are combining marks that are used
primarily with the Latin alphabet or with IPA, and combining marks that are commonly used with
multiple scripts.

The great thing about combining character sequences is that they allow you to encode characters that
hadn’t been previously foreseen by Unicode’s designers, and that they can cut down on the number
of code point values needed to usefully encode some script. A huge variety of marked Latin letters
were given their own code point values, but there are still others that are used in real languages that
have to be represented using combining character sequences (and there will be more over time, since
the need to maintain the stability of Normalized Form C makes new precomposed characters a lot
less useful). The combining marks also allow a certain amount of “future-proofing” against new
letter-mark combinations that might be coined in transcriptions of languages not previously
transcribed.

The downside of combining character sequences is that they can complicate handling of Unicode
text. They fix it so that a single character can be represented using multiple code points, which
complicates things like counting the number of characters in a field or document. Also, since every
letter-mark combination that gets its own code point value is considered simply an alternative
representation of the multiple-code-point representation, Unicode implementations generally have to
be prepared to see a particular letter-mark combination encoded either way and to treat them the
same.

Of course, one way of dealing with this is to simply decline to support the combining marks and
combining character sequences. This is perfectly legal, and at least with the Latin alphabet, can be
done with little loss of functionality, since most of the letter-mark combinations in common use are
also given single-code-point representations. The ISO 10646 standard, which is code-point-for-code-
point compatible with the Unicode standard, actually defines three implementation levels, indicating
an implementation’s support for combining character sequences. A Level 1 implementation supports
only precomposed characters; a Level 2 implementation only supports the Indic vowel signs (see
Chapter 9), and a Level 3 implementation supports both the precomposed characters and all of the
combining characters. So one way of dealing with the combining-character problem is to declare

 Scripts of Europe

162 Unicode Demystified

yourself a Level 1 implementation of ISO 10646. Unfortunately, this really isn’t feasible with a lot of
scripts other than the Latin alphabet, as they often provide no way of representing certain important
letter-mark combinations other than combining character sequences (the Arabic alphabet is one
example).

For the Latin letters, at least, an implementation can also support the combining marks without
requiring special font technology by mapping the text to Normalized Form C before passing
characters through to the font engine. Thus, if you have a font that has a glyph for the single-code-
point representation of é, you can still draw é even when it’s represented using two code points.

Of course, the “right” thing to do is to have a font engine that understands the combining character
sequences and does the right thing automatically. It’s important to note that this isn’t always as
straightforward as it might first appear. This is because rendering a combining character sequence
isn’t always a simple matter of taking a glyph representing the letter and a glyph representing the
mark and drawing them positioned appropriately next to each other. Sometimes it’s more
complicated.

The Unicode standard specifically calls out a few examples. For instance, several Eastern European
languages use a caron or hacek (basically, a little v) oveU�VRPH�RI�WKHLU�FRQVRQDQWV��þ�ã�å���EXW�WKLV�
doesn’t work well when applied to a character with an ascender, such as a d or l. In these cases, the
caron can extend up outside of its own line and collide with the previous line of text. Or you can get
inconsistent and ugly line spacing trying to avoid this. One solution is to move the caron to one side
to get it out of the way, but the solution you usually see is to turn it into an apostrophe and move it to
the side. Thus, when you combine U+0064 LATIN SMALL LETTER D (d) with U+030C
&20%,1,1*�&$521��ß���\RX�JHW�WKLV�� ��,W¶V�LPSRUWDQW�WR�QRWH�WKDW�WKLV�LVQ¶W�WKH�VDPH�WKLQJ�DV�G�
followed by an apostrophe, and shouldn’t compare equal. This could potentially be a problem if the
user types a d followed by an apostrophe, although this probably wouldn’t happen with a user using
an appropriate keyboard for the language.

Interesting things also happen with the marks that attach to the underside of a letter, such as the
FHGLOOD��Ü��DQG�RJRQHN��Þ���7KHVH�PDUNV�FKDQJH�VKape and morph into various types of hooks and
things depending on the font or the language. They may also attach to various parts of the letter
depending on where they’re a good place to attach.

In particular, the cedilla will often be drawn as a comma underneath the letter instead of a cedilla.
This is especially common with letters such as k or n where there’s no good spot for the cedilla to
attach, but also occurs with letters like s and t in some languages. Whether the form with the cedilla
or the form with the comma is used depends heavily on the language and on the design of a particular
font. Unicode provides a couple of explicit characters with a comma below the letter instead of a
cedilla, but their use is generally discouraged. In the same way, using combining character sequences
with U+0326 COMBINING COMMA BELOW instead of U+0327 COMBINING CEDILLA in
languages where the cedilla can be drawn either way might cause problems. You could end up with
the same glyph represented two different and incompatible ways internally without extra work to
account for the difference. However, properly-designed input methods should generally prevent
problems with this.

An especially interesting phenomenon happens when the lowercase g is combined with a cedilla, as
happens in Latvian. Because of the descender on the g, there’s no room to draw the cedilla under the
g without it crashing into the next line of text, so most fonts actually draw it on top of the g as an
upside-GRZQ�FRPPD�� ���,Q�WKLV�FDVH��D�PDUN�WKDW�QRUPDOO\�DWWDFKHV�WR�WKH�ERWWRP�RI�WKH�OHWWHU�PRYHV�
to the top. Again, there’s a U+0312 COMBINING TURNED COMMA ABOVE combining mark
that can be used to produce this glyph. Without extra Latvian-specific code that treats a combining

 Diacritical marks

 A Practical Programmer’s Guide to the Encoding Standard 163

character sequence using this mark the same as a combining character sequence using the cedilla, you
can have different and incompatible representations for the same glyph.

The lowercase i also has interesting behavior. Generally, the dot on the i disappears when a
diacritical mark is drawn on top of the i: í ï î. If you were to apply a diacritical mark to the Turkish
dotless i (Õ���\RX¶G�JHW�WKH�VDPH�DSSHDUDQFH�EXW�D�GLIIHUHQW�VHPDQWLF��DQG�XQHTXDO�UHSUHVHQWDWLRQV���,Q�
particular, if you take U+0131 LATIN SMALL LETTER DOTLESS I and follow it with U+0307
COMBINING DOT ABOVE, you don’t get the regular lowercase i. You get something that looks
MXVW�OLNH�LW��EXW�LW¶V�DFWXDOO\�WKH�7XUNLVK�Õ�ZLWK�D�³GRW´�GLDFULWLFDO�PDUN�RQ�WRS���)RUWXQDWHO\��\RX�QHYHU�
see diacritical marks used with this letter in practice, so this isn’t a big problem.)

In some languages, the dot on the i actually sticks around when an accent or other mark is applied.
Fonts for languages where this happens, such as Lithuanian, might just do this, but the representation
can be forced by explicitly using U+0307 COMBINING DOT ABOVE. (This gives rise, by the
way, to a set of special case-conversion rules for Lithuanian that take care of adding and removing
U+0307 as needed.)

Some of the combining marks actually overlay the letter they’re applied to. Examples include
U+0335 COMBINING SHORT STROKE OVERLAY and U+0337 COMBINING SHORT
SOLIDUS OVERLAY. Exactly where these marks get drawn depends on the letter. A stroke might
draw across the middle of an l, but across the vertical stroke of a d above its bowl.

7KH�SUHFRPSRVHG�IRUPV�RI�OHWWHUV�ZLWK�RYHUOD\�PDUNV��VXFK�DV�¡��á��RU� , however, don’t decompose
to representations using the combining marks. Thus we have another case where you can get similar-
looking glyphs with incompatible representations. Again, in practice, this shouldn’t be a problem,
since (for example) a Danish keyboard implementation would produce the proper representation of
the letter ø and you wouldn’t have to worry about the other representation that might look the same.

Interesting things can also happen sometimes when multiple combining marks are applied to the
same letter. In Vietnamese, for example, there are a few vowels with circumflexes. When a tone mark
is also applied to one of these letters, it appears next to, rather than on top of, the circumflex. The

grave accent appears to the left of the circumflex (), and the acute accent and hook appear to the

right of the circumflex (). The grave and acute accents actually touch the circumflex in many
fonts. This breaks the general rule that multiple accents stack. These examples are Vietnamese-
specific, and other examples where multiple accent marks combine typographically in interesting
ways are also language-specific, but they’re cases, again, where more work than simple accent
stacking might be necessary to properly display multiple combining marks (the decomposed
representation for the Vietnamese vowels, by the way, always has the tone mark coming last).

Another interesting note concerns the double-DFXWH�FRPELQDWLRQV�LQ�+XQJDULDQ�� � ����:KLOH�HDFK�RI�
these letters looks like it has two acute accents above it, you don’t get these glyphs by combining the
base letter with two successive combining acute accents. The double acute is a separate combining
mark and isn’t the same as two single acutes.

One more issue is what happens to accent marks on capital letters. Again, you have the problem of
the accent sticking up above the character stream and crashing into the previous line of text. Different
typefaces handle this in different ways: by making the base letter shorter, by making sure the line
spacing is wide enough to accommodate any accents, by altering the accent in some way (in some
German fonts, for example, the two dots of the umlaut may appear on either side of an A or O) or by
omitting the accent on capital letters. The last solution is fairly common in French typography, and
may lead to situations where accents in the character storage don’t actually appear in the rendered
text. This is okay.

 Scripts of Europe

164 Unicode Demystified

All of the above examples generally qualify as language-specific, and should be dealt with properly
by software or fonts designed specifically for text in that language. There’s no guarantee, however,
that generalized Unicode software (in particular, fonts designed to display any Unicode character)
will do everything right for every possible language Unicode can be used to represent.

Just because a Unicode implementation supports combining character sequences doesn’t mean that it
will properly draw every possible combining character sequence, or even every possible sequence
involving characters it says it supports. Some are nonsensical, or at least extremely unusual, and
there’s no guarantee (and no requirement) that some of the language-specific tricks discussed above
will always work. The designers of Unicode have thought of all this stuff, but when it comes to actual
implementations, your mileage may vary.

Isolated combining marks
So what if you want to show the combining diacritical marks in isolation? What if you’re writing a
book like this and you want to talk about the marks without attaching them to letters? Well, the
Unicode convention is to attach them to a space. In other words, if you want to see ´ all by itself, you
can represent it as U+0020 SPACE followed by U+0301 COMBINING ACUTE ACCENT.

(Actually, the space is the “official” way of representing an isolated combining mark, but certain
other characters will work too. Control characters and paragraph separators will also work, since you
can’t attach combining marks to them.)

Now none of this accounts for the various diacritical marks that are encoded in the ASCII and Latin-
1 blocks. These include U+005E CIRCUMFLEX ACCENT (^), U+005F LOW LINE (_), U+0060
GRAVE ACCENT (`), U+007E TILDE (~), U+00A8 DIAERESIS (¨), U+00AF MACRON (-),
U+00B4 ACUTE ACCENT (´), U+00B8 CEDILLA (¸), as well as a bunch of other characters that
do double duty as regular punctuation and diacritical marks. Whether these characters should have
combining semantics is ambiguous: there are older teletype systems where they did: some of them
functioned as dead-key characters—after imprinting one of these characters, the carriage wouldn’t
advance. This meant you could get, for example, ä by sending the umlaut followed by the a. And on
all teletype machines, you could make any character a combining character by following it with a
backspace. The backspace would back the carriage up to the position of the character you wanted to
add the mark to (or back to the mark you wanted to add a character to). However, this usage died out
with the advent of the VDT and these characters lost their combining semantics.

The designers of Unicode opted to explicitly give all these characters non-combining semantics: the
characters from Latin-1 have a compatibility decomposition to a space and the combining form of the
same mark. (The ones from ASCII don’t, so that ASCII text isn’t affected by Unicode
normalization.)

Some of the characters in the ASCII and Latin-1 block did double duty as diacritical marks and other
things. For example, the tilde (~), originally intended as a diacritical mark, has also gotten used as a
swung dash and as a mathematical operator (it’s a logical-not operator in a lot of programming
languages, for example), and the glyph that’s used for this code point value is often centered in the
line rather than raised. The caret (^) has similarly done double duty as a circumflex accent and var-
ious other things, including a mathematical operator (in various programming languages, it’s either a
bitwise-exclusive-or operator or an exponentiation operator). And the degree sign at position
U+00B0 (°) has done double duty as the ring in å. For all of these cases and a few others, the Spacing
Modifier Letters block includes clones that have unambiguous semantics—they’re only diacritical
marks and they always have non-combining semantics.

 Diacritical marks

 A Practical Programmer’s Guide to the Encoding Standard 165

Spacing modifier letters
There is a class of diacritical marks that appear to the right of the characters they modify instead of
above, below, or through them. Instead of treating these as combining marks, Unicode treats them as
ordinary characters—they have non-combining semantics. Since they modify the pronunciation or
other properties of letters and are therefore used in the middle of words, Unicode classifies them as
“letters” and assigns them to the “modifier letter” (“Lm”) general character category. These
characters are grouped together in the Spacing Modifier Letters block, which runs from U+02B0 to
U+02FF.

Most of the characters in this block come from the IPA or from some other phonetic-transcription
system. Some are just superscript letters, such as the superscript h for aspiration or the superscript j
for palatalization, but there are a lot of other types of marks. These include various marks for noting
accented syllables, long vowels, glottal stops, tones, and so on. As mentioned in the previous section,
this block also includes clones of various characters from the other blocks that did double duty as
diacritical marks. These clones are always diacritical marks and always have non-combining
semantics.

There are two characters in this block that deserve special mention: One is the rhotic hook (U+02DE,

). This character basically represents the “r” sound in words like “car,” “fear,” and “purr.” The “r”

sound in these words isn’t really a separate sound, but a modification to the vowel. This is called
rhotacization, and in the International Phonetic Alphabet, it’s represented by attaching this little
pigtail thing (the rhotic hook) to the right-hand side of the symbol representing the vowel (the

American pronunciation of “pear” in IPA is S).

Unlike the other characters in the Spacing Modifier Letters block, the rhotic hook doesn’t merely
appear after the character it modifies; it attaches to it. The shape of the character changes to include
the pigtail. Because it attaches to the right-hand side of the letter (i.e., the trailing edge in left-to-right
layout), it’s not considered to have combining semantics. A character is only considered a combining
character if it attaches to some side of the base character other than the trailing edge in its primary
layout direction. If it attaches to the trailing edge in the primary layout direction (the right-hand side
in left-to-right text), it’s merely considered to form a ligature with the character it follows. This is a
subtle (and, in my humble opinion, rather meaningless) distinction, but it’s important and we’ll see
lots of examples of it when we look at the Indic scripts in a few chapters.

The other character that bears a closer look is U+02BC MODIFIER LETTER APOSTROPHE. Yes,
this is our old friend the apostrophe. There are a whole mess of characters in Unicode that look like
the apostrophe, but this one is the real thing. It gets used for lots of things. In IPA, for example, it’s
used to represent the ejective consonants, which are formed by closing your throat and using just the
air in your mouth. Most of the rest of the time, it’s used to represent the glottal stop. (The glottal stop
is a break in the sound caused by momentarily closing your glottis [the back of your throat]. It’s best
thought of as the “sound” between the “uh”s in “uh-uh”.) This is how it’s used, for example, in
“Hawai’i.”

One thing this character isn’t is a single quotation mark. Unicode has a whole host of other characters
for quotation marks, and we’ll get to those in Chapter 12. It also isn’t the apostrophe used in
contractions like “ma’am” or “isn’t.” This character is generally considered a punctuation mark,
rather than a letter. You use the closing-single-quote character to represent this apostrophe as well.

It’s also worth calling attention to the “tone letters” in the Spacing Modifier Letters block. The IPA
has five special characters for representing five distinguishable levels of tone in tonal languages

(); these five characters are represented in the Spacing Modifier letters block. The IPA

also specifies a bunch of forms for representing tonal contours (e.g., rising, falling, falling then rising,

 Scripts of Europe

166 Unicode Demystified

etc.); these aren’t given separate codes in Unicode. Instead, these characters are treated as ligatures:

If you follow a low-tone character () with a high-tone character () in storage, for example, the

two code points are supposed to be drawn as a single rising-tone character ([this is sort of right—
see picture in TUS, p. 178). Exactly how the various level-tone characters are to be combined to
create various contour-tone characters isn’t rigorously defined in the Unicode standard, but these
forms aren’t all laid out in the IPA charts, either; they’re apparently generally ad-hoc forms whose
generation is more or less self-explanatory.

The Greek alphabet

The Greek alphabet is the ancestor of both the Latin and Cyrillic alphabets. It first developed
somewhere around 700 BC, and had largely acquired its present form by about 400 BC. Prior to 400
BC, there were a number of regional variants of the Greek alphabet; the Latin alphabet evolved from
one of these, which is why some of the Latin letters look different from their Greek counterparts. By
400 BC, all Greek-speaking peoples had standardized on a single version of the alphabet, which has
come down to us more or less intact.33

The Greek alphabet was originally written right to left or boustrophedon, but by 500 BC was always
written left to right. As with the Latin alphabet, the lower-case letters were more recent
developments, having appeared somewhere around AD 800. Diacritical marks and spaces developed
around the same time, but took a long time to become standardized.

As anyone who’s ever pledged a fraternity knows, the Greek alphabet has twenty-four letters, in both
upper and lower case:

As with the Latin alphabet, the letters of the Greek alphabet don’t generally form ligatures and
generally don’t change their shape depending on context. The one big exception to this is the lower-
FDVH�VLJPD��ZKLFK�KDV�D�GLIIHUHQW�VKDSH�� ��DW�WKH�EHJLQQLQJ�RI�D�ZRUG��RU�LQ�WKH�PLGGOH�RI�WKH�ZRUG��
WKDQ�LW�GRHV�DW�WKH�HQG�RI�D�ZRUG�� ��34

The Greek alphabet used to have twenty-eight letters; four (stigma (, digamma (, koppa (, and
sampi () are now obsolete. But for a long time after these letters fell into disuse, the Greeks were
still using the letters of their alphabet as digits: the first nine letters of the alphabet represented values
from 1 to 9, the next nine letters represented the multiples of 10 from 10 to 90, and the third nine
letters represented multiples of 100 from 100 to 900. Since you needed twenty-seven different letters
to represent all the numbers up to 999, digamma, koppa, and sampi continued to be used in numerals

33 My sources for most of the historical information on the Greek alphabet, and on how it works, is Leslie

Threatte, “The Greek Alphabet,” in The World’s Writing Systems, Peter T. Daniels and William Bright ed.,

Oxford: Oxford University Press, 1995, pp. 271-280, and Robert K. Rittner, “The Coptic Alphabet,” op. cit.,

pp. 287-290.
34 Actually, in some Greek writing styles, the small letter sigma only has one form, and it doesn’t look like

either of these.

 The Greek alphabet

 A Practical Programmer’s Guide to the Encoding Standard 167

long after they ceased to be used as letters. (A prime mark () appeared after a sequence of letters
used as a numeral to distinguish it from a word.) Today the Greeks use the same digits we use, but
you still see the old alphabetic numbers used in numbered lists and outlines.

A number of diacritical marks are used with the Greek alphabet. There were three accent marks: the
oxia, or acute accent (), the varia, or grave accent (), and the perispomeni, or circumflex accent
(— as this example shows, the perispomeni often looks like a tilde rather than a circumflex).
Researchers think these marks originally indicated variations of tone, but this usage died out a very
long time ago, and they have generally persisted just as historical quirks of spelling. Modern scholars
generally treat the acute and circumflex accents as stress accents and ignore the grave accent.
Graphically these symbols are somewhat different from their counterparts used with the Latin
letters—the acute and grave accents are generally drawn with a much steeper angle than is used with
Latin letters, and the perispomeni appears, depending on font design, as a circumflex, tilde, or
inverted breve.

Two other marks, the so-called “breathing marks,” evolved to represent the “h” sound. In some
ORFDWLRQV��WKH�OHWWHU�HWD�� ��ZDV�D�FRQVRQDQW�DQG�UHSUHVHQWHG�Whe “h” sound, but in other places, this
letter was used as a long E, and this usage eventually won out, leaving no symbol to represent the “h”
sound.

It appears the “h” sound only appeared at the beginning of a word, and only at the beginnings of
words that began with vowels. A mark that looks like a comma (), the psili or “smooth-breathing
mark,” was used to indicate the absence of an “h” sound, and another mark that looks like a reversed
comma, the dasia or “rough-breathing mark” (), was used to indicate the presence of the “h” sound.
In transliterating ancient texts, the rough-breathing mark is transliterated as an h, and the smooth-
breathing mark is ignored. As with the accent marks, the breathings persist as historical quirks of
spelling—the initial “h” sound has long since disappeared from modern Greek pronunciation.

In the early 1970s, a system of spelling known as “monotonic Greek” developed that dispensed with
all the unused diacritical marks (the old system is now known as “polytonic Greek”). The acute
accent, called a tonos (which just means “accent”) is now used to mark stressed syllables, and the
other accents and breathing marks are no longer used. This system has been widespread in Greek
typography since the late 1970s, and was officially adopted by the Greek government for teaching in
the schools in 1982.

Another mark, the koronis, which looks just like the smooth-breathing mark (i.e., like an apostrophe),
was used in ancient Greek to indicate the elision of two vowels across a word boundary. This mark
also isn’t used anymore.

The diaeresis (also called the dialytika or trema) is used in Greek the same way it’s sometimes used
in English: to indicate that two vowels in a row are to be treated as separate vowels (i.e., with a
syllable division between them) rather than as a diphthong. To use an example from English, you’ll
sometimes see “cooperate” spelled with a diaeresis on the second o: coöperate. The diaeresis
indicates that the first four letters are pronounced as two syllables, rather as a single syllable rhyming
with “loop.” This kind of thing is optional (and rather rare) in English, but mandatory in Greek.

With all these different marks, you’d often see Greek vowels with multiple marks. If a vowel has
both a breathing mark and an acute or a grave, the breathing mark appears to the left of the accent
(). An acute or grave with a diaeresis appears above the diaeresis or between the dots of the
diaeresis (). The circumflex accent always appears above the other marks (). When the marks
occur on a diphthong, the convention is for the marks to appear on the second vowel rather than the
first. When applied to capital letters, the marks appear to the letter’s left rather than over it.

 Scripts of Europe

168 Unicode Demystified

Finally, there’s the curious case of the iota subscript, or ypogegrammeni. Beginning in the thirteenth
century, scribes began writing the three diphthongs �� , �� , and (oi) with the iota under,
rather than following, the other vowel: . This practice has stuck for writing ancient texts, but
isn’t used in modern Greek. The iota subscript was only used when both letters would be lower-case.
When the first letter is capitalized, the iota moves to its customary place to the right of the other
letter: the “iota-adscript” or prosgegrammeni (). [In a good Greek font, I think the iota
subscript is smaller than a normal iota, rather than looking just like it, as in the preceding
example.] When all the letters in the word are capitalized, the iota turns into a regular iota (

).

Punctuation in modern Greek is basically the same as for the languages using the Latin alphabet, with
two main exceptions: The Greek question mark (or erotimatiko) looks like a Latin semicolon (), and
the Greek colon or semicolon (the ano teleia) is a single centered dot ().

The Greek block
In Unicode, most of the characters needed to write modern monotonic Greek are encoded in the
Greek block, which runs from U+0370 to U+03FF. This block is basically based on the ISO Greek
standard (ISO 8859-7), which is basically the same as the Greek national standard. The characters
that occur in ISO 8859-7 occur in Unicode in the same relative positions, facilitating conversion
between the two standards. The Greek block in Unicode has been augmented with some additional
characters, and a few characters from the ISO standard have been unified with characters in other
Unicode blocks.

Modern Greek uses punctuation and digits from the ASCII and Latin-1 blocks, and also uses
combining diacritical marks from the Combining Diacritical Marks block. As with the Latin blocks,
the Greek block includes a few diacritical marks, and the Unicode standard declares the diacritical
marks in the Greek block to have non-combining semantics. The combining versions of these marks
are in the Combining Diacritical Marks block: the oxia and varia are represented using the regular
acute- and grave-accent characters, the dialytika with the regular diaeresis character, and the psili and
dasia are represented using the regular combining-comma-above and combining-reversed-comma-
above characters, which are also used for other uses.

The perispomeni isn’t unified with any other existing combining marks; since its form can be either a
circumflex accent or a tilde, it didn’t make sense to unify it with either. The koronis and the
ypogegrammeni have their own code-point values in the Combining Diacritical Marks block as well.
Finally, the Combining Diacritical Marks block includes a combined dialytika-tonos character whose
use is now discouraged. Today, use the separate acute-accent and diaeresis combining characters.

The Greek block also includes numeral signs and the Greek question mark and semicolon (the
question-mark and semicolon characters are also here for historical reasons—they’re now considered
equivalent to the regular semicolon character [U+003B] and the middle-dot character[U+00B7]).

The Greek block contains not only the basic upper- and lower-case Greek Letters, but precomposed
forms of the vowels with the tonos and dialytika marks. Keeping with existing practice, the
initial/medial and final forms of the lowercase sigma are given separate code-point values, even
though this violates the general rule about unifying glyphic variants. It’d be reasonable to have a
system always use just one of these codes in storage and draw the correct glyph based on context, but
the forms are encoded separately for backwards compatibility with existing encodings and out of a
desire for consistency with existing practice. Because of this, code that maps from upper case to
lower case has to be careful to take into account the different forms of the lowercase sigma.

 The Greek alphabet

 A Practical Programmer’s Guide to the Encoding Standard 169

The Unicode Greek block also adds the obsolete Greek letters and some alternate forms of the
modern Greek letters. Normally these alternate forms would just be considered glyphic variants and
the form used in any font would be up to the font designer, but some of these alternate forms are used
specifically as symbols rather than letters and are encoded separately for that purpose (these
characters all have “SYMBOL” in their names). Interestingly, these symbols are encoded in the
Greek block rather than one of the symbol blocks. Finally, the Greek block includes letters from the
Coptic alphabet, about which more later.

Ancient polytonic Greek can also be represented using combining character sequences, although
algorithms that map characters from lower case to upper case have to be careful with text that uses
the combining form of the ypogegrammeni. (The combining ypogegrammeni should be drawn as a
prosgegrammeni (iota adscript) when combined with a capital letter, and text that maps to all
uppercase characters needs to convert the combining ypogegrammeni into a regular capital letter
iota.)

When representing polytonic Greek using combining character sequences, the dialytika should go
first in the sequence if there is one, then the breathing mark, then any accent marks, and finally the
ypogegrammeni if there is one. (This is another set of cases where there’s a language-specific
variation of the normal Unicode accent-stacking behaviors; this is the order of marks that produces
the correct Greek-specific visual arrangement of the marks.

The Greek Extended block
Like the Latin Extended Additional block, the Greek Extended block, which runs from U+1F00 to
U+1FFF, includes precomposed forms for all of the vowel-mark combinations needed to write
ancient polytonic Greek. It also includes forms of the vowels with macrons and breves, which are
sometimes used in Greek poetry.

It includes both the iota-subscript and iota-adscript versions of the ancient diphthongs that use the
iota subscript. The iota-adscript forms are considered to be titlecase letters; the full-uppercase
version is two separate letters: the base letter and the iota.

The Greek Extended block also includes a bunch of isolated diacritical marks and combinations of
diacritical marks with no letter under them; like the ones in the main Greek block, these all have non-
combining semantics. After all, the whole purpose of the characters in the Greek Extended block is to
avoid using combining character sequences.

Like the Latin Extended Additional block, every character in the Greek Extended block can be
represented using a combining character sequence; the characters in this block are here only for
compatibility. If new Greek characters are added that can’t be represented using combining character
sequences, they’ll be added to the main Greek block, not to this one.

The Coptic alphabet
The Coptic alphabet was the last writing system used to write ancient Egyptian, and it survives as the
script for liturgical materials in the Coptic Orthodox Church. The Egyptians basically adopted the
Greek alphabet for their language, supplementing it with letters from the older Demotic script when
necessary for sounds that the Greek alphabet didn’t have letters for.

Although the Coptic alphabet is based on the Greek alphabet, the letterforms are in many cases
different from their forms in the modern Greek alphabet: for example, the sigma (or “semma”) in the
Coptic alphabet looks like the Latin letter C (or the Cyrillic letter s) rather than the Greek letter
sigma.

 Scripts of Europe

170 Unicode Demystified

Coptic was written left to right, and didn’t use diacritical marks, with the exception of a horizontal
bar over syllables that don’t have a vowel.

The designers of Unicode unified the Coptic and Greek alphabets; the Greek block includes code
point values for the Coptic letters that aren’t also in the Greek alphabet, and you use the same codes
for the letters they have in common as you use to represent Greek. Because the Coptic letters look
different, however, you have to use a font specifically designed for Coptic rather than a normal Greek
font or a full-blown Unicode font that includes glyphs for all the Unicode characters.

This means that to write a document that uses both Coptic and Greek, you pretty much have to use a
styled-text format based on Unicode; with Unicode plain text, something (or someone) would have to
understand the text to know which font to use for each character. If you use a styled-text format, you
can indicate the font changes or attach language markings that a rendering process can use to choose
proper fonts. (Although this situation is highly specialized, it’s been used as an argument for adding a
language-tagging facility to Unicode plain text, but more important situations involve the use of the
Han ideographs. More on this later.)

There’s a growing consensus that unifying Greek and Coptic was a mistake—there’s a good change
they’ll be disunified in a future version of Unicode.

The Cyrillic alphabet

Tradition says that the Cyrillic alphabet was invented by St. Cyril and St. Methodius in the early 860s
in preparation for a mission expedition from Constantinople to the Slavic people in Moravia. The
idea was to create an alphabet for writing the liturgical texts in the native Slavic language.35 There’s
no evidence of any written Slavic prior to 860 or so.

One problem with this account is that there were actually two alphabets created around that time for
writing the Slavic languages: the Glagolitic and the Cyrillic. No one seems to know for sure the
origin of either alphabet; it seems clear that what we now know as the Cyrillic alphabet is derived
from the Greek alphabet, with extra letterforms for the sounds found in the Slavic languages that
aren’t also found in Greek. But it’s unclear what the source of these additional letterforms are. Vari-
ous theories have been advanced, none completely convincing.

The Glagolitic alphabet, on the other hand, while it has the same letters as the Old Cyrillic alphabet,
has completely different letterforms for them, letterforms that don’t seem to have an obvious origin.
Paul Cubberley, in his article in The World’s Writing Systems, theorizes that the Glagolitic alphabet
is actually loosely based on early cursive Greek and was probably developed by the Slavs in the
decades leading up to 860; St. Cyril formalized this alphabet, coined new letters for the non-Greek
sounds, and spread it throughout the Slavic world. What we now know as the Cyrillic alphabet (both
names came into use long after the alphabets themselves) seems to have arisen after the Glagolitic
alphabet. Cubberley theorizes that it was created by Cyril’s followers in Bulgaria in the 890s from the
“more dignified” uncial (printed) Greek alphabet, with the non-Greek letters adapted from the
Glagolitic alphabet. Some of the letterforms in what we now know as the Glagolitic alphabet appear
to be later back-formations from the Cyrillic alphabet that happened during the period where both
scripts were in use in the same place.

35 My sources for information on the Cyrillic alphabet are Paul Cubberley, “The Slavic Alphabets,” in The

World’s Writing Systems, pp. 346-355,and Bernard Comrie, “Adaptations of the Cyrillic Alphabet,” op. cit.,

pp. 700-726.

 The Cyrillic alphabet

 A Practical Programmer’s Guide to the Encoding Standard 171

Over time, the Cyrillic alphabet seems to have won out in popularity over the Glagolitic alphabet,
with the Glagolitic alphabet persisting as late as the nineteenth century in the Slavic areas under the
influence of the Roman Catholic church before finally giving way to the Latin alphabet.

The Cyrillic alphabet gradually predominated in the Slavic regions under the influence of the
Byzantine church, spreading with the spread of the Russian Empire and, later, the USSR.

Unlike the Greek alphabet, which was standardized early among the various Greek-speaking peoples,
the Cyrillic alphabet was never really standardized. It had various redundant letters and competing
letterforms. A first attempt at spelling reform happened under Peter the Great in 1708 with the
creation of a “civil script” intended specifically for the writing of secular texts. Some later changes
were proposed by the Academy of Sciences in 1735 and 1738.

What we now know as the Cyrillic alphabet, the modern Russian alphabet, was standardized (and
further reformed) by the Bolshevik regime in 1918. This alphabet spread to the various countries
under the control of the Soviet Union, with various changes to accommodate the different languages.

The modern Russian alphabet has thirty-three letters. Like the Latin and Greek alphabets, the letters
come in upper-/lower-case pairs, there are both roman and italic versions of the script, spaces are
used between words, and text is written from left to right. Modern languages using the Cyrillic
alphabet use the same punctuation marks that are normally used with the Latin alphabet. Although,
like Greek, the letters of the Cyrillic alphabet were once used as numerals, today the same “Arabic”
numerals used with the Latin alphabet are used with the Cyrillic alphabet.

These are the letters of the modern Russian alphabet:

 �

7KHUH�DUH�WZR�LQWHUHVWLQJ�OHWWHUV�LQ�WKH�5XVVLDQ�DOSKDEHW��WKH�³KDUG�VLJQ´�� ��DQG�WKH�³VRIW�VLJQ´�� ���
These two letters really don’t function like most “letters”; instead, they function more like diacritical
marks. Instead of representing distinct phonemes, they modify the pronunciation of the letters around
them.

To understand how the hard and soft signs work, it helps to understand palatalization, one feature of
Russian pronunciation that surfaces in spelling. To an American English speaker, the easiest way to
understand palatalization is to think of it as the addition of a “y” sound. A palatalized consonant ends
with the tongue moving like you’re going to follow it with the “y” sound. Consider the way many
people pronounce the word “Tuesday”: it’s best approximated as “tyoozday.” But the “y” isn’t really
given its full value: it isn’t pronounced “tee-oozday.” Instead, the “y” is kind of swallowed up into
the “t”. Many English speakers turn this sound into a “ch” sound, pronouncing the word as
“choozday,” but if you don’t do that, the sound at the beginning of “Tuesday” is a palatalized t.
Likewise, the scraping sound at the beginning of “Houston” the way most people pronounce it is a
palatalized h.

Russian has a whole bunch of palatalized consonants, and they’re generally represented using the
same letters as their non-palatalized counterparts. The distinction between the two is generally made
in one of two ways.

The first way is through the use of the vowels. A palatalized vowel is a vowel with the “y” sound
attached to the front of it; for example, the palatalized version of “ah” would be “yah.” The Russian
alphabet has ten�YRZHOV�LQ�ILYH�SDLUV�� � ���³D´��´\D´��� � ��³H´�´\H´��� � ��URXJKO\�³L´�´\L´��EXW�UHDOO\�

 Scripts of Europe

172 Unicode Demystified

�KDV�ZKDW�ZH¶G�FDOO�WKH�³HH´�VRXQG�DQG� �KDV�D�GDUNHU�³L´�VRXQG�QRW�IRXQG�LQ�(QJOLVK��� � �
�³R´�´\R´���DQG� � ��³X´�´\X´����$FWXDOO\�� �DQG� �DUH�UHODWLYHO\�UDUH�LQ Russian spelling—the “e” and
³\R´�VRXQGV�DUH�XVXDOO\�DOVR�UHSUHVHQWHG�E\�WKH�OHWWHU� ��

The palatalized versions of the vowels are used to indicate an initial “y” sound (“Yeltsin” is spelled
³ ´��RU�D�³\´�VRXQG�EHWZHHQ�WZR�YRZHOV��³'RVWR\HYVN\´�LV�VSHOOHG�³ ´���:KHQ�
they follow a consonant, however, the palatalized version of the vowel actually indicates that the
consonant�LV�SDODWDOL]HG��7KH�VRIW�VLJQ�� ��LV�XVHG�WR�LQGLFDWH�WKDW�D�FRQVRQDQW�LV�SDODWDOized when the
consonant is followed by another consonant or occurs at the end of the word.

1RUPDOO\�WKH�KDUG�VLJQ�� ��LVQ¶W�QHHGHG��WKH�DEVHQFH�RI�WKH�VRIW�VLJQ�RU�WKH�XVH�RI�D�QRQ-palatalized
vowel indicates the absence of palatalization. The hard sign is only used now before a palatalized
vowel to indicate that the vowel, not the consonant that precedes it, is palatalized (i.e., the hard sign
indicates the presence of the full “y” sound between the consonant and the vowel, rather than a
change in the pronunciation of the consonant).

Diacritical marks aren’t generally used with the Russian alphabet. The two big exceptions to this are
the use of a breve over the letter i () to indicate it has the “y” sound in a diphthong (for example,
³6HUJHL´�LV�VSHOOHG�³ ´���7KLV�LV�FDOOHG�WKH�³VKRUW�L´�LQ�5XVVLDQ�DQG�LV�JHQHUDOO\�FRQVLGHUHG�D�
VHSDUDWH�OHWWHU�RI�WKH�DOSKDEHW��$�GLDHUHVLV�RYHU�WKH�OHWWHU� �LV�VRPHWLPHV�XVHG�WR�LQGLFDte it has the
³\R´�VRXQG�� ���EXW�WKLV�JHQHUDOO\�RQO\�KDSSHQV�LQ�SHGDJRJLFDO�WH[WV�DQG�LQ�UDUH�FDVHV�ZKHUH�WZR�
different words with two different pronunciations would otherwise look the same. Most of the time,
IRU�H[DPSOH��³3\RWU´�LV�VSHOOHG�³ ´�UDWKHU�WKDQ� �

Like the Latin alphabet, the Cyrillic alphabet is used for writing a whole host of languages, mostly
Slavic languages and the languages of various minority peoples from the former Soviet Union. In
addition, Mongolian can be written either in its native script or using the Cyrillic alphabet (for more
on Mongolian, see Chapter 11). Like the Latin alphabet, the alphabet is a little different for every
language that uses the Cyrillic alphabet. However, most languages that use the Latin alphabet, at least
among the European languages, generally just add diacritical marks to the existing letters to cover
their own sounds. The different languages that use the Cyrillic alphabet are much more likely to add
whole new letterforms to the alphabet, and different languages with the same sounds are much more
likely to represent them in different ways.

The variation is noticeable even among the Slavic languages that use the Cyrillic alphabet.
Belarusian basically uses the same alphabet that Russian does, with the addition of a “short u” (��WR�
UHSUHVHQW�WKH�³Z´�VRXQG��EXW�WKH�OHWWHU�,�ORRNV�GLIIHUHQW��LQVWHDG�RI�XVLQJ�WKH�5XVVLDQ�,�VKDSH�� ���LW�
looks like the Latin letter I. (Interestingly, the short i still looks like the Russian short i.) The
Ukrainian alphabet actually uses both versiRQV�RI�WKH�OHWWHU�,��DQG�DGGV�D�URXQGHG�(�� ���7KH�
Bulgarian alphabet uses the same letters as the Russian alphabet, but treats the RusVLDQ�KDUG�VLJQ�� ��
DV�D�UHJXODU�YRZHO��³%XOJDULD�´�IRU�H[DPSOH��LV�VSHOOHG�³ ´��

The Serbian alphabet deviates further. It drops the hard and soft signs and the palatalized vowels
from the Russian alphabet and adds a couple of new letters to repreVHQW�SDODWDOL]HG�FRQVRQDQWV�� ��
�� �� ��DQG� ��,W�DOVR�DGGV�WKH�OHWWHU� ��ZKLFK�LV�XVHG�IRU�WKH�³\´�VRXQG�LQ�IURQW�RI�D vowel, rather

than using a whole different vowel letter, as is done in Russian (for example, the Russians would
VSHOO�³<XJRVODYLD´�³ �´�EXW�WKH�<XJRVODYV�VSHOO�LW�³ ´���7KH�0DFHGRQLDQ�
alphabet take the same basic approach as the Serbian alphabet, but uses different letter shapes for
VRPH�RI�WKH�OHWWHUV�� �LV�UHQGHUHG�DV� �LQ�0DFHGRQLDQ��DQG� �LV�UHQGHUHG�DV� ��7KH�0DFHGRQLDQ�
DOSKDEHW�DOVR�DGGV�DQRWKHU�QHZ�OHWWHU�� ��ZKLFK�GRHVQ¶W�UHSUHsent the “s” sound, but the “dz” sound.

 The Cyrillic alphabet

 A Practical Programmer’s Guide to the Encoding Standard 173

Once you leave the confines of the Slavic languages, all bets are off. The Cyrillic alphabet is used to
write more than fifty non-Slavic languages, and each one adds a few new letter shapes and/or a few
new accented versions of the basic Russian letters. As with the Slavic languages, even languages
from the same language family having the same basic repertoires of sounds will often use completely
different letterforms to represent them.

The Cyrillic block
The Unicode Cyrillic block runs from U+0400 to U+04FF. The first part of this block, the range
from U+0400 to U+045F, is based on the ISO Cyrillic standard (ISO 8859-5), and the characters in
this range have the same relative positions as they do in the ISO standard, facilitating conversion
between ISO 8859-5 and Unicode. This range includes all the characters necessary to write Russian,
Bulgarian, Belarusian, Macedonian, Serbian, and (except for one missing character) Ukrainian.

The characters from the ISO standard are supplemented with a whole host of additional characters.
The range from U+0460 to U+0489 contains the characters from the Old Cyrillic alphabet that have
dropped out of the modern alphabet. This allows the writing of historical texts and liturgical texts in
Old Church Slavonic. (Note that the shapes of some of the letters in the modern Cyrillic alphabet are
different from their shapes in the Old Cyrillic alphabet, but that they’ve been unified anyway. This
means you need to use a special Old Cyrillic font to get the right shapes for all the letters.) This range
also includes some diacritical marks that were used with Old Cyrillic but have also fallen into disuse
(and can’t be unified with the marks in the Combining Diacritical Marks block).

The rest of the Cyrillic block contains letters needed for the various non-Slavic languages that use the
Cyrillic alphabet. It’s broken roughly into two ranges: a range of unique letter shapes, and a range of
precomposed letter-mark combinations that can also be represented using combining character
sequences. The Unicode standard doesn’t provide an official list of the languages this range is
intended to cover, but they include the one missing Ukrainian letter and the following additional lan-
guages: Abkhasian, Altay, Avar, Azerbaijani, Bashkir, Chukchi, Chuvash, Kabardian, Kazakh,
Khakassian, Khanty, Khirgiz, Kildin Sami, Komi, Mari, Moldavian, Mongolian, Nenets, Tatar, Tajik,
Turkmen, Uzbek, and Yakut. (A number of these languages, especially in the wake of the fall of the
Soviet Union, are also written with other alphabets.)

One interesting character worth looking at is the palochka, which also looks like the letter I. It’s
different from the Belarusian I in two regards: 1) It doesn’t occur in upper- and lower-case flavors; it
always looks like an uppercase I, and 2) it’s not really a letter, but a diacritical mark. It’s used in a
number of languages to represent the glottal stop (the way an apostrophe is in the Latin alphabet) or
to turn a preceding consonant into an ejective consonant (the way an apostrophe does in the IPA).

A couple of additional notes about the Cyrillic alphabet: A few languages borrow additional
letterforms from the Latin alphabet; the Unicode standard makes specific mention of the letters Q and
W being used in Kurdish. The Unicode Technical Committee has resisted adding these letters to the
Cyrillic block; they say the right way to handle this situation and others like it is to use the code point
values in the Latin blocks to represent these letters. Also, there have been many alphabet changes in
some of the languages that use the Cyrillic alphabet; the Unicode Cyrillic block only encodes the
modern letters used in these languages, not the forms which have become obsolete.

The Cyrillic Supplementary block

Unicode 3.2 adds a new Cyrillic Supplementary block, running from U+0500 to U+052F, which adds
a bunch of letters for writing the Komi langyage.

 Scripts of Europe

174 Unicode Demystified

The Armenian alphabet

The Armenian alphabet is said to have been invented by St. Mesrop in 407.36 Like the Greek
alphabet, it’s a one-language alphabet; it’s basically just used for writing Armenian. It originally had
36 letters; two more letters have been added since. The order of the letters basically follows the order
of the Greek alphabet, and there is some additional evidence suggesting that the Armenian alphabet is
based on the Greek alphabet, but the shapes of the letters are wildly different. A number of different
sources have been suggested for the letterforms; one theory is that they originate in some cursive
Greek form, with the letters for Armenian sounds not found in Greek being supplied by Mesrop.

Aside from the addition of a couple of extra letters, the Armenian alphabet has remained essentially
unchanged since its invention, although there are a few different typographical styles. Like the other
alphabets we’ve looked at in this chapter, the Armenian alphabet is written from left to right, with
spaces between words, and the letters occur in upper-/lower-case pairs. The Armenian alphabet looks
like this:

� �
� �

� �
� � � � � � � � �
� � � � � � � �

Depending on the type style, certain pairs of Armenian letters form ligatures: Nakanishi mentions that
the letters (ech, pronounced e) and (yiwn, pronounced u or v) usually combine together into �
�SURQRXQFHG�HY�, as in the Armenian spelling of Yerevan, the capital of Armenia: .

Combining diacritical marks aren’t used with Armenian letters; there are a few diacritical marks that
are used in Armenian, but they don’t combine; they’re written after the letter they modify, as a
superscript; this also happens with certain characters, such as the emphasis mark and question mark,
that might be better thought of as punctuation marks than diacritical marks. Armenian uses a few
punctuation marks from the other blocks, but has its own period and comma, along with a few other
characters.

Like the other alphabets we’ve looked at, there was a long period of time when the letters of the
Armenian alphabet were also used as digits; this practice died out in the 19th century and today
Arabic numerals are used.

The Armenian block in Unicode, which runs from U+0530 to U+058F, contains all the Armenian
letters in upper- and lower-case versions, plus the various punctuation and diacritical marks peculiar
to Armenian. The ech-yiwn ligature () also has a code point value in the Armenian block for
compatibility. Five other Armenian ligatures are included in the Alphabetical Presentation Forms
block for compatibility (see Chapter 12).

36 Information in this section is drawn from Avedis K. Sanjian, “The Armenian Alphabet,” in The World’s

Writing Systems, pp. 356-363, with a few things coming from Akira Nakanishi, Writing Systems of the

World, Tokyo: Charles E. Tuttle Co., 1980, pp. 24-25.

 The Armenian alphabet

 A Practical Programmer’s Guide to the Encoding Standard 175

One character, U+058A ARMENIAN HYPHEN (�) deserves special mention. This character works
the same way as U+00AD SOFT HYPHEN: It’s used in Armenian text to mark legal positions where
a word may be hyphenated at the end of a line. It’s invisible unless it occurs at the end of a line. (For
more information on the soft-hyphen characters, see Chapter 12.)

The Georgian alphabet

The Georgian alphabet, like the Armenian alphabet, is essentially a one-language alphabet, being
used basically just to write Georgian (although it once was also used to write Abkhasian). There are a
number of different traditions for the origin of the Georgian alphabet (including an Armenian
tradition attributing it to St. Mesrop, who is said to have invented the Armenian alphabet), but none
seems to have much currency.37 The first example of Georgian writing dates from 430. The Georgian
alphabet seems to be based, at least in its ordering and general characteristics, on the Greek alphabet,
although the letterforms appear to have been independent inventions.

There have been a number of different versions of the Georgian alphabet. The oldest is called
asomtavruli (“capital letters”). Another form, called nuskhuri, developed in the ninth century. The
two forms were used in religious texts, originally freely intermixed, but later with nuskhuri
predominating and asomtavruli taking on the role of capital letters. This style was known as khutsuri,
or “ecclesiastical writing,” and was used in liturgical texts. Today, it’s mostly died out, although it’s
still used occasionally in liturgical settings.

Modern Georgian writing, or mkhedruli (“soldier’s writing”), developed in the tenth century from
nuskhuri. Unlike khutsuri, it’s caseless: there are no upper- or lower-case forms. Effectively, all the
letters are lowercase. Like lowercase letters in the Latin, Greek, Cyrillic, and Armenian alphabets, the
letters generally stay within what English printers call the “x-height” (the vertical space defined by
the height of the lowercase “x”), with various letters having ascenders, descenders, or both. There are
display fonts for Georgian that get rid of the ascenders and descenders and make all the letters the
height of a letter with an ascender, making them look like capital letters; these fonts are used
primarily for titles and headlines. They’re not true capital letters, however. A Georgian linguist
named Akaki Shanidze made an attempt to reintroduce the asomtavruli into modern Georgian writing
as capital letters, but it didn’t catch on.

The Georgian alphabet has stayed relatively unchanged since the tenth century, although there have
been a few reform movements. There was a reform of the alphabet in the 1860s under which a couple
characters were added to the alphabet and five letters corresponding to obsolete sounds were
removed from the alphabet.

The modern mkhedruli alphabet consists of thirty-eight letters, as follows:

� �

As in the other alphabets examined in this chapter, Georgian is written from left to right with spaces
between the words. Diacritical marks are not used, and the letters don’t interact typographically. For
the most part, Georgian uses the same punctuation as is used with the Latin alphabet, with the
exception of the period, which generally looks like the Armenian period. As with the other alphabets,

37 My sources for this section are Dee Ann Holisky, “The Georgian Alphabet,” in The World’s Writing

Systems, pp. 364-369, supplemented by Nakanishi, pp. 22-23.

 Scripts of Europe

176 Unicode Demystified

at one time the letters of the Georgian alphabet were used as digits, but this has died out in favor of
the Arabic numerals.

The Georgian block in Unicode extends from U+10A0 to U+10FF. It contains two series of letters: a
series of asomtavruli and a series of mkhedruli. The nuskhuri have been unified with the mkhedruli;
this means you need to use a special font to write in Old Georgian that provides the correct
letterforms for the unified letters. The asomtavruli letters are categorized as uppercase letters by the
standard, and the mkhedruli are categorized as lowercase letters, but algorithms for converting
between cases should generally leave the mkhedruli alone instead of converting them to the
asomtavruli. (Unicode doesn’t define case mappings between the asomtavruli and the mkhedruli;
you want to do that only if you’re operating on Old Georgian rather than modern Georgian.)

There’s only one punctuation mark in the Georgian block: the Georgian paragraph mark, which
appears at the ends of paragraphs. The Georgian period has been unified with the Armenian period;
use the Armenian period (U+0589) in Georgian text.

 177

CHAPTER 8 Scripts of The Middle East

Most of the alphabetic writing systems descend from the ancient Phoenician alphabet, but they do so
along several different lines of descent. In the last chapter, we looked at a collection of scripts that all
descended from the ancient Greek alphabet (although the relationship between the Greek alphabet
and the Armenian and Georgian alphabets seems to be more distant and speculative, these two
alphabets do share many common characteristics with the ancient Greek alphabet).

In this chapter, we’ll look at a group of scripts that descended down a different line: they descend
from the ancient Aramaic alphabet. These scripts have several important things in common, many of
which distinguish them from the scripts we looked at in the last chapter:

x� They’re written from right to left, instead of from left to right like most other scripts.

x� They’re uncased. Instead of there being two sets of letterforms, one used most of the time and the
other used at the beginning of sentences and proper names and for emphasis, as the European
scripts do, each of these scripts has only one set of letterforms (in fact, only the European scripts
are cased).

x� The letters of these alphabets generally only represent consonant sounds. Most vowel sounds are
either not represented at all and are filled in mentally by the reader (th qvlnt f wrtng Nglsh lk ths),
or are represented by applying various kinds of marks to the letters representing the consonants.

x� Like the European scripts, the Middle Eastern scripts use spaces between words.

The four scripts in this group that have encodings in the Unicode standard are Hebrew, Arabic,
Syriac, and Thaana.

In addition to the common characteristics listed above, the Arabic and Syriac scripts have an
additional important characteristic in common: the letters are cursively connected, the way
handwritten English often is, even when they’re printed. This means that the shapes of the letters can

 Scripts of the Middle East

178 Unicode Demystified

differ radically (much more radically than in handwritten English, actually) depending on the letters
around them.

Bidirectional Text Layout

By far the most important thing the scripts of the Middle East have in common (at least from the
point of view of computer programmers trying to figure out how to draw them on a computer screen
and represent them in memory) is that they’re written from right to left rather than from left to right.
By itself, this isn’t so hard to do on a computer, but if you mix text written using one of these
alphabets with text written using one of the alphabets in the previous chapter, figuring out how to
position all the letters correctly relative to each other can get to be a rather complicated affair.
Because you can end up with a line of text with individual snippets of text on the line running in two
different directions, these four scripts are often referred to as “bidirectional” scripts. Computer
programmers who deal with these scripts often usually abbreviate this to “bi-di.”38

You actually don’t even have to be mixing text in different languages to get into bidirectional text
layout. In all of these languages, even though letters and words are written from right to left,
numerals are still written from left to right. This means that text in these languages that contains
numbers is bidirectional, not just text in these languages containing foreign words or expressions.
Because of this, the right-to-left scripts can correctly be thought of as bidirectional in and of them-
selves, and not just when mixed with other scripts.

Let’s take a look at just how this works. Consider the Hebrew expression mazel tov, which means
“congratulations.” (It actually translates literally as “good luck,” but it used in the same way English
speakers use the word “congratulations,” not the way we’d use “good luck.”) If you wrote
“congratulations” in English, it’d look like this:

congratulations

In Hebrew, the same thing would look like this39:

Notice that it’s justified against the right-hand margin. This is because the first letter is the one
furthest to the right. Just as we start each line of text flush against the left-hand margin, Hebrew text
starts each line flush against the right-hand margin.

Notice I said the first letter is against the right-hand margin. These letters transliterate as mazel tov.

The letter Mem (), representing the m sound, is furthest to the right, followed, moving to the left, by

Zayin (, z), Lamed (, l), a space, Tet (, t), Vav (, o), and finally Bet (, v).

38 I’ve seen numerous different spellings for this term, although it’s always pronounced “bye-dye.” “BIDI”

seems to be fairly common, but to me it always looks like it’s pronounced “biddy,” so I’ll standardize on

“bi-di” here.
39 Many thanks to John Raley and Yair Sarig for their help translating the Hebrew examples in this chapter.

 Bidirectional Text Layout

 A Practical Programmer’s Guide to the Encoding Standard 179

So how do you represent this in memory? Well, the straightforward way to do it is for the first letter
to go first in the backing store:

U+05DE HEBREW LETTER MEM ()
U+05D6 HEBREW LETTER ZAYIN ()
U+05DC HEBREW LETTER LAMED ()
U+0020 SPACE

U+05D8 HEBREW LETTER TET ()
U+05D5 HEBREW LETTER VAV ()
U+05D1 HEBREW LETTER BET ()

By now, you’re probably getting rather impatient. After all, this is all so simple as to almost go
without saying. It starts to get interesting, however, when you mix Hebrew text with, say, English
text:

Avram said and smiled.

Notice that the Hebrew expression looks exactly the same when it’s mixed with the English: the
still goes furthest to the right, with the other letters extending to the left after it. The same thing
happens when English is embedded into Hebrew:

. congratulations

The same thing happens when you have a number in a Hebrew sentence:

. 23

The number in this sentence is twenty-three; it’s written the same way it would be in English.

You can even have these things embedded multiple levels deep:

Avram said “. 23 ” and smiled.

Because this is basically an English sentence, the prevailing writing direction is left to right (1) and
the sentence is justified against the left-hand margin. But the Hebrew sentence reads from right to left
(2). However, even within the Hebrew sentence, the number reads from left to right (3):

Avram said “. 23 � ” and smiled.
1 23

This means that the eye traces a sort of zigzag motion as it reads this sentence:

Avram said “. 23 � ” and smiled.

 Scripts of the Middle East

180 Unicode Demystified

Now things get interesting. When you mix directions on the same line of text, there’s no longer an
obvious way of ordering the characters in storage. There are two basic approaches to how a sentence
such as…

Avram said and smiled.

…should be represented in memory. The first approach is to store the characters in logical order, the
order in which the characters are typed, spoken, and read:

U+0073 LATIN SMALL LETTER S

U+0061 LATIN SMALL LETTER A

U+0069 LATIN SMALL LETTER I

U+0064 LATIN SMALL LETTER D

U+0020 SPACE

U+05DE HEBREW LETTER MEM

U+05D6 HEBREW LETTER ZAYIN

U+05DC HEBREW LETTER LAMED

U+0020 SPACE

U+05D8 HEBREW LETTER TET

U+05D5 HEBREW LETTER VAV

U+05D1 HEBREW LETTER BET

U+0020 SPACE

U+0061 LATIN SMALL LETTER A

U+006E LATIN SMALL LETTER N

U+0064 LATIN SMALL LETTER D

If you store the characters this way, the onus is now on the text-rendering process (the code that
draws characters on the screen) to switch the letters around on display so that they show up arranged
correctly. The code that accepts the text as input, on the other hand, doesn’t need to do anything
special: each character, as it’s typed, is simply appended to the end of the stored characters in
memory.

Then there’s the opposite approach, somewhat paradoxically called visual order: the characters are
stored in memory in the order in which the eye encounters them if it simply scans in a straight line
from one end of the line to the other. This can be done either with a right-to-left bias or a left-to-right
bias (both exist in the real world). That leads to this ordering (with a left-to-right bias):

U+0073 LATIN SMALL LETTER S

U+0061 LATIN SMALL LETTER A

U+0069 LATIN SMALL LETTER I

U+0064 LATIN SMALL LETTER D

U+0020 SPACE

U+05D1 HEBREW LETTER BET

U+05D5 HEBREW LETTER VAV

U+05D8 HEBREW LETTER TET

U+0020 SPACE

U+05DC HEBREW LETTER LAMED

U+05D6 HEBREW LETTER ZAYIN

U+05DE HEBREW LETTER MEM

U+0020 SPACE

U+0061 LATIN SMALL LETTER A

U+006E LATIN SMALL LETTER N

U+0064 LATIN SMALL LETTER D

 Bidirectional Text Layout

 A Practical Programmer’s Guide to the Encoding Standard 181

In this example, the Latin letters occur in the same relative order that they did in the previous
example, but the Hebrew letters are reversed. If you store the characters this way, a text-rendering
process can be fairly straightforward: the characters are just drawn in succession from left to right.
The onus is now on the code that accepts keyboard input, which has to rearrange the characters into
the correct order as they’re typed. (The simplest system of all just treats everything as unidirectional
text, which puts the onus on the user to type the Hebrew text backwards. This is suitable, perhaps, for
putting together examples in books like this one, but not for doing actual Hebrew text editing.)

Visual order is easier for the rendering engine, but poses serious difficulties for most other processes.
You can really only store individual lines of text in visual order—if you store a whole paragraph that
way, it becomes incredibly hard to divide into lines. And simple operations such as putting a
paragraph break into the middle of an existing paragraph (in the middle of the backwards text)
suddenly become ambiguous. There are still visual-order systems out there, but they’re generally
older systems based on older technology. All modern Hebrew encodings, including Unicode, use
logical order. (The same goes for Arabic, although visual order was always less prevalent on Arabic
systems.)

Unicode goes the other logical-order encodings one better by very rigorously and precisely
specifying exactly how that logical ordering is to be done. This is the subject of the next section.

The Unicode Bidirectional Layout Algorithm

The Unicode bidirectional text layout algorithm (or “bi-di algorithm,” as it is most commonly called)
is possibly the most complicated and difficult-to-understand aspect of the Unicode standard, but it’s
also pretty vital. The idea is that with Unicode giving one the ability to represent text in multiple lan-
guages as simply as one can represent text in a single language, you’ll see more mixed-language text,
and you have to make sure that any sequence of characters is interpreted the same (and looks the
same, ignoring differences in things like font design) by all systems that claim to implement the
standard. If the Unicode standard didn’t specify exactly what order the characters should be drawn in
when you have mixed-directionality text in a Unicode document, then the same document could look
different on different systems, and the differences wouldn’t be merely cosmetic—they’d actually
affect the sense of the document.

Unfortunately, the business of laying out bidirectional text can get rather wild. Most of the
complicated cases won’t occur very often in real-world documents, but again, everything has to be
specified rigorously for the standard to work right. (As it turns out, the first version of the Unicode
bi-di algorithm, which appeared in Unicode 2.0, wasn’t specified rigorously enough—holes were
discovered as people began trying to write actual implementations of it. The Unicode 3.0 standard
includes a more rigorous spec, and updated versions have also been published as Unicode Standard
Annex #9. UAX #9 also includes two reference implementations of the algorithm, one in Java and
one in C.)

I’m not going to try to cover every last detail of the Unicode bi-di algorithm here; you can refer to the
Unicode Standard and UAX #9 for that. Instead, I’ll try to capture the effect the Unicode bi-di
algorithm is supposed to produce and not worry about the details of how you actually produce it.

Inherent directionality

Let’s start with the basics. The Unicode bi-di algorithm is based on the concept of inherent

 Scripts of the Middle East

182 Unicode Demystified

directionality, that is, each character in the standard is tagged with a value that says how it behaves
when laid out on a horizontal line with other characters. Those characters that Unicode classifies as
“letters” (a general category that basically includes all characters that make up “words,” including not
only actual letters, but also syllables, ideographs, and non-combining diacritical marks) are classified
as either left-to-right characters or right-to-left characters.

If you have two or more left-to-right characters in a row in storage, they are always to be displayed,
no matter what, so that each character is drawn to the left of all the characters on the same line that
follow it in storage and to the right of all characters on the same line that precede it in storage. In
other words,

U+0041 LATIN CAPITAL LETTER A

U+0042 LATIN CAPITAL LETTER B

U+0043 LATIN CAPITAL LETTER C

will always be drawn as

ABC

regardless of what’s going on around them (provided they’re being drawn on the same line, of
course). Right-to-left characters are the reverse: If you have two or more right-to-left characters in a
row in storage, they are always to be displayed, no matter what, so that each character is drawn to the
right of all the characters that follow it in storage and to the left of all characters that precede it
(again, assuming they come out on the same line). In other words,

U+05D0 HEBREW LETTER ALEF ()
U+05D1 HEBREW LETTER BET ()
U+05D2 HEBREW LETTER GIMEL ()

will always be drawn as

regardless of what’s going on around them.

What happens when you have a left-to-right character and a left-to-right character next to each other
in memory depends on context. First, the characters are organized into directional runs, sequences of
characters having the same directionality. Within the runs, the characters are displayed as shown
above, which means that the characters on either side of the run boundary in memory will very likely
not be drawn adjacent to each other. In other words, let’s say you concatenate the two sequences we
just looked at together into a single sequence:

U+0041 LATIN CAPITAL LETTER A

U+0042 LATIN CAPITAL LETTER B

U+0043 LATIN CAPITAL LETTER C

U+05D0 HEBREW LETTER ALEF

U+05D1 HEBREW LETTER BET

U+05D2 HEBREW LETTER GIMEL

This can be drawn either as

 The Unicode Bidirectional Layout Algorithm

 A Practical Programmer’s Guide to the Encoding Standard 183

ABC

or as

ABC

Which of these two arrangements is correct depends on context. If the paragraph consists of just
these six characters, which arrangement is correct depends on whether the paragraph is considered a
Hebrew paragraph or an English paragraph, and this is usually specified using a higher-level protocol
such as out-of-band style information. In the absence of a higher-level protocol, the first character of
the paragraph determines it, in which case the first arrangement would win out, since the paragraph
starts with a left-to-right letter (there are ways or overriding this behavior even in plain text—we’ll
get to them later).

The interesting thing to note about both examples, though, is that the characters on either side of the
run boundary in storage, C and alef, aren’t drawn next to each other in either arrangement. Drawing
these two characters next to each other would violate the rule about how the characters within a
directional run are to be arranged.

Combining marks are basically unaffected by any of this ordering. A combining mark doesn’t have
any directionality of its own; it always combines with the character that precedes it in storage, and it
takes on the directionality of the character it attaches to. So if we throw a couple of combining marks
into the previous mix…

U+0041 LATIN CAPITAL LETTER A

U+030A COMBINING RING ABOVE

U+0042 LATIN CAPITAL LETTER B

U+0043 LATIN CAPITAL LETTER C

U+05D0 HEBREW LETTER ALEF

U+05D1 HEBREW LETTER BET

U+05BC HEBREW POINT DAGESH OR MAPIQ

U+05D2 HEBREW LETTER GIMEL

…they don’t break up the directional runs, and the directionality doesn’t affect which character they
attach to, or how they attach to that character. The ring attaches to the A, and the dagesh (a dot which
appears in the middle of the character) attaches to the bet, and you get

ÅBC

In other words, combining character sequences are treated as units for the purposes of laying out a
line of bidirectional text. Control characters and other characters that have no visual presentation at
all (except for a few we’ll look at soon) are similarly transparent to the algorithm (i.e., it functions as
though they’re not there).

 Scripts of the Middle East

184 Unicode Demystified

Neutrals

So much for the easy part. Now consider what happens if you have spaces. Consider the example
sentence we used earlier:

Avram said and smiled.

The spaces in “Avram said” and “and smiled” are the same code-point value (U+0020) as the space

in “ ” and the spaces at the boundaries between the English and the Hebrew. The space is
said to have neutral directionality, as do a bunch of other punctuation marks. The basic idea here is
that the designers of Unicode didn’t want to have two different sets of spaces and punctuation marks
that were the same except that one set was supposed to be used for left-to-right characters and the
other set for right-to-left characters. Instead you have one set of spaces and punctuation and they
have neutral directionality.

So what does that mean? Very simple. If a neutral character is flanked on both sides by characters of
the same directionality, it takes on the directionality of the surrounding characters. In fact, if a
sequence of neutral characters is flanked on both sides by characters of the same directionality, they
all take on that directionality. For example, the following sequence…

U+0041 LATIN CAPITAL LETTER A

U+002E FULL STOP

U+0020 SPACE

U+0042 LATIN CAPITAL LETTER B

U+05D0 HEBREW LETTER ALEF

U+002E FULL STOP

U+0020 SPACE

U+05D1 HEBREW LETTER BET

…would get drawn like this:

A. B .

If there’s a conflict—that is, if a neutral is flanked by characters of opposite directionality, then the
overall directionality of the paragraph wins. So if you have the following sequence…

U+0041 LATIN CAPITAL LETTER A

U+0042 LATIN CAPITAL LETTER B

U+0020 SPACE

U+05D0 HEBREW LETTER ALEF

U+05D1 HEBREW LETTER BET

…the space takes on the directionality of the A and B (because the A is the first thing in the
paragraph). This means it goes to the right of the B, between the English letters and the Hebrew
letters:

AB

Interestingly, if the overall paragraph direction had been specified as right-to-left, the space would
still appear in the same place. This is because it now takes on the directionality of the Hebrew

 The Unicode Bidirectional Layout Algorithm

 A Practical Programmer’s Guide to the Encoding Standard 185

letters, causing it to appear to the right of the as part of the run of Hebrew letters:

 AB

Numbers

Numbers complicate things a bit. Consider the following example:

Avram said “. 23 ”

The number is twenty-three, written just as it would be in English. Notice that it’s flanked by two
snippets of Hebrew text: and . The sequence to the right, “ ”, occurs in storage

(and was typed) before the sequence to the left (“ ”). That is, the two snippets, together with
the “23,” constitute a single Hebrew sentence (“I have 23 children”)…

. 23

…and are ordered accordingly.

Contrast that with this example:

The first two books of the Bible are and .

It has the same superficial structure as the other example: three pieces of English text interspersed
with two pieces of Hebrew text. But here the leftmost Hebrew word, “ ” (bereshith, the

Hebrew name for Genesis) occurs first in memory and the rightmost Hebrew word (, or
shemoth, the Hebrew name for Exodus).

The difference is that “and” and “23” are treated differently by the bi-di algorithm. The word “and”
gets treated as part of theouter English sentence, breaking the Hebrew up into two independent units.
The “23,” on the other hand, because it’s a number, gets treated as part of the inner Hebrew sentence,
even though its individual characters run from left to right. Both Hebrew snippets get treated as part
of the same Hebrew sentence, rather than as independent Hebrew words.

Because of this effect, digits are said to have weak directionality, while letters are said to have strong
directionality.

Certain characters that often appear with, or as part of, numbers, such as commas, periods, dashes,
and currency and math symbols, also get special treatment. If they occur within a number (or, for
some of them, before or after a number), they get treated as part of the number; otherwise, they get
treated as neutrals.

Also, numbers are only special within right-to-left text. If a number occurs inside a sequence of
normal left-to-right text, it just gets treated as part of that sequence.

 Scripts of the Middle East

186 Unicode Demystified

The Left-to-Right and Right-to-Left Marks
The basic bi-di algorithm won’t give you perfect results with every possible sentence you can
contrive. For example, consider this sentence we looked at earlier:

Avram said “. 23 ” and smiled.

Notice the period at the end of the Hebrew sentence. The period is a neutral character, like the
quotation mark and space that follow it. According to the Unicode bi-di algorithm, since these three
characters have a left-to-right character on one side and a right-to-left character on the other, they
should take on the overall directionality of the paragraph. So the sentence should look like this:

Avram said “ 23 .” and smiled.

In other words, with the default behavior, the period would show up at the beginning of the Hebrew
sentence, instead of at the end where it belongs. In styled text, you could use styling information to
control where the period shows up, but we need a way to make it show up in the right place even in
plain text. The solution is two special Unicode characters:

U+200E LEFT-TO-RIGHT MARK

U+200F RIGHT-TO-LEFT MARK

These two characters have one purpose and one purpose only: to control the positioning of characters
of neutral directionality in bidirectional text. They don’t have any visual presentation of their own,
and don’t affect other text processes, such as comparing strings or splitting a run of text up into
words. But the Unicode bi-di algorithm sees them as strong left-to-right and right-to-left characters.

This makes them useful for two things. One of them is controlling the directionality of neutral
characters, which is what we need here. So if you insert a right-to-left mark into our sentence
between the period and the closing quotation mark…

Avram said “K. 23 ” and smiled.

…the period shows up in the right place. The right-to-left mark (shown as “RLM” above) is a strong
right-to-left character just like the Hebrew letters. Since the period is now flanked by right-to-left
characters, it gets treated as a right-to-left character and appears in its proper place at the end of the
sentence. (The “RLM” is just there to show where the right-to-left mark goes; it’s actually invisible.)

The other thing that the left-to-right and right-to-left marks are good for is controlling the overall
directionality of a paragraph. In the absence of a higher-level protocol, the directionality of a
paragraph is the directionality of the first character (of strong directionality) in the paragraph. This is
usually the right answer, but not always. Consider this sentence:

 is Hebrew for “congratulations.”

The first character in this paragraph is the Hebrew letter mem (), which is a strong right-to-left
character. This means that the computer will give the paragraph right-to-left directionality. In effect,
it’ll treat this sentence as a Hebrew sentence with some embedded English, even though it’s clearly
an English sentence with some embedded Hebrew. What you’ll actually see is this:

”.is Hebrew for “congratulations

But if you stick a left-to-right mark at the beginning of the sentence, it is now the first character in the
paragraph with strong directionality. It’s a left-to-right character, so the paragraph gets treated as a
left-to-right paragraph, even though it begins with a Hebrew letter, producing the arrangement we

 The Unicode Bidirectional Layout Algorithm

 A Practical Programmer’s Guide to the Encoding Standard 187

want. (Again, since the left-to-right mark is invisible, its presence doesn’t do anything but affect the
arrangement of the other characters.)

The Explicit Override Characters

Unicode provides a few other invisible formatting characters that can be used to control bidirectional
layout. There are occasional situations where you want to explicitly override the inherent
directionality of a Unicode character. For example, you might have part numbers that include both
English and Hebrew letters, along with digits, and you want to suppress the reordering that would
normally happen. The left-to-right override (U+202D) and right-to-left override (U+202E) characters
force all of the characters that follow them to be treated, respectively, as strong left-to-right and
strong right-to-left characters. The pop-directional-formatting character (U+202C) cancels the effect
of the other two, returning the bi-di algorithm to its normal operation. For example, we saw earlier
that the following sequence of characters…

U+0041 LATIN CAPITAL LETTER A

U+0042 LATIN CAPITAL LETTER B

U+0043 LATIN CAPITAL LETTER C

U+05D0 HEBREW LETTER ALEF

U+05D1 HEBREW LETTER BET

U+05D2 HEBREW LETTER GIMEL

…is drawn like this:

ABC

But if we insert the proper override characters…

U+0041 LATIN CAPITAL LETTER A

U+0042 LATIN CAPITAL LETTER B

U+0043 LATIN CAPITAL LETTER C

U+202D LEFT-TO-RIGHT OVERRIDE

U+05D0 HEBREW LETTER ALEF

U+05D1 HEBREW LETTER BET

U+05D2 HEBREW LETTER GIMEL

U+202C POP DIRECTIONAL FORMATTING

…you get this instead:

ABC

The Explicit Embedding Characters
Sometimes you wind up with multiple levels of embedding when mixing languages. For example,
consider the following sentence:

“The first two books of the Bible are and .”

Here, you’ve got a Hebrew sentence with an English sentence embedded in it as a quote, and then
you’ve got a couple Hebrew words embedded in the English sentence. You can get this kind of effect
with numbers in right-to-left text without doing anything special, but you can’t do it with this kind of
thing. With the basic bi-di algorithm, you get this:

 Scripts of the Middle East

188 Unicode Demystified

“. and The first two books of the Bible are”

The two Hebrew words in the English sentence get treated as part of the Hebrew sentence instead,
breaking the English sentence up into two separate English snippets. Unicode provides two more
invisible formatting characters to allow you to get the desired effect here, the left-to-right embedding
(U+202A) and the right-to-left embedding (U+202B) characters. The pop-directional-format
character (U+202C) is also used to terminate the effects of these two characters.

If you precede the English sentence with U+202A LEFT-TO-RIGHT EMBEDDING and follow it
with U+202C POP DIRECTIONAL FORMAT, they force the Hebrew words to be treated as part of
the English sentence, producing the desired effect.

Mirroring characters
There are a bunch of neutral characters, parentheses and brackets chief among them, that not only
take on the directionality of the characters around them, but have a different glyph shape depending
on their directionality. For example, in both of these examples…

Avram (the neighbor) asked for my help.

. ()

…the parenthesis at the beginning of the parenthetical expression is represented by U+0028 LEFT
PARENTHESIS, even though it looks one way [(] in the English sentence and a different way [)] in
the Hebrew sentence. The same goes for the parenthesis at the other end of the parenthetical
expression. (The name “LEFT PARENTHESIS” is an unfortunate side effect of the unification of
Unicode with ISO 10646, which used that name.) In other words, the code point U+0028 encodes the
semantic “parenthesis at the beginning of a parenthetical expression,” not the glyph shape (.

The Unicode standard includes several dozen characters with the mirroring property, mostly either
various types of parentheses and brackets, or math symbols. Many of these, such as the parentheses
and brackets, occur in mirror-image pairs that can simply exchange glyph shapes when they occur in
right-to-left text, but many don’t occur in mirror-image pairs. Fonts containing these characters have
to include alternate glyphs that can be used in a right-to-left context.

Line and Paragraph Boundaries
It’s important to note that bidirectional reordering takes place on a line-by-line basis. Consider our
original example:

Avram said and smiled.

If it’s split across two lines with the line break in the middle of the Hebrew expression such that only
one of the Hebrew words can appear on the first line, it’ll be the first Hebrew word, the one to the
right, even though this makes the words appear to come in a different order than when the whole
sentence is on one line. That is, when the sentence is split across two lines, you get…

 The Unicode Bidirectional Layout Algorithm

 A Practical Programmer’s Guide to the Encoding Standard 189

Avram said
 and smiled.

…and not…

Avram said
 and smiled.

In other words, bidirectional reordering takes place after the text has been broken up into lines.

Also, the effects of bidirectional reordering are limited in scope to a single paragraph. The Unicode
bi-di algorithm never has to consider more than a single paragraph at a time. Paragraph separators
also automatically cancel the effect of any directional-override or directional-embedding characters.

Bidirectional Text in a Text-Editing Environment

Bidirectional text poses a few challenging problems for text-editing applications. Consider our earlier
example:

ABC

This is represented in memory as follows:

U+0041 LATIN CAPITAL LETTER A

U+0042 LATIN CAPITAL LETTER B

U+0043 LATIN CAPITAL LETTER C

U+05D0 HEBREW LETTER ALEF

U+05D1 HEBREW LETTER BET

U+05D2 HEBREW LETTER GIMEL

Let’s say you click to place the insertion point here:

ABCABC

This position is ambiguous. It can be between the letter C and the letter , or it can be at the end of

the string, after the letter . The same is true if you put the insertion point here:

ABCABC

This spot can be either of the same two positions. So if you put the insertion point in either of these
spots and start typing, where should the new characters go?

 Scripts of the Middle East

190 Unicode Demystified

This can be tricky. One solution is to put the newly-typed character at whatever position in storage
will cause it to appear at the visual position where the user clicked. For instance, if you click here…

ABCABC

…and type an English letter, it goes at the end of the English letters, before the Hebrew. But if you
type a Hebrew letter, it goes at the end, after the other Hebrew letters. On the other hand, if you click
here…

ABCABC

…the opposite happens. If you type an English letter, it goes at the end, after the Hebrew, but if you
type a Hebrew letter, it goes at the beginning of the Hebrew letters.

Most text editors actually handle this the opposite way, which is easier to implement. They identify
each visual position with a particular position in the character storage, and draw two insertion points
on the screen to show the two different places in the text where newly-typed characters might appear:

ABCABC

This example shows the position in the storage between the English and Hebrew letters: The leftward
tick on the first insertion point shows that a new English letter would go there, and the rightward tick
on the second insertion point shows that a new Hebrew letter would go there.

Selection highlighting can pose similar challenges. Consider this example:

Avram said and smiled.

If you drag from here…

Avram said and smiled.Avram said and smiled.

…to here…

Avram said and smiled.Avram said and smiled.

…this can mean two different things. In a lot of applications, this gesture will select a contiguous
range of characters in storage, starting where you clicked and ending where you released. This
produces a visually discontiguous selection:

 Bidirectional Text in a Text Editing Environment

 A Practical Programmer’s Guide to the Encoding Standard 191

Avram said and smiled.Avram said and smiled.

This is called logical selection. This is a little simpler to handle in code because we’re always dealing
with logically continuous ranges of text, but it’s more complicated to draw and can be jarring for
users who aren’t used to it. The opposite approach, visual selection, selects a visually contiguous
piece of text…

Avram said and smiled.Avram said and smiled.

…even though this represents two separate and distinct ranges of text in the character storage. This
looks more natural, but requires a lot more behind-the-scenes juggling on the part of the text editor.

To see what I’m talking about, see what effect the two different selection types have on a copy-and-
paste operation. Let’s say you make that selection gesture on an editor that uses logical selection:

Avram said and smiled.Avram said and smiled.

You’ve selected a logically continuous range of text. If you pick “Cut” from the Edit menu, you now
have this:

Avram and smiled.

If you turn around and immediately choose “Paste” from the Edit menu, you should get back your
original text again. This is simple to do: the insertion point marks the spot in the storage where you
deleted the text, and it gets inserted in one logical lump, with the bi-di algorithm reordering things to
look like they did before. Now let’s say you did the same selection gesture on an editor that
supported visual selection:

Avram said and smiled.Avram said and smiled.

You pick “Cut” from the Edit menu and get this:

Avram and smiled.

Again, if you turn around and immediately choose “Paste,” you should get the original text back
again. In the same way, if you were to paste the text into any other spot in the document, the result
you get should keep the appearance it had when you originally selected it. To put the text back the
way it was in one paste operation, thus, requires the program to keep the two pieces of text you
originally selected separate and to paste them into two separate places in the storage such that they’ll
be drawn next to each other on the screen at the specified position. This type of thing can require
some interesting behind-the-scenes juggling. For on the whole issue of dealing with bidirectional
text in a text editing environment, and on implementing the bi-di algorithm, see Chapter 16.

 Scripts of the Middle East

192 Unicode Demystified

Okay, with this primer on bidirectional text layout under our belts, we can go on to look at the
individual alphabets in Unicode which require it…

The Hebrew Alphabet

What we now know as the Hebrew alphabet dates back to about the second century BC, and has
come down to use more or less unchanged.40 It evolved out of the Aramaic alphabet, which in turn
grew out of the Phoenician alphabet. There was an earlier Hebrew alphabet dating back to about the
ninth century BC, but it gradually died out as the ancient Israelites were dominated by a succession
of Aramaic-speaking groups, including the Assyrians, Babylonians, and Persians. When the Holy
Land was conquered by the Greeks, the Hebrew language made a comeback and a new alphabet for it
grew out of the Aramaic alphabet. The modern Hebrew alphabet is often called “square Hebrew” to
distinguish it from the more rounded form of the older Hebrew alphabet, which continued to be used
by the Samaritans up to relatively recent times.

Like the Phoenician alphabet from which it ultimately derived, the Hebrew alphabet consists of
twenty-two letters, all consonants:

Since the Hebrew alphabet, like all the alphabets in this chapter, is written from right to left, it’s
shown here justified against the right-hand margin. The first letter of the alphabet, alef (), is furthest
to the right.

The letters of the Hebrew alphabet don’t generally interact typographically, and there are no upper-
and lower-case forms, but five of the letters have a different shape when they appear at the end of a
word: becomes , becomes , becomes , becomes , and becomes .

The fact that the Hebrew alphabet has no vowels came to be a problem as, over time, pronunciation
diverged from spelling and variant pronunciations developed, so some of the consonants came to do
double duty as vowels in certain contexts and certain positions within words. But as detail-perfect
interpretation of Biblical texts became more and more important, a more precise system was needed.
Because the original consonants were considered so important in Biblical texts, the solution that
developed didn’t involve the creation of new letters; instead, a system of points, various marks drawn
above, below, and sometimes inside the consonants, outside the normal line of text, evolved. The first
pointing systems evolved around AD 600, and the modern system of points was standardized by
about 1200.

There are basically three categories of points. The first is diacritical marks that change the sound of a
consonant. The most important of these is the dagesh, a dot drawn inside a Hebrew letterform.
Exactly what the dagesh means depends on the letter it’s being used with, but it most often gives a
letter a stopped sound where it’d normally have a more liquid sound: the letter bet () for example, is

pronounced like the letter b when it’s written with a dagesh (), but closer to a v without it. The rafe,

a line above the letter, is used less often, and has the opposite effect. is pronounced like v.

40 My source for information on the Hebrew alphabet is Richard L. Goerwitz, “The Jewish Scripts,” in The

World’s Writing Systems, pp. 487-498.

 The Hebrew Alphabet

 A Practical Programmer’s Guide to the Encoding Standard 193

The Hebrew letter shin () can be pronounced either as s or as sh. Sometimes a dot is drawn over the
letter to indicate which pronunciation it has: If the dot is drawn over the rightmost tine of the shin
(), it’s pronounced sh; if it’s drawn over the leftmost tine (), it’s pronounced s.

Then there are the vowel points: There are eleven points that are used to indicate the vowel sounds
that follow a consonant. With one exception, they’re all drawn under the letter:

The sheva, a pair of dots under a letter, is used to indicate the absence of a vowel sound following
that letter:

The vowel points are generally not used in modern Hebrew, except when their absence is ambiguous,
in learning materials, and in Biblical and other liturgical texts. In other words, Hebrew normally
looks something like this…

 : -

…but since this is a Bible verse (Psalm 107:1, to be exact), it’s usually written like this:

� �-: � �

Finally, there are the cantillation marks, an elaborate system of marks originally used to indicate
accent and stress, and therefore also as punctuation, which now generally only appear in Biblical and
liturgical texts, where they are used to indicate accent and intonation when a text is chanted.

Diacritical marks (such as the dagesh) and vowel points generally are drawn on different parts of a
letter, but either may be drawn on the same side of a letter as certain cantillation marks. The rules for
how the various marks are positioned relative to each other when multiple marks are attached to the
same letter can get rather complicated.

The Hebrew alphabet is not only used for Hebrew, but for a selection of other languages spoken by
the Jews of the Diaspora, especially Yiddish and Ladino. Certain letter-point combinations are more
common in these languages, and sometimes these languages add extra diacritical marks beyond those
used for Hebrew.

In addition, certain pairs of Hebrew letters are treated as distinct letters with their own phonetic
values, in a manner similar to the way the double l (ll) is treated as a separate letter having the “y”
sound in Spanish. In particular, there are three double-letter combinations—, , and —are used

in Yiddish and some other languages as additional letters. That is, in these languages, isn’t just

two s in a row, but a whole different letter.

 Scripts of the Middle East

194 Unicode Demystified

Like many of the other alphabets we’ve looked at, the letters of the Hebrew alphabet were once used
to write numbers as well (the system is a little more complicated than other alphabetical number
systems); today, the regular “Arabic” numerals are used, although the old alphabetic numering
system is still often used for item numbers in numbered lists. Modern Hebrew also uses European
punctuation now—the old native Hebrew punctuation’s use is restricted to Biblical and liturgical
texts.

The Hebrew block
The Unicode Hebrew block, which runs from U+0590 to U+05FF, contains all the marks necessary
to write Hebrew. In addition to the twenty-two basic letters, the word-final forms of the five letters
that have word-final forms are given their own separate code points. This seems to violate the normal
Unicode rule about not encoding glyphic variants, but is in keeping with the practice in other Hebrew
encodings. In fact, sometimes the word-final forms of these letters aren’t actually used at the ends of
words—this happens with many borrowed foreign words, for example. Because of this, the choice of
which form of the letter to use becomes a matter of spelling; you can’t have the rendering software
automatically pick the proper glyph.

The letters have the same relative ordering in Unicode as they do in the ISO Hebrew standard (ISO
8859-8), but the ISO standard doesn’t include the points.

The Unicode Hebrew block also includes all of the various points and cantillation marks, encoded as
combining marks. The dots that distinguish the two versions of are encoded in this block as well;
what they look like when attached to other letters isn’t defined by the standard; the standard
specifically calls this “an error.”

Unlike the Latin or Greek alphabets, where accented forms of letters are usually represented with
their own code point values, there are too many letter-mark combinations in Hebrew for this to be
feasible. The three letter pairs that are treated as separate letters in Yiddish are also given single code
points in the Hebrew block.

A few pointed Hebrew letters, mainly used in Yiddish, are encoded in the Alphabetic Presentation
Forms block (see Chapter 12), but pointed Hebrew letters are almost always represented using
combining character sequences, even in non-Unicode encodings, and these presentation forms are
rarely supported in software and fonts.

The Arabic Alphabet

The Arabic alphabet, like the Hebrew alphabet, evolved from the ancient Aramaic alphabet, but
developed quite a bit later: the first inscriptions using the Arabic alphabet date from the fourth
century AD.41 Unlike the Hebrew alphabet, the Arabic alphabet developed from a cursive form of the
Aramaic alphabet, where the letters are connected and words are written without lifting the pen. As
the letters became more connected, they also started to look more the same, eventually evolving into
fourteen families of similarly-shaped letters in a twenty-eight-letter alphabet. Marks used to
differentiate between letters with the same shape began to evolve somewhere around the seventh

41 My sources for this section are Thomas Bauer, “Arabic Writing,” in The World’s Writing Systems, pp. 559-

568, and Thomas Milo, “Creating Solutions for Arabic: A Case Study,” in Proceedings of the Seventeenth

International Unicode Conference, September 6, 2000, session TB3.

 The Arabic Alphabet

 A Practical Programmer’s Guide to the Encoding Standard 195

century; the patterns of dots used for this purpose today date to the ninth century. Even though they
look like diacritical marks, they’re not: they’re integral parts of the letters.

The Arabic alphabet has twenty-eight letters, as follows:

Like the Hebrew alphabet, the letters in the Arabic alphabet are all consonants, although three of
them do double duty as the long vowels. The short vowels (and occasionally the long vowels) aren’t
normally written, but when they are, they take the form of various marks that are written above and
below the normal sequence of consonantal letters. You generally only see the vowels in the Koran or
other liturgical texts, in teaching materials, in cases where the word might otherwise be misread, and
for decorative purposes in signs, titles, and calligraphy. There is also an elaborate system of
cantillation marks and other markings that are used exclusively in Koranic texts.

In addition to the vowel signs, there are a couple of other marks: the hamza () is used to indicate a

glottal stop, usually in combination with one of the long-vowel letters (for example, + produces).
Depending on the letters involved, the hamza can appear either above or below the letter it’s applied
to. The long vowels with the hamza are sometimes treated as different letters, since the presence or
absence of the hamza is often a matter of spelling.

More rarely, you’ll see the madda, a curved horizontal stroke, used with the letter alef, one of the
long vowels, to indicate a glottal stop followed by the vowel sound (, which is shorthand for).

Another mark, the shadda (), is used to mark something called “consonant gemination,” basically
the doubling of a consonant sound. (To understand consonant gemination, think about the way most
Americans say the word “fourteen”: most of us say “fort-teen,” pronouncing a distinct t at the end of
“fort” and another distinct t at the beginning of “teen,” rather than “for-teen.” The t is a geminated
consonant.)

In addition, two Arabic letters take special shapes under certain circumstances: sometimes these are
considered separate letters. The letter alef () is sometimes written as at the end of a word. This

form is called the alef maksura. It looks like the letter yeh (), except that it doesn’t have the dots

(the letter yeh also loses its dots, but keeps its identity, when it’s combined with the hamza:). The

letter teh () takes a special form () at the end of a word when it represents the feminine ending.
This is called the teh marbuta.

The Arabic alphabet is used for many languages besides Arabic: because of the importance of the
Koran in Islam, and the doctrine that the Koran (written in Arabic using Arabic letters) is eternal and
uncreated, the Arabic alphabet is used almost everywhere throughout the Muslim world. In some of
these places, they’ve also adopted the Arabic language, but in many, they’ve just adopted the Arabic
alphabet to write their own language. (This phenomenon, of course, isn’t unusual: the Latin alphabet
basically followed the influence of the Roman Catholic Church, the Greek and Cyrillic alphabets the
influence of the Greek Orthodox church, and the Hebrew alphabet followed the spread of Judaism.)
At one time, in fact, the Arabic alphabet was used everywhere in the Muslim world. The few places
where it isn’t now are the results of political forces (the Latin alphabet being imposed by the Ataturk
regime in Turkey, for example, or the Soviet Union imposing the Cyrillic alphabet on the Muslim
people within its borders).

 Scripts of the Middle East

196 Unicode Demystified

As with the other alphabets used for many different languages, many letters have been added to the
Arabic language to adapt it for other languages. These new letters tend to take the shapes of existing
Arabic letters. They wind up being differentiated in a number of ways: the use of dots or other marks,
the use of miniaturized versions of other letters as diacritics, differences in the way the letters join to
their neighbors, or variant shapes of the same letter in Arabic turning into distinct letters in some
other languages.

Perhaps the biggest thing that sets the Arabic alphabet apart from the alphabets we’ve looked at so
far is its cursive nature: generally speaking, the letters in a word all connect to their neighbors,
turning a single word into one continuous pen stroke (often with dots and other marks around it),
much like in standard handwritten English. Much more than in handwritten English, however, the
letters change shape greatly depending on the letters around them.

The flowing nature and high elasticity of the letters of the Arabic alphabet mean that it lends itself
particularly well to calligraphy. Because depictions of people and animals aren’t allowed inside
Muslim mosques, calligraphy has long been the primary form of Muslim religious art, and Arabic
calligraphy can be extraordinarily beautiful. Many different calligraphic styles have been developed
for writing Arabic.

One thing they all have in common is that a letter tends to join to the letter that follows it either on
the left-hand side or on the bottom. In handwritten Arabic, individual words tend to slope down and
to the left, frequently overlapping the words on either side42:

This means that in handwritten Arabic, spaces between words aren’t really necessary. It also makes
printing Arabic quite difficult and involved.

It also means that when Arabic text is justified against both margins, extra space on the line isn’t
taken up by widening the spaces between words, as it is in the other languages we’ve looked at so far.
Instead, words can be elongated or shortened by using different forms of the various letters, or by
inserting extenders called kashidas or tatweels, such as the long one in the example above.

The various ways that the letters can combine can also make it a fairly complicated affair to
determine where the dots, vowels and other marks that may accompany the letters go43:

In modern times, simplified versions of the Arabic alphabet that are easier to print have developed.
Most modern printed Arabic, especially that generated using computers, uses a simplified version of

42 This example is taken from the Milo paper cited above, section 2, p. 10.
43 Ibid.

 The Arabic Alphabet

 A Practical Programmer’s Guide to the Encoding Standard 197

the Arabic alphabet that gives each letter up to four shapes. The four shapes are designed so that all
the letters connect along a common baseline. Because the baseline is horizontal rather than slanted,
spaces are used between words.

For example, the letter heh look like this by itself:

But three of them in a row look like this:

Likewise, the letter sheen looks like this when it stands alone:

But the long bowl on the left goes away when it connects with a neighboring letter. Three sheens in a
row look like this:

��

(This is a good example, by the way, of how some sequences of Arabic letters can just turn into
wiggly lines without the dots there to help discern the letters—in handwritten or better printed
Arabic, the shapes of the various humps can vary to help differentiate the letters, but this distinction
is lost in simplified printed Arabic.)

The four letter shapes are usually called initial, medial, final, and independent, but these names are
somewhat misleading. They tend to suggest that the initial and final forms are used only at the
beginning and ends of words, with the medial form used elsewhere and the independent form used
only in one-letter words and when talking about a letter by itself. However, some letters don’t have
all four forms, leading to breaks in the middle of a word. The letter alef (), for example, doesn’t con-
nect to the letter that follows it, so the initial form, rather than the medial form, of a letter is used
when it follows alef. For example, despite the breaks in the line, this is all one word:

��� �

Even in simplified Arabic, there are a couple of special cases. The letter lam () and the letter alef ()
would look like this if their normal initial and final forms were used:

But they don’t actually join that way. Instead of forming a U shape, the two vertical strokes actually
cross each other, forming a loop at the bottom like this:

 Scripts of the Middle East

198 Unicode Demystified

If the lam is joined to another character on its right, however, you don’t get the loop, however. Still,
instead of forming a U shape, you get a somewhat more zigzaggy form like this:

These two combinations are often called the lam-alef ligatures, and are required, even in simplified
Arabic printing. The U shape never happens.

In simplified Arabic printing, the kashida, normally a curved line, becomes a straight line, in order to
harmonize better with the letters that surround it.

This style of Arabic printing loses some of the grace and legibility of the more traditional forms44…

…but it’s still completely legible to Arabic speakers, and a lot simpler to deal with in computerized
or mechanized systems. Even in languages such as Urdu and Farsi that have traditionally used the
more ornate Nastaliq form of the Arabic alphabet, the simplified letterforms are often used today.

At least in some places, unlike the other alphabets we’ve looked at so far, Arabic doesn’t use the so-
called Arabic numerals (“1234567890”). Instead, real Arabic numerals (the Arabs call these “Hindi
numerals,” since they originated in India, even though the Indian forms are different yet again) look
like this:

� � � � � � � � �

Interestingly, even though Arabic writing runs from right to left, numbers, even when written with the
native Arabic numerals, run from left to right. 1,234.56 looks like this:

44 This example is also from the Milo paper, section 2, p. 5.

 The Arabic Alphabet

 A Practical Programmer’s Guide to the Encoding Standard 199

There are actually two forms of native Arabic digits. The following forms are used in Urdu and Farsi:

� � � � � � � � �

The Arabic block
The Unicode Arabic block, which runs from U+0600 to U+06FF, is based on the international
standard Arabic encoding, ISO 8859-6, which is in turn based on the an encoding developed by the
Arab Organization for Standardization and Metrology (or “ASMO” for short). The characters they
have in common have the same relative positions in both encodings. A couple of the long vowels
with the hamza and madda are encoded as precomposed forms, but the hamza and madda, as well as
the vowel marks, are encoded as combining marks. The normal Arabic usage, like the normal
Hebrew usage, is to use combining character sequences to represent the marked letters. Not counting
the marked forms, each letter has a single code point—it’s up to the text rendering process to decide
what glyph to draw for each letter. The teh marbuta and alef maksura, whose use is a matter of
spelling and are therefore not mere contextual forms, get their own code points. The kashida also
gets a code point, although you should generally rely on the rendering software to insert kashidas,
rather than putting them into the encoded text.

Although Arabic punctuation is generally unified with the normal Latin punctuation marks, some of
them have such different shapes in Arabic that they’re given their own code points in this block. This
block also contains two complete series of Arabic digits: one set for the versions used with Arabic
and one set for the versions used with Urdu and Farsi. Even though some of the digits have the same
shape, Unicode provides two complete series of digits to simplify number formatting algorithms (the
algorithms that convert numeric values to their textual representations).

Unicode rounds out the Arabic block with a selection of Koranic annotation marks and a wide
selection of additional letters and punctuation marks used to write various non-Arabic languages
using the Arabic alphabet. The Unicode standard doesn’t give a complete list of supported languages,
but they include Adighe, Baluchi, Berber, Dargwa, Hausa, Kashmiri, Kazakh, Kirghiz, Kurdish,
Lahnda, Malay, Pashto, Persian (Farsi), Sindhi, Uighur, and Urdu.

Joiners and non-joiners
There are two special Unicode characters that deserve special mention here: U+200C ZERO WIDTH
NON-JOINER and U+200D ZERO WIDTH JOINER. Like the directionality-control characters we
looked at earlier in this chapter, these characters are invisible and they’re transparent to most
processes that operate on Unicode text. They’re used for one and only one thing: they control cursive
joining. The zero-width non-joiner breaks the cursive connection between two letters that would
otherwise connect. In other words…

U+0644 ARABIC LETTER LAM

U+0647 ARABIC LETTER HEH

U+062C ARABIC LETTER JEEM

…look like this…

 Scripts of the Middle East

200 Unicode Demystified

�

…but if you add in the non-joiner…

U+0644 ARABIC LETTER LAM

U+200C ZERO WIDTH NON-JOINER

U+0647 ARABIC LETTER HEH

U+200C ZERO WIDTH NON-JOINER

U+062C ARABIC LETTER JEEM

…the letters break apart, giving you this:

This is useful not only for putting together examples in books like this, but has real uses in some
languages. In Farsi, for example, the plural suffix isn’t connected to the word it modifies.

The zero-width joiner does the opposite thing: it forces a cursive connection where one wouldn’t
normally occur. In other words, if you take…

U+0647 ARABIC LETTER HEH

…which normally looks like this by itself…

…and put a zero-width joiner on each side, you get the medial form:

The zero-width joiner and non-joiner can be used together to break up a ligature without breaking up
a cursive connection. For example,

U+0644 ARABIC LETTER LAM

U+0627 ARABIC LETTER ALEF

normally looks like this:

If you stick the zero-width non-joiner between them…

U+0644 ARABIC LETTER LAM

U+200C ZERO WIDTH NON-JOINER

U+0627 ARABIC LETTER ALEF

…it breaks up both the ligature and the cursive connection:

 The Arabic Alphabet

 A Practical Programmer’s Guide to the Encoding Standard 201

If you actually wanted the letters to connect but not form the ligature (say, to produce the example
above of how these two letters don’t connect), you’d surround the non-joiner with joiners:

U+0644 ARABIC LETTER LAM

U+200D ZERO WIDTH JOINER

U+200C ZERO WIDTH NON-JOINER

U+200D ZERO WIDTH JOINER

U+0627 ARABIC LETTER ALEF

The joiner next to each letter causes the letter to take its cursively connecting form, but since the
letters aren’t next to each other anymore, they don’t form the ligature. That gives you this:

The Arabic Presentation Forms B block
The Arabic Presentation Forms B block, which runs from U+FE70 to U+FEFE, includes codes for
the contextual forms of the Arabic letters used in simplified Arabic printing. That is, there are
separate code-point values for the initial, medial, final, and independent forms of the letter beh, for
example. There are also code points representing the various forms of the lam-alef ligature.

With a font that includes the glyphs for all of these code points, a system can implement a
rudimentary form of Arabic cursive joining: the system can map the canonical versions of the Arabic
letters from the main Arabic block to the glyphs using these code-point values.

The algorithm is a little more complicated than just mapping to the initial-form glyph when the
letter’s at the beginning of the word, the final-form glyph when the letter’s at the end, and so on. This
is because of the letters that never join on certain sides, such as alef, which never connects to the
letter that follows it. The Unicode standard classifies all the Arabic letters into categories based on
whether they only connect with letters on the left (left-joining), whether they only with letters on the
right (right-joining), whether they connect with letters on both sides (dual-joining), or don’t connect
with anything (non-joining). The glyph-selection algorithm can use these categories to help figure out
which glyphs to use: For example, if a dual-joining letter is preceded by a left-joining or dual-joining
letter and followed by a right-joining or dual-joining letter, you’d use the medial-form glyph to
represent it. But if a dual-joining letter is preceded by a left-joining or dual-joining letter, but
followed by a left-joining letter, you’d use the final form. For example, consider our earlier example:

�

All three letters are dual-joining letters. Since the letter heh in the middle, a dual-joining letter, is
flanked by two dual-joining letters, we use the medial form to represent it. (Lam is a dual-joining
letter, but we use the initial form because it’s only got a letter on one side. We use the final form of
jeem for the same reason.)

But if you were to substitute alef for lam, you get this:

 Scripts of the Middle East

202 Unicode Demystified

Alef is a right-joining letter, which means we use the initial form of heh instead of the medial form.
And since alef doesn’t have a letter on its right-hand side, we use the independent form of alef.

The ArabicShaping.txt file in the Unicode Character Database contains the classifications of the
letters that enable this algorithm to work right. Simple Arabic cursive shaping is discussed in more
detail in Chapter 16.

The Arabic Presentation Forms A block
The Arabic Presentation Forms A block, which runs from U+FC00 to U+FDFF, contains a bunch of
Arabic ligatures, that is, single code points representing various combinations of two or three Arabic
letters, as well as a bunch of contextual forms of letter-diacritic combinations and a couple phrase
ligatures (entire phrases encoded as single glyphs with single code points). These are here for
compatibility with some existing systems, but are very rarely used. The basic idea is to produce more
authentic-looking Arabic rendering by providing a wider selection of glyphs than you get with the
normal four contextual forms of each letter. Because of the fluidity of the Arabic alphabet, however,
a ligature-based approach doesn’t work all that well: the number of ligatures necessary to draw things
right can get huge really quickly, as each letter’s shape potentially depends on the shapes of the
letters on each side, something you can’t really do at the ligature boundaries. Depending on the
design of a font, some of the ligatures might be relevant, but there’s probably no single font for which
they’d all be relevant. Generally, fonts that do something more than the simple Arabic shaping
described in the preceding section don’t use the code points in the Arabic Presentation Forms A
block—they use internal glyph codes that don’t correspond to Unicode code points.

Two characters in this block, however—U+FD3E ORNATE LEFT PARENTHESIS and U+FD3F
ORNATE RIGHT PARENTHESIS—are not compatibility characters. As their names suggest, they
represent more ornate parentheses that are sometimes used in Arabic as alternatives to the regular
parentheses.

The Syriac Alphabet

The Syriac language is a member of the Aramaic family of languages that is spoken by a variety of
minority communities—mostly Christian—throughout the Middle East.45 It’s the principal liturgical
language, and also serves as the vernacular for many members of these communities. Its alphabet is
also used to write modern Aramaic, and many Syriac-speaking communities also use the Syriac
alphabet for writing other languages, particularly Arabic (Arabic written using the Syriac alphabet is
called Garshuni.) A theological schism among the Syrian Christians in the fifth century led to a
bifurcation of the language: there are two dialects of Syriac, Eastern and Western, and the Eastern
and Western communities have different, though related, writing styles.

The origins of the Syriac alphabet are unclear, but it clearly belongs to the same family of scripts that
include the Arabic and Hebrew alphabets. The alphabet has the same twenty-two letters as the

45 My sources for the section on Syriac are Peter T. Daniels and Robert D. Hoberman, “Aramaic Scripts for

Aramaic Languages,” in The World’s Writing Systems, pp. 499-510, and the very detailed linguistic and

historical information in the Syriac block description of the Unicode standard itself, pp. 199-205.

 The Syriac Alphabet

 A Practical Programmer’s Guide to the Encoding Standard 203

Hebrew alphabet, and many of these letters have very similar forms to the forms they have in
Hebrew, although Syriac letters are connected like Arabic letters. Like Hebrew and Arabic, Syriac is
written from right to left. The oldest dated manuscript using the Syriac alphabet dates from AD 411.

Again, owing to the split between the Syrian Christian communities, there are several different styles
of the Syriac alphabet, and the shapes of many of the letters vary significantly between the styles. The
oldest style is the Estrangelo. The twenty-two letters of the alphabet look like this in the Estrangelo
style:

After the split, the styles diverged into the Serto…

� �

…and the Nestorian:

� �

Today all three type styles are used in both the Eastern and Western communities, although certain
type styles continue to be favored by various communities.

As with the Arabic and Hebrew alphabets, the letters are all consonants, although several do double
duty as vowels in certain contexts. As with Arabic, some of the letterforms are similar enough that
the practice of using dots in various places to differentiate them developed early on.

Like Arabic and Hebrew, fully-vocalized text is represented by supplementing the basic consonantal
writing with various types of vowel points. Unlike Arabic and Hebrew, however, it’s more common,
especially in modern Aramaic, for the points to be included than omitted.

Again because of the split in the Syrian Christian communities, there are two different systems of
vowel points. The older of the two uses dots in various places to indicate the vowel sounds, and this
system is still used exclusively in Eastern Syriac texts. The more recent system, attributed to Jacob of
Edessa, uses marks based on the shapes of the Greek vowels. Western Syriac texts use a combination
of this pointing system and the earlier version used by the Eastern communities. In addition,
Garshuni uses the Arabic vowel signs instead of the Syriac ones. There is also a very complicated
system of additional diacritical marks that are used with Syriac letters to mark various pronunciation
and grammatical differences.

Historical Syriac scripts have a unique system of punctuation, but in modern Syriac and Aramaic
texts, the punctuation marks used with Arabic are generally used. As with most other alphabets,
numbers were historically written using the letters of the alphabet—when sequences of letters were
used as numerals, they were marked with a barbell-shaped line above them46:

46 This example is ripped off from the Unicode standard, p. 200.

 Scripts of the Middle East

204 Unicode Demystified

This mark is still sometimes used to mark abbreviations and contractions. In modern texts, the
European digits are now used for numbers, just as they are with the Hebrew alphabet.

Syriac writing, like Arabic writing, is written cursively, with the letters connected together and spaces
between the words. Properly rendering cursive Syriac shares many of the problems of properly
rendering cursive Arabic, but systems can do a credible job using a system much like that frequently
used to render Arabic: each letter has up to four glyphs, and the selection of a glyph depends on
whether the letter joins to the letter preceding it, the letter following it, both, or neither. As with the
Arabic alphabet, the Syriac alphabet contains a number of letters that only join to the letter that
precedes them, meaning that a glyph-selection algorithm has to make use of the same types of
combining classes that are used with simple Arabic rendering schemes. The Syriac letter alaph
actually has five contextual glyph forms, so the rules for Syriac are a little more complicated. There is
also a set of obligatory ligatures similar to the lam-alef ligatures in Arabic, but the actual set depends
on the type style.

The Syriac block
The Unicode Syriac block runs from U+0700 to U+074F. The type styles all use the same basic
letters, so the letters are encoded once and you get one type style or another by selecting different
fonts. Since both the dot and the Greek-letter forms of the vowel points are used together in Western
Syriac texts, they’re encoded separately in this block, rather than being unified.

There are a few extra letters beyond the basic twenty-two. These include a few letters used in

Garshuni, two variant forms of the letter semkath (and) that are used in the same texts in

different spelling situations, a ligature that’s treated like a separate letter in some languages, and a

special letter with ambiguous semantics. The letters dalath and rish (�and) differ only in the

placement of the dot. Some early manuscripts don’t use the dot and thus don’t differentiate between

these two letters, so Unicode includes a code point value that looks like this () that can be used for

either letter.

The Syriac block also includes a wide selection of additional diacritical marks used with Syriac. A
bunch of Syriac diacritical marks are unified with the general-purpose marks in the Combining
Diacritical marks block; the Unicode standard gives a complete table of the marks from this block
that are used with Syriac.

The Syriac block also includes the historical punctuation marks used with Syriac. The modern
punctuation marks are unified with those in the Arabic and Latin blocks.

The Syriac block also includes a special invisible formatting character: the Syriac Abbreviation
Mark. This character is used to represent the barbell-shaped mark that’s used to mark numbers and
abbreviations. It has no visual presentation of its own and is transparent to all text-processing
algorithms, but marks the starting point of the abbreviation bar. The Syriac Abbreviation Mark
precedes the first character that goes under the abbreviation bar, and the abbreviation bar extends
from there to the end of the word. For example,

 The Syriac Alphabet

 A Practical Programmer’s Guide to the Encoding Standard 205

…which means “on the 15th,” (the bar is over the two letters being used as the digits in “15”)47, is
represented like this:

U+0712 SYRIAC LETTER BETH

U+070F SYRIAC ABBREVIATION MARK

U+071D SYRIAC LETTER YUDH

U+0717 SYRIAC LETTER HE

The basic cursive-joining algorithm used with Syriac is essentially the same as the one used with
Arabic, with a few modifications to deal with various Syriac peculiarities (for example, the letter

alaph () has five contextual forms instead of four). The ArabicShaping.txt file in the Unicode

Character Database includes joining-class designations for all the Syriac letters. The Unicode
standard also gives a table of ligatures used with the various Syriac type styles.

Unicode doesn’t include compatibility code-point values representing the various glyph shapes of the
Syriac letters as it does with Arabic. This means a simple Syriac shaping mechanism (one that
doesn’t use the facilities in the advanced font technologies) would have to assign the various
contextual forms to Private Use code points.

47 This example also comes from the Unicode standard, p. 200.

The Thaana Script

 Scripts of the Middle East

206 Unicode Demystified

Thaana is the name of the alphabet used to write Dhivehi, the language of the Republic of the
Maldives, a group of islands in the Indian Ocean south of India.48 Dhivehi is related to Sinhala,
and the oldest examples of written Dhivehi, dating from around 1200, are written in a script called
Evela, based on the Sinhala script of the time (for more on Sinhala, see Chapter 9). The current
script, the Gabuli Tana, or simply “Thaana,” developed in the seventeenth century under the
influence of the Arabic alphabet. The alphabet has twenty-four letters:

� �

Interestingly, the first nine letters of the alphabet derive not from the Arabic letters, but from the
Arabic numerals, with the next nine deriving from the Telugu numerals (see Chapter 9). The last
six letters evolved out of Arabic letters.

The Thaana script is written from right to left, like Arabic, Hebrew, and Syriac. Like Hebrew, the
letters aren’t cursively connected. Spaces are used between words. Like Arabic and Hebrew, the
letters represent consonants, with vowels (or the absence thereof) represented through the use of
diacritical marks written above or below the letters. There are ten vowel signs, or fili, here shown

on the second letter of the alphabet, shaviani ():

� � � � � � � � � �

In addition, there’s an eleventh “vowel sign,” the sukun, that represents the absence of a vowel:

�

One of the letters, alifu (), similarly represents the absence of a consonant sound, and is used as
the base letter for word-initial vowels and vowels that follow other vowels. (Interestingly, this
letter isn’t the first letter in the alphabet, like the corresponding letter in the other three alphabets

we’ve looked at in this chapter). Alifu with sukun ()—that is, the null consonant with the null
vowel attached to it—is used to represent the glottal stop.

Unlike in Arabic and Hebrew, the vowel marks are compulsory: you never see Thaana writing
without the vowel signs.

In addition to the basic alphabet, there are fourteen extra letters, all based on the regular letters
with extra dots attached, that are used for writing Arabic loanwords. There’s a history of writing
Arabic loanwords using the Arabic alphabet, but this practice is beginning to die out.

Numbers in Thaana are written using either European or native Arabic numerals, with European
numerals being somewhat more common. The Arabic decimal-point and thousands-separator
characters are used in numerals regardless of whether European or Arabic digits are used.

48 My source for the section on Thaana is James W. Gair and Bruce D. Cain, “Dhivehi Writing,” in The

World’s Writing Systems, pp. 564-568, supplemented with a couple tidbits from Nakanishi, pp. 38-39.

 The Thaana Script

 A Practical Programmer’s Guide to the Encoding Standard 207

The same punctuation is used with Thaana now as is used with Arabic, although there’s an older
practice of using a period where we’d normally expect a comma (between phrases) and two
periods where we’d use one period (at the end of a sentence).

The Thaana block
The Unicode Thaana block extends from U+0780 to U+07BF. It includes the basic twenty-four
letters, the additional fourteen letters used for Arabic, the ten fili, and the sukun. Thaana
punctuation is unified with the punctuation marks in the Arabic and Latin blocks, and Thaana also
uses the digits from the ASCII or Arabic blocks.

 209

CHAPTER 9 Scripts of India and Southeast
Asia

[Compositor: I had a lot of trouble getting the examples into this chapter, and a bunch of them
are still missing. I don’t have a font for Sinhala, and I don’t have software that can correctly
render the contextual forms in some of the other scripts. For many of the scripts, the font’s
okay (at least for some things), but Word 2000 has a bug that prevents correct rendering: you
get weird spacing behavior: combining marks show up after, rather than on top of, the
characters they combine with, there’s extra space after Indic syllables or some individual
characters, and sometimes (especially in Tamil) there isn’t enough space and I had to insert
extra spaces to keep things from colliding. Most of these problems are said to be fixed in Office
XP (at least when it’s running on Windows XP, but I haven’t had the money or time to
upgrade. There are also a few cases where I had to switch fonts for the same script because the
font I was using didn’t form the combinations I was looking for.

I’ve placed red notes in the text indicating what’s wrong with the corresponding examples.
Please work with me to figure out how to do these.]

In this chapter, we’ll look at the third major group of writing systems, usually referred to as the
“Indic” group. This is the biggest single group of scripts in Unicode, comprising a whopping
nineteen scripts. Fortunately, they have a lot in common.

 Scripts of India and Southeast Asia

210 Unicode Demystified

The geographic area covered by the Indic scripts extends from Pakistan in the west all the way east to
Cambodia and Laos, and from Tibet in the north to Sri Lanka in the south.49 Several different
language groups are represented in this area, although the writing systems are all related.

Just as the European alphabetic scripts are all more or less descended from Greek and the Middle
Eastern bidirectional scripts are all more or less descended from Aramaic, the Indic scripts are all
derived from the ancient Brahmi script, which dates from the middle of the third century. In the
succeeding centuries, it spread across most of southern Asia, gradually developing different forms as
it spread. The Brahmi script is said to have spawned over 200 different scripts. The fifteen scripts we
look at here were more or less frozen into place as printing caught on in India in the eighteenth and
nineteenth centuries.

The origins of the Brahmi script are rather unclear. There are schools of thought that say it developed
from the early Semitic scripts, probably Phoenician or Aramaic, and schools of thought that say it
was an indigenous Indian development. Although there isn’t totally conclusive evidence, there seems
to be considerable circumstantial evidence that Brahmi did indeed evolve in some way or another
from a Semitic source, probably Aramaic, although the Indic scripts and the Middle Eastern scripts
are pretty distant cousins now.

The diversity of scripts in South Asia seems to stem at least in part from the desire of the different
ethnic groups to differentiate themselves from one another, particularly within India, in the absence
of either international boundaries or major geographical features to separate them. A language, and
thus the people who spoke it, was considered “major” if it had its own writing system. The religions
predominant in this part of the world were (with some important exceptions) much more heavily
dependent on oral tradition than on written tradition, the opposite of the religious groups in the other
parts of the world, meaning that the imperative to keep a writing system stable so that its scriptures
remain legible and have an unambiguous interpretation wasn’t really there to countervail this
tendency to diversify the scripts.

Perhaps the most interesting example of diversification of scripts is the issue of Hindi and Urdu.
Urdu, the main language of Pakistan, is written using the Arabic alphabet (see Chapter 8). Hindi, one
of the main languages of India and a very close cousin of Urdu, is written using the Devanagari
script, which we’ll look at in this chapter. In fact, Hindi and Urdu are so closely related that the
difference in scripts is one of the main things that differentiates them.

Instead of literature and religion being the main things that drove the development of writing in this
part of the world, administration and commerce seem to have been (although the scholars, priests,
and literati were quick to take advantage as well). Even today, the bias in much of South Asia is
toward spoken rather than written communication.

This chapter covers nineteen scripts from the Indic family:

x� Devanagari, used for classical Sanskrit and modern Hindi, Marathi, and Nepali, plus a lot of less-
common languages, is used in most of northern India and in Nepal.

x� Bengali, used for writing Bengali, Assamese, and a number of less-prevalent languages, is used in
eastern India and Bangladesh.

49 My sources for the information in this introductory section are Colin P. Masica, “South Asia: Coexistence of

Scripts,” in The World’s Writing Systems, pp. 773-776; Richard G. Salomon, “Brahmi and Kharoshthi” and

the accompanying section heading, op. cit., pp. 371-383; the introduction to Chapter 9 of the Unicode

standard, pp. 209-210; and a few bits from Nakanishi, pp. 45-47.

 Devanagari

 A Practical Programmer’s Guide to the Encoding Standard 211

x� Gurmukhi is used for writing the Punjabi language spoken in the Punjab in northern India.

x� Gujarati is used for writing Gujarati, the language of Gujarat in western India.

x� Oriya is used to writing Oriya, the language of Orissa in eastern India.

x� Tamil is used to write Tamil, spoken in southern India and Singapore.

x� Telugu is used to write Telugu, spoken in southern India.

x� Kannada is used to write Kannada (or Kanarese), also spoken in southern India.

x� Malayalam is used to write Malayalam, spoken in Kerala in southern India.

x� Sinhala is used to write Sinhala (or Sinhalese), the main language of Sri Lanka.

x� Thai is used to write Thai, the language of Thailand.

x� Lao is used to write Lao, the language of Laos.

x� Khmer is used to write Cambodian, the language of Cambodia.

x� Myanmar is used to write Burmese, the language of Burma.

x� Tibetan is used to write Tibetan, the language of Tibet and Bhutan.

x� Tagalog isn’t used anymore, but was once used to write the Tagalog language spoken in the
Philippines, as wells as a few other Philippine languages.

x� Hanunóo is used to write the language of the Hanunóo people on the island of Mindoro in the
Philippines.

x� Buhid is used to write the language of the Buhid people on the island of Mindoro in the
Philippines.

x� Tagbanwa is used to write the language of the Tagbanwa people on the island of Palawan in the
Philippines.

There’s a fair amount of variation in the Indic scripts, but they generally share a number of important
characteristics:

x� All are written from left to right.

x� All are uncased: The letters of each only come in one flavor.

x� Most, but not all, use spaces between words.

x� Each script has its own set of numerals.

x� All of these writing systems are somewhere between alphabetic and syllabic. A single “character”
represents a whole syllable, but it has constituent parts that consistently represent the same
phonemes from syllable to syllable.

The system is related to that used for the Middle Eastern languages. You have a basic character
representing the combination of a consonant sound and a basic vowel sound. You change the
vowel sound by attaching various marks to the basic character. If a syllable has more than one
initial consonant, the basic characters for the consonant sounds involved usually combine together
into something called a conjunct consonant. (Sometimes the basic consonant shapes don’t
combine, but instead a mark called a virama, or “killer,” is attached to the first one to indicate the
absence of the basic vowel sound.)

Without further ado, we’ll delve into the characteristics of the individual scripts. In the section on
Devanagari, we’ll explore in detail just how this formation of syllable clusters works, and then we’ll
highlight only the differences between Devanagari and the other scripts in the subsequent sections.

 Scripts of India and Southeast Asia

212 Unicode Demystified

Devanagari

The Nagari or Devanagari script (pronounced “deh-vuh-NAH-guh-ree,” not “duh-vah-nuh-GAH-
ree”) is used across a wide swath of northern and western India and Nepal.50 It’s used to write
classical Sanskrit and modern Hindi, Marathi, and Nepali, as well as a large number of less-common
languages (the Unicode standard lists Awadhi, Bagheli, Bhatneri, Bhili, Bihari, Braj Bhasha,
Chhattisgarhi, Garhwali, Gondi, Harauti, Ho, Jaipuri, Kachchhi, Kanauji, Konkani, Kului, Kuamoni,
Kurku, Kurukh, Marwari, Mundari, Newari, Palpa, and Santali). It developed from the northern
variety of the Brahmi script and reached its current form somewhere around the twelfth century.

Devanagari, like the other writing systems in this chapter, is basically phonetic, with some kind of
mark for each sound, but they can combine in complex and interesting ways. The word purti [find
out what this means], for example, looks like this51:

The box marked “1” in the figure surrounds the “p,” the “2” marks the “u,” “3” and “4” together
mark the “r” (we’ll see later why there are two numbers on this mark), “5” marks the “t,” and “6”
marks the “i.”

The best way to think about Devanagari writing is to understand it as consisting of clusters of
characters, each cluster representing a vowel sound, optionally preceded by a sequence of consonant
sounds (the Unicode standard refers to these clusters as “orthographic syllables”). A cluster can be
thought of as roughly analogous to a syllable, but they don’t correspond exactly: a consonant sound
that’s spoken at the end of a syllable is actually written at the beginning of the cluster representing
the next syllable. An Indic orthographic syllable is one kind of grapheme cluster, according to
Unicode 3.2.

Devanagari includes thirty-four basic consonant characters:

� � � � �

� � � � �

50 Most of this material is taken directly from chapter 9 of the Unicode standard, pp. 211- 223, but some is

taken from William Bright, “The Devanagari Script,” in The World’s Writing Systems, pp. 384-390, and

from Nakanishi, pp. 48-49.
51 The picture is taken from the Unicode standard, p. 14.

 Devanagari

 A Practical Programmer’s Guide to the Encoding Standard 213

� � � � �

� � � � �

� � � � �

� � � �

� � �

�

Every character has a horizontal line, called the headstroke, running across the top, and the character
basically “hangs” from the headstroke. The headstrokes of the letters in a word all connect together
into a single horizontal line. Indians, when they’re writing on lined paper, use the lines of the paper
as the headstrokes of the letters (when writing quickly on lined paper, they often leave the
headstrokes off the letters altogether). Each consonant also has a vertical stroke on the right-hand
side (or sometimes in the center) that marks the core of the syllable. This is called the stem.

One interesting consequence of the connected headstrokes is that the “baseline” of Devanagari
writing is the headstroke. Text of different point sizes is lined up so the headstrokes all connect:

[insert example]

When Devanagari is combined on the same line of text as Latin, or text in some other writing system
where the baseline is under the characters, the text-rendering process (or the user) has to do some
interesting adjustments to make the line come out looking good, especially if the point sizes on the
line vary.

Unlike all of the other writing systems we’ve looked at so far, however, these symbols don’t merely
represent consonant sounds. Instead, they’re said to carry an inherent vowel sound; in other words,
they represent syllables. In Devanagari, the inherent vowel is a, so this symbol…

…represents the syllable ka. (This is actually pronounced closer to “kuh.”)

You change the vowel by adding an extra sign to the consonant symbol called a dependent vowel.
Although some of the dependent vowels look more like letters, they basically behave more like
diacritical marks. Some dependent vowels attach to the right-hand side of the consonant and just look
like “the next letter” in the character stream, but one attaches to the left-hand side, giving the
appearance that the characters have reordered from the order in which they were typed. There are
several dependent vowel signs that attach to the bottom of the consonant and several more that attach
to the top, and some of the vowels that appear to one side of the consonant also overhang it on top.

There are fourteen dependent vowel signs, here shown attached to the letter ka:

 Scripts of India and Southeast Asia

214 Unicode Demystified

� � � � � � � � � � � �

� � �

The sound of the dependent vowel replaces the consonant’s inherent vowel sound. For example, ka
plus i gives you ki:

��� � �

There are also fourteen independent vowel characters. The dependent vowel signs are basically
abbreviated forms of the independent vowels. The independent vowels are used for vowel sounds
that occur at the beginnings of words or follow other vowel sounds:

Independent vowels: � � � � � � � � � � � � � � �

Dependent vowels: � � � � � � � � � � � � � �

You can also cancel the consonant’s inherent vowel sound by adding a mark called a virama. Thus,
this represents the sound k by itself:

�

Thus, if you just write the characters sa and ta next to each other, like this…

[the headstrokes of these characters should touch]

…you get “sata.” But if you put a virama on the sa…

�

…you get sta.

Actually, you don’t see the virama a lot, however. This is because when two consonants appear next
to each other without an intervening vowel sound, they usually combine to form something called a
conjunct consonant. The virama does show up on the character representing the final consonant in
words that end with a consonant sound (actually, Hindi spelling isn’t always phonetic: often, the
word is spelled as though it ends with a consonant’s inherent vowel, but the inherent vowel sound
isn’t actually spoken.)

The exact form a conjunct consonant takes depends on which consonants are joining together.
Sometimes they stack on top of each other:

 Devanagari

 A Practical Programmer’s Guide to the Encoding Standard 215

 + =

Often the first consonant (the one without the vowel, often referred to as the “dead” consonant) loses
the stem and attaches to the next consonant, as in our “sta” example:

 + = + = �[these characters should connect]

The consonant symbol without its stem is called a half-form.

Sometimes, the two characters combine into a whole new glyph that doesn’t obviously resemble
either of the characters that make it up:

 + =

The character , representing the r sound, combines with other consonants in even more exotic

ways. When the r is the first sound in a conjunct consonant, it appears as a hook on top of the second
character, above the syllable’s stem:

 + = �[

This hook is called a repha.

When the r is the second sound in a conjunct consonant, it appears as a chevron underneath the
second character:

 + = �

Sometimes, the chevron representing the r sound combines graphically with the character it’s
supposed to appear under:

 + =

Sometimes, also combines with a dependent vowel attached to it:

 + =

 + =

 Scripts of India and Southeast Asia

216 Unicode Demystified

More complex combinations can also occur. If three consonant sounds occur in a row, you might
have two half-form consonants preceding the main consonant:

 + + = + + = èÈ�

If the first two characters in the conjunct consonant would normally form a ligature, that ligature may
turn into a half-form that combines with the third character:

 + + = + = + = ê� �

And sometimes, all three characters will form a ligature:

 + + = + =

There’s also one case of a nonstandard half-form. The half-form of sometimes looks like this: .

This is called the “eyelash ra”:

 + = + = [these glyphs should connect]

When a conjunct consonant combines with a dependent vowel, there are also strict rules for where
the dependent vowel goes. If it attaches to the top or bottom of the consonant, it goes over or under
the syllable’s stem:

�fi˜ =

If the dependent vowel attaches to the left-hand side of the consonant, it attaches to the extreme left
of the conjunct consonant:

�+ � ˜

This can get a little weird when, for example, you have a top-joining vowel sign attaching to a
conjunct consonant with a repha:

�[�fi˜ = �

Most of the above examples are taken directly out of Chapter 9 of the Unicode standard, which gives
a rigorous set of minimal rendering rules for Devanagari that cover all of the things we’ve looked at
above.

 Devanagari

 A Practical Programmer’s Guide to the Encoding Standard 217

Exactly which conjunct consonant forms you get when—that is, whether you use a ligature, a half-
form, or just the nominal forms with viramas—depends on various factors, such as language,
spelling, and font design. Depending on these things, you might see “kssa” look like this…

�

…or this…

[again, these glyphs should connect]

…or this…

� [yet again, these glyphs should connect]

…and any of these is correct based on the rules of the script. The choice is purely one of font design.

There are a few marks that are used with the Devanagari characters. The nukta, a dot below the basic
character, is used to modify the sounds of some of the consonants, widening the available selection of

sounds that can be represented to cover all the sounds in modern Hindi. The candrabindu () and

anusvara () are used to indicate nasalization. The visarga () represents the h sound.

Two punctuation marks are used with traditional texts: the danda (), which functions more or less

like a period, and the double danda (), which marks the end of a stanza in traditional texts. With

modern texts, European punctuation is usually used.

As with all of the Indic writing systems, there is a distinctive set of digits used for writing numbers:

� � � � � � � � � �

The Devanagari block
The Unicode Devanagari block runs from U+0900 to U+097F. It’s based on the Indian national
standard, ISCII (the Indian Script Code for Information Interchange). The ISCII standard includes
separate encodings for Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
and Malayalam, switching between them with escape sequences. All of these encodings share the
same structure, just as the various scripts do. The same code point value in each code page represents
the same basic sound: for example, the value 0xB3 represents the character for ka in each of the
various scripts, making transliteration between them simple.

 Scripts of India and Southeast Asia

218 Unicode Demystified

The corresponding blocks in Unicode are all the same size, and the characters have the same
positions within these blocks (and thus the same relative ordering) that they do in the ISCII standard,
again facilitating transliteration between them.

[The Unicode blocks are based on the 1988 version of ISCII. ISCII has since been revised, bringing
it slightly out of sync with Unicode, but converting between Unicode and ISCII is still pretty simple.]

Unicode supplements the ISCII characters with various additional characters. As much as possible,
Unicode follows the rule of coding characters that correspond between the related scripts in the same
positions in each of their blocks.

Unicode follows the characters-not-glyphs rule religiously with regard to the Indic scripts. Each
character is given a single code point value, even though it can have many shapes.

The nominal consonants, complete with their inherent vowels, are given single code point values in
Unicode. Thus, the syllable ka is represented as a single code point. That is, the sequence…

U+0915 DEVANAGARI LETTER KA

…shows up like this:

�

A dependent-vowel code is used to change the vowel of a syllable. Thus, ko is encoded like this…

U+0915 DEVANAGARI LETTER KA

U+094B DEVANAGARU VOWEL SIGN O

…and looks like this:

The characters are stored in logical order, the order they’re typed and pronounced. Thus, ki, which
looks like this…

…is still encoded like this…

U+0915 DEVANAGARI LETTER KA

U+093F DEVANAGARI VOWEL SIGN I

…even though the vowel sign appears to the left of the consonant.

Conjunct-consonant combinations are represented using U+094D DEVANAGARI SIGN VIRAMA
after the nominal consonant characters, even when the virama doesn’t actually show up in the
rendered text. Thus,

 Devanagari

 A Practical Programmer’s Guide to the Encoding Standard 219

…is represented as…

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+0937 DEVANAGARI LETTER SSA

…and this sequence…

è�

…is represented as the following:

U+0938 DEVANAGARI LETTER SA

U+094D DEVANAGARI SIGN VIRAMA

U+0924 DEVANAGARI LETTER TA

Conjunct consonants involving three consonant sounds require a virama after both of the first two
sounds.

…is represented as…

U+0938 DEVANAGARI LETTER SA

U+094D DEVANAGARI SIGN VIRAMA

U+0924 DEVANAGARI LETTER TA

U+094D DEVANAGARI SIGN VIRAMA

U+0930 DEVANAGARI LETTER RA

The zero-width joiner and non-joiner characters we looked at in the previous chapter can be used to
control the display of conjunct consonants. As we saw earlier, the following sequence…

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+0937 DEVANAGARI LETTER SSA

…is usually rendered as…

The zero-width non-joiner can be used to split the conjunct consonant up, causing it to appear as two
nominal consonants with a virama on the first one. In other words…

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+200C ZERO WIDTH NON-JOINER

U+0937 DEVANAGARI LETTER SSA

 Scripts of India and Southeast Asia

220 Unicode Demystified

…gets rendered as…

� [these glyphs should connect]

You can surround the non-joiner with joiners to split up the ligature but keep the conjunct-consonant
rendering. This causes the syllable to be drawn using a half-form for the ka sound:

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+200D ZERO WIDTH JOINER

U+200C ZERO WIDTH NON-JOINER

U=200D ZERO WIDTH JOINER

U+0937 DEVANAGARI LETTER SSA

…get rendered like this:

[these glyphs should connect]

When a consonant with a nukta is represented as a combining character sequence (a couple
precomposed consonant-nukta combinations are encoded), the nukta follows the consonant
immediately, in the manner of all other Unicode combining marks. The candrabindu and anusvara,
on the other hand, apply to a whole syllable. They follow the whole syllable in memory.

To tie things together, then, the word “Hindi” would be typed and encoded like this…

U+0939 DEVANAGARI LETTER HA

U+093F DEVANAGARI VOWEL SIGN I

U+0928 DAVANAGARI LETTER NA

U+094D DAVANAGARI SIGN VIRAMA

U+0926 DEVANAGARI LETTER DA

U+0940 DAVANAGARI VOWEL SIGN II

…and looks like this:

¡ Û� �[*sigh* these pieces should also connect]

This breaks down into two syllable clusters. The first is hi:

¡

The ha (¡) combines with the i sign, which attaches on the left. The second cluster is ndii:

Û�

 Devanagari

 A Practical Programmer’s Guide to the Encoding Standard 221

The na (�) turns into a half-form, which attaches to the da (�) on the left. The ii vowel () then
attaches to the combined consonant on the right. The virama doesn’t appear as a separate glyph;
instead, it simply tells the system to combine the na and da into a conjunct consonant.

The example we opened the chapter with, purti, is encoded like this…

U+092A DEVANAGARI LETTER PA

U+0942 DEVANAGARI VOWEL SIGN UU

U+0930 DAVANAGARI LETTER RA

U+094D DEVANAGARI SIGN VIRAMA

U+0924 DEVANAGARI LETTER TA

U+093F DEVANAGARI VOWEL SIGN I

…and looks like this:

� �[[again, the two clusters should connect]

Again, it breaks down into two clusters. The first is puu:

�

The uu sign () attaches to the bottom of the pa (�). The second cluster is rti:

�[

The ra (�) turns into a repha and attaches to the top of the ta (�). The i vowel () then attaches to
the left-hand side of the combined consonant. Again, the virama doesn’t show up as a glyph, but just
tells the text renderer to treat ra and ta as a conjunct consonant.

[it’d be nice to add a longer example that shows an initial vowel, a three-sound conjunct
consonant, and a conjunct consonant that forms a ligature rather than using a half-form]

Note, by the way, that the clusters don’t correspond directly to spoken syllables. “Hindi,” for
example is spoken “hin-di,” but written as “hi-ndi”.

Bengali

The Bengali, or Bangla, script is a close cousin of Devanagari and bears a close resemblance to it.
Like Devanagari, the characters have a horizontal headstroke that connects from character to
character in a continuous horizontal line, and like Devanagari, a vertical stem marks the core of each
syllable.

Bengali script is used in Bangladesh and northeastern India to write not only Bengali, but also
Assamese, Daphla, Garo, Hallam, Khasi, Manipuri, Mizo, Munda, Naga, Rian, and Santali.

 Scripts of India and Southeast Asia

222 Unicode Demystified

Bengali has thirty-two consonants…

� �

� � � � � � � � � �

…and twelve independent vowels:

� � � � � � � � � � � �

One interesting difference between Bengali and Devanagari is that Bengali has two split vowels.
These are vowel signs that consist of two glyphs, written on either side of the consonant character.

Here are the twelve dependent vowel signs, attached to the letter ka ():

� � � � � � � � � � �

[This approximates the desired appearance, but the left-joining and right-joining marks should
connect to the consonants, and the bottom-joining vowels should appear under the consonants
rather than to the right.]

The Bengali virama looks like this (attached to):

�

[again, the virama should display under the consonant, not to its right]

The Bengali anusvara looks like this:� The Bengali candrabindu looks like this: � The Bengali

visarga looks like this:

Bengali forms conjunct consonants in the same way as in Devanagari, with many of the conjunct
consonants having similar forms. The special ways in which the consonant representing the r sound
combines with other consonants also apply in Bengali, although the shapes are a little different.

The Bengali digits look like this:

�

 Devanagari

 A Practical Programmer’s Guide to the Encoding Standard 223

In addition to the regular digits, there are a series of special characters used to write fractions, a

couple currency symbols, and the isshar (), which is used to write the name of God.

The word “Hindi” written using Bengali characters looks like this:

[example—can’t do without proper shaping behavior]

The Bengali block
The Bengali block in Unicode runs from U+0980 to U+09FF. Like the Devanagari block, it follows
the ISCII order, which means corresponding characters in the two blocks are found at corresponding
positions within their blocks.

The split vowels can be represented in Unicode either as single code points or as pairs of code points,
one representing the left-hand glyph and the other representing the right-hand glyph. The
representation that uses one code point is preferable, but has a compatibility decomposition to the
two-code-point representation. (When two code points are used for a split vowel, they both appear in
memory after the consonant.)

Gurmukhi

The Gurmukhi, or Punjabi, script is used to write the Punjabi language of the Punjab region of
northern India.52 It evolved from the now-obsolete Lahnda script, of which someone once said, “It is
convenient, with only one fault; it is seldom legible to anyone except the original writer.”53 A
revision was undertaken under the second Guru of the Sikhs, Guru Angad, in the sixteenth century,
producing the modern Gurmukhi script. The name Gurmukhi attests to this effort: it means “from the
mouth of the Guru.”

Gurmukhi resembles Devanagari; like Devanagari, the characters all hang from a continuous
horizontal line, although the vertical stem that characterizes most Devanagari consonants isn’t as
frequent in Gurmukhi. Gurmukhi has thirty-three basic consonants…

� �

� � � � � � � � � � � �

…and ten independent vowels:

� � � � � � � � � �

52 My sources for information on Gurmukhi are Harjeet Singh Gill, “The Gurmukhi Script,” in The World’s

Writing Systems, pp. 395-398, and Nakanishi, pp. 50-51.

53 The quote is from Nakanishi, p. 50, but doesn’t carry an attribution there.

 Scripts of India and Southeast Asia

224 Unicode Demystified

The ten independent vowels here aren’t completely separate forms as they are in Devanagari and
Bengali; instead, there are three “vowel-bearers” for the three classes of vowels, and the regular

dependent vowel signs are attached to them. There are nine dependent vowels, here shown on (as

in the other scripts, the consonants carry an inherent a):

� � � � � � � � ��

Conjunct consonants aren’t as common in Gurmukhi as they are in Devanagari and Bengali. The

symbols , , and are attached to the other consonant in the cluster as subscripts when they

appear as the second consonant in the cluster:

 + =

The character takes an abbreviated form when it appears as the second consonant in the cluster:

 + = ��

[this font uses a half-form rather than forming a ligature, as the example describes: see
TWWS, p. 395]

Generally, in other consonant combinations an explicit virama () is used. Gurmukhi spelling isn’t

always phonetic; in many cases, the virama is simply understood and not written.

For comparison, this is the word “Hindi” written in Gurmukhi characters:

[as in the other examples, the syllables should touch]

There are a couple of extra marks that are used with Gurmukhi characters: the bindi () and tippi

() indicate nasalization; they’re roughly analogous to the anusvara and candrabindu in

Devanagari. There’s also a special sign, the addak (), which indicates the doubling of a consonant

sound. Like the other scripts, Gurmukhi also uses a nukta (a dot below) as a diacritic with some
consonants to allow for more consonant sounds.

Punjabi is a tonal language, but there aren’t any special characters to represent tone. Instead, some of
the consonant letters do double duty as tone indicators.

There is also a unique set of Gurmukhi digits:

�

 Gurmukhi

 A Practical Programmer’s Guide to the Encoding Standard 225

The Gurmukhi block
The Gurmukhi block in Unicode runs from U+0A00 to U+0A7F and follows the same ISCII order
followed by the Devanagari and Bengali blocks, with analogous characters in analogous positions in
all the blocks. The additional consonants used in Punjabi, which are the regular consonants with
nuktas added, also get their own code points in this block; they have canonical decompositions to the
consonant-nukta forms.

The Gurmukhi block includes codes for the unadorned vowel-bearers, meaning an independent vowel
could be represented using a vowel-bearer and a dependent vowel sign. This isn’t recommended,
however, as Unicode doesn’t include a decomposition from the regular independent-vowel
representation to the representation including the vowel-bearer.

Gujarati

The Gujarati script is used to write the Gujarati and Kacchi languages of the Gujarat region of
western India.54 The earliest known document using Gujarati characters dates from 1592. It’s the
most closely-related of the Northern Brahmi-derived scripts to Devanagari. Most of the letterforms
are quite similar, but the script at first appears strikingly different from Devanagari (and the other
scripts we’ve looked at so far) because the characters lack the horizontal headstroke connecting the
letters of a word (a line of Gujarati type of different sizes still has the letters aligned at the top,
however).

Gujarati has thirty-four consonants, which carry an inherent a…

� �

� � � � � � � � � � � �

…and thirteen independent vowels:

� � � � � � � � � � � � �

As in the other scripts we’ve looked at, the independent vowel forms are used only at the beginnings
of words or when they follow other vowels. The rest of the time, the dependent vowels, which attach
themselves to the consonants, are used. There are thirteen dependent vowel signs (here shown

attached to):

� � � � � � � � � � � �

�

54 My source for Gujarati is P. J. Mistry, “Gujarati Writing,” in The World’s Writing Systems, pp. 391-398.

 Scripts of India and Southeast Asia

226 Unicode Demystified

[same spacing problems as before: the top- and bottom-joining vowels should appear directly
over and under the consonant, and the left- and right-joining vowels should be close to (and
generally overhang) the consonants]

Successive consonants form conjuncts, as they do in Devanagari, generally in the same ways as they
do in Devanagari, right down to the special forms of the symbol for the r sound. The virama
generally isn’t used in Gujarati, except when Gujarati is used to write Sanskrit. Instead, if the last
consonant in a word doesn’t carry a vowel sign, it’s merely understood not to carry the inherent a.

The same diacritics, the nukta, anusvara, candrabindu, and visarga, as used in Gujarati as are used
in Devanagari. There’s also a unique set of Gujarati digits:

� � � � � � � � � �

For comparison with the other scripts, this is “Hindi,” written in Gujarati characters:

 [example—again, need shaping to do this right]

The Gujarati block
The Unicode Gujarati block runs from U+0A80 to U+0AFF. As with Devanagari, Bengali, and
Gurmukhi, the characters are arranged in the ISCII order.

Like Bengali, Gujarati has split vowel signs. The Gujarati split vowels consist of a component that
appears above the consonant and a component that appears after it. In each case, the individual
components of the split vowel are also used by themselves to represent other vowels. The split vowel
could be represented using the two code point values for the two components on systems that can’t
handle true split vowels, but since there’s no decomposition from the official form to the two-code-
point form, this practice isn’t really recommended.

Oriya

The Oriya ([pronunciation?]) script is related to the other northern Brahmi scripts we’ve already
looked at, although its appearance varies more. It’s used to write the Oriya language of the Orissa
region of eastern India, as well as several minority languages spoken in the same region, such as
Khondi and Santali.

The distinguishing feature of Oriya letters is the curved headstroke instead of the straight horizontal
headstroke of Devanagari, Bengali, and Gurmukhi. The thirty-three Oriya consonants look like this:

� �

� � � � � � � � � � � �

The twelve independent vowels look like this:

 Gujarati

 A Practical Programmer’s Guide to the Encoding Standard 227

� � � � � � � � � � � �

As with the other scripts, Oriya consonants carry an inherent a sound, and the other vowels are
represented as diacritical marks when they follow a consonant. The ten dependent vowel signs are as

follows (on):

� � � � � � � � � �

[same spacing problems: the bottom- and top-joining vowels should be closer to, or combined
with, the consonants, and the left- and right-joining vowels should be closer to the consonants]

Oriya also has conjunct consonants, and they take a wide variety of forms. In addition, the dependent
vowel signs often form ligatures with the consonants they join to, giving rise to a very wide variety of
Oriya letterforms.

Here’s “Hindi” written using Oriya characters:

[example—need font that does the shaping right]

The same diacritical marks are used with Oriya as are used with Bengali. Oriya also has a set of
distinctive digits:

�

The Oriya block
The Oriya block in Unicode runs from U+0B00 to U+0B7F. Like the other ISCII-derived blocks, it
follows the ISCII order.

Like some other scripts we’ve looked at, Oriya has split vowels, including one with components that
appear to the left, to the right, and above the consonant. Unicode includes two characters, U+0B56
ORIYA AI LENGTH MARK and U+0B57 ORIYA AU LENGTH MARK, for the pieces of the split
vowels that aren’t dependent vowels themselves (au is the vowel sign with three components: the au
length mark comprises both the top and right-hand components). All of the split vowels have
canonical decompositions to their pieces and so can be represented using either single code points or
pairs of code points.

Tamil

The scripts we’ve looked at so far—Devanagari, Bengali, Gurmukhi, Gujarati, and Oriya, form the
North Brahmi group of scripts. We’ll now turn to the South Brahmi scripts, which descend from the
ancient Brahmi script along a line that diverged fairly early from the North Brahmi scripts. The
scripts in this group are Tamil, Telugu, Kannada, Malayalam, and Sinhala. With the exception of

 Scripts of India and Southeast Asia

228 Unicode Demystified

Sinhala, the main languages these scripts are used to write belong to the Dravidian language group,
which is completely unrelated to the Indic language group to which the others belong—their adoption
of the same basic writing system as the Indic languages stems from their geographic proximity, and
they have some differences from the North Brahmi scripts that reflect the differences in their
underlying languages.

The Tamil script (rhymes with “camel,” not “Camille” [double-check pronunciation]) is used to
write the Tamil language of the Tamil Nadu region of southern India, in addition to several minority
languages, including Badaga.55 It follows the same basic structure as the other Indic scripts. Tamil
has fewer sounds, so the Tamil script has fewer characters than the others. There are twenty-two
consonants…

� � � � � � �� � � �� � � � � � � � � � �

�� �

[bsaically correct, but the spacing between the characters in uneven]

…and twelve independent vowels:

� � �� � � � � � � � � �

As with the other scripts, the independent vowels are used at the beginnings of words, but they are
also sometimes used within a word to represent an especially prolonged vowel sound. Most of the

time, however, the eleven dependent vowel signs (here shown with) are used when the vowel

sound follows a consonant:

�� �� �� �� �� �� �� �� �� ��

�

Like many of the other scripts, it’s worth noticing that several of the dependent vowel signs are
drawn to the left of their consonants, and that three of them have components that appear on both
sides of the consonant.

As with the other scripts, there are only eleven dependent vowel signs because the consonant
characters have an inherent a sound. Like the other scripts, the absence of the inherent vowel is
represented using a virama, which takes a different form than in the other scripts:

�

55 Most of the information on Tamil comes straight out of the Unicode standard, but has been supplemented by

information from Sanford B. Steever, “Tamil Writing,” in The World’s Writing Systems, pp. 426-430.

 Tamil

 A Practical Programmer’s Guide to the Encoding Standard 229

One important thing that sets Tamil apart from the other writing systems we’ve looked at so far in
this chapter is that it generally doesn’t use conjunct consonants. Instead, the normal consonant forms

are usually used, and the virama is actually visible. There is one exception to this rule: When �

is followed by �, instead of getting this…

…you get this:

This form behaves like conjunct consonants in the other scripts we’ve looked at, but it’s the only
conjunct consonant in Tamil.

However, the fact that Tamil doesn’t have conjunct consonants doesn’t mean that Tamil letters don’t
form ligatures. It’s just that the ligatures are formed between consonants and vowels, rather than
between successive consonants. Tamil actually has a considerable number of consonant-vowel
ligatures. A few examples:

 + = �

 + = �

 + = �

 + = �

 + = �

 + = �

 + = �

 + = �

 + = E[�

 + = E\

…and so on…

There are also two forms of the vowel ���, which changes shape in front of certain consonants

(this is a left-joining vowel):

 Scripts of India and Southeast Asia

230 Unicode Demystified

 + �� = �…

…but �� + �� = �
[Not totally sure I have the right glyph here (didn’t get it automatically): should this ligature
have another loop?]

Like the other scripts in this chapter, there’s a unique set of Tamil digits:

� � � � � � � � �

However, they don’t form a normal set of decimal digits used with positional Arabic notation.

Instead, they’re used with multiplicative notation in conjunction with signs for 10 (), 100 (),

and 1,000 ():

 = 3

 = 13

 = 30

 = 33

This system of numeration is actually nearly obsolete; European numerals are generally used now.

The Tamil block

Like the other ISCII-derived blocks, the Unicode Tamil block (U+0B80 to U+0BFF) follows the
ISCII order. The three split vowels all have canonical decompositions to their constituent parts. The

right-hand side of ���, which isn’t used as a vowel sign by itself, is encoded as U+0BD7 TAMIL

AU LENGTH MARK.

Telugu

The Telugu script (pronounced “TELL-a-goo,” not “te-LOO-goo” [double-check pronunciation]) is
used to write the Telugu language of the Andhra Pradesh region of India, as well as minority
languages such as Gondi and Lambadi. It follows the same basic structure as the other Indic scripts,
and the letters are characterized by a chevron-shaped headstroke.56 There are thirty-five
consonants…

56 Most of the examples in this section are taken from Nakanishi, pp. 60-61.

 Telugu

 A Practical Programmer’s Guide to the Encoding Standard 231

� �

� � � � � � � � � � � � � �

…and fourteen independent vowels:

� � � � � � � � � � � � � �

As always, the independent vowels are used only at the beginnings of words. In the middles of words,

there are thirteen dependent vowel signs, here shown on :

� � � � � � � � � � � �

� �

[again, shaping isn’t happening: the right-joining vowels should be closer to the consonant, the
top- and bottom-joining vowels need to be shifted to the left, and the consonant should lose the
V on top when it combines with a top-joining vowel]

As always, the consonants carry an inherent a sound. It can be canceled using a virama…

�

[again, the virama should appear on top of the consonant, and the consonant should lose the V]

…but multiple consonant sounds with no intervening vowel sounds are usually represented using
conjunct-consonant forms instead. Generally, the second consonant is written as a subscript under the
first consonant…

[can’t do these examples: need a font that can do the necessary shaping]

[ssa] + [ttha] = [ssttha]
[da] + [da] = [dda]

…but sometimes they take other forms:

[ka] + [ka] = [kka]
[sa] + [ta] + [ra] = [stra]

Notice that the consonants generally lose their headstrokes when they appear in combination. This
also generally happens when they’re combined with a dependent vowel sign.

 Scripts of India and Southeast Asia

232 Unicode Demystified

For comparison, here’s “Hindi” written using Telugu characters:

[example]

And like the other scripts, Telugu has its own set of digits:

� � � � � � � � � �

The Telugu block
Like the other ISCII-derived blocks, the Unicode Telugu block (U+0C00 to U+0C7F) follows the
ISCII order. There’s one split vowel, although the component parts appear above and below the
consonant. The bottom-joining part is encoded separately as U+TELUGU AI LENGTH MARK, and
the split vowel has a canonical decomposition that includes this character.

Kannada

The Kannada script ([pronunciation?]) is used to write the Kannada, or Kanarese, language of the
Karnataka region of southern India, as well as minority languages such as Tulu. It is very closely
related to the Telugu script; the two both derive from Old Kannada script, and diverged around 1500,
with the two different forms being hardened into place by the advent of printing in the nineteenth
century.57

The basic letterforms of Kannada are extremely similar to those of Telugu, with the main difference
being the shape of the headstroke. Like Telugu, Kannada has thirty-five consonants…

� �

� � � �� �� � � � � � � � � �

…and fourteen independent vowels:

� � � � � �� � � � � � � � �

The shapes of the thirteen dependent vowels differ more from their counterparts in Telugu. Here they

are attached to :

57 This information comes from William Bright, “Kannada and Telugu Writing,” in The World’s Writing

Systems, pp. 413-419.

 Telugu

 A Practical Programmer’s Guide to the Encoding Standard 233

� � � � � � � � � � � �

�

[Again, the font’s not doing the right shaping: the top-joining vowels aren’t showing up on top
of the consonant (and the consonant should lose the headstroke when they do), and the right-
joining vowels are too far from the consonant. Because of this, I can’t do the other examples in
this section without locating a better font.]

Kannada forms conjunct consonants in the same basic way as Telugu, and some of the dependent
vowel signs form ligatures with certain consonants, just as they do in Telugu. “Hindi” looks like this
in Kannada letters:

[example]

One interesting wrinkle of Kannada that’s different from Telugu is the behavior of , which

represents the r sound (which takes irregular forms in so many of the other Indic scripts). When this
character is the first character in a conjunct consonant, it changes shape and appears after the rest of
the syllable:

kaa = + = [kaa]

kraa = + + = [kraa]

rkaa = + + = [rkaa]

 [Does it really come after the whole syllable, or between the consonant and the vowel?]

As with the other scripts we’ve looked at, there’s a unique set of Kannada digits:

� � � � � � � � � �

The Kannada block
The Unicode Kannada block runs from U+0C80 to U+0CFF and follows the ISCII order, just like the
other scripts we’ve looked at so far. There are several split vowels that have canonical
decompositions to pairs of vowels. The Kannada block has two special code point values that
represent the right-hand components of the split vowels.

The Kannada block includes one misnamed character. U+0CDE KANNADA LETTER FA should
really have been called KANNADA LETTER LLLA, but since the Unicode standard never renames
a character, we’re stuck with the wrong name. Fortunately, this is an obsolete character only used in
historical writings.

 Scripts of India and Southeast Asia

234 Unicode Demystified

Malayalam

The Malayalam script (pronounced “MAH-luh-yah-lum,” not “muh-LAY-uh-lahm” [double-check
pronunciation]) is used to write the Malayalam language, spoken in the Kerala region of southern
India.58 Malayalam shares structure with the other Indic scripts. It has thirty-six consonants…

� � � �� � � �� � �� � � � �� �� �� � � � �

� � �� �� � � � � � � � � � � �� �� �

…and fourteen independent vowels:

�� �� � �� � �� � �� �� ��� � �� �

As in the other scripts we’ve looked at so far, the consonants carry an inherent a. The other vowel
sounds are attached to the consonants by means of the twelve dependent vowel signs, shown here on

:

� � � � � � � � � � � �

�

[Again, the shaping isn’t happening: the split vowels aren’t splitting, the spacing is all messed
up, and so forth. Again, I’m going to hold off on the other examples in this section until I find
a font that’ll do this right.]

The letterforms are similar to those of Tamil, but unlike Tamil, Malayalam has a large set of
conjunct-consonant forms. The virama is used to cancel the vowel sound on consonants at the ends of
words…

[ka + virama]

…but in many cases, even the virama forms a ligature with its consonant:

[ka] + [virama] = [k]
…but [na] + [virama] = [n]
[ra] + [virama] = [r]
[lla] + [virama] = [ll]

58 Some information comes from K. P. Mohanan, “Malayalam Writing,” in The World’s Writing Systems, pp.

420-425.

 Malayalam

 A Practical Programmer’s Guide to the Encoding Standard 235

The anusvara () is used to represent the m sound at the end of a syllable, instead of using a

conjunct-consonant form.

The word “Hindi” looks like this in Malayalam:

[example]

A script reform movement in the 1970s and ’80s has led to a simplified version of the script with
fewer conjunct forms and the modification of the vowel signs that appear below the letters so that the
script is easier to print, consisting of a series of independent glyphs that can be written linearly.
However, it never completely caught on, giving rise to a bunch of hybrid printing styles that use the
simplified forms for some things and the traditional forms for others. As a result, the appearance of
the same piece of Malayalam text can vary fairly significantly depending on font design.

Unlike the other scripts we’ve looked at, spaces aren’t always used between words in Malayalam.
Some documents do this, but some run sequences of words together without spaces and only use
spaces between phrases.

Like the other scripts, there is a set of Malayalam-specific digits:

� � � � � � � � � �

The Malayalam block
The Unicode Malayalam block runs from U+0D00 to U+0D7F. It follows the ISCII order and the
same encoding principles as the other scripts we’ve looked at in this chapter. Choice between
traditional and simplified rendering is purely a matter of font design and not reflected in the
encoding, although it’s possible to break up a conjunct consonant and use the virama forms of the
consonants by using the zero-width non-joiner (see the “Devanagari” section earlier in this chapter
for more information).

Sinhala

The Sinhala script is used to write the Sinhala (or Sinhalese) language of Sri Lanka, and is also used
in Sri Lanka to write Sanskrit and Pali. Although Sinhala is an Indic language, the Sinhala script
belongs to the South Brahmi family of scripts used to write the Dravidian languages.59 It follows the
same general structure as the other Indic scripts, with a set of consonants, and separate sets of
dependent and independent vowels. There are forty-one consonants…

[example]

59 Information in this section comes from James W. Gair, “Sinhala Writing,” in The World’s Writing Systems,

pp. 408-412, and from Nakanishi, pp. 66-67.

 Scripts of India and Southeast Asia

236 Unicode Demystified

…although only twenty-two of them are used to write regular Sinhala. The others are used to write
loanwords, or to write Pali or Sanskrit. Likewise, there are eighteen independent vowels…

[example]

…but only twelve of them are used to write native Sinhala words.

As with the other scripts we’ve looked at, the independent vowels are used only at the beginnings of
words. After consonants, vowel sounds are represented using the seventeen dependent vowel signs
(here shown on [ka]) attached to the consonants:

 [example]

As with the other scripts, the consonants carry an inherent a sound, which can be canceled using the
virama (called al-lakuna in Sinhala):

[ka + virama]

The anusvara ([glyph]) is used in Sinhala not only to indicate nasalization, but in modern spelling to
indicate an actual n sound at the end of a syllable.

Like many of the other Indic scripts, Sinhala has a fairly complex system of conjunct consonants, and
many of the dependent vowel signs form ligatures with certain consonants. These include special
forms of the r consonant when it appears at the beginning or end of a conjunct-consonant cluster
similar to the ones used in Devanagari and some of the other North Brahmi scripts.

In traditional texts, spaces were not used between words, and the only punctuation used was the
kunddaliya ([glyph]), which was used where we’d use a period. In modern writing, spaces are used
between words and European punctuation is used. There is also a traditional set of Sinhala digits;
these, too, have passed into obsolescence: today, European digits are used. Some modern printing
practices eschew many of the conjunct-consonant clusters in favor of forms explicitly using the al-
lakuna.

The Sinhala block
The Unicode Sinhala block runs from U+0D80 to U+0DFF. It does not follow the ISCII order. This
is partially because the ISCII standard doesn’t include a code page for Sinhala and partially because
Sinhala includes a lot of sounds (and, thus, letters) that aren’t in any of the Indian scripts. The basic
setup of the block is the same: anusvara and visarga first, followed by independent vowels,
consonants, dependent vowels, and punctuation. Unlike in the ISCII-derived blocks, the al-lakuna
(virama) precedes the dependent vowels, rather than following them.

The same basic encoding principles used for the ISCII-derived scripts are used by Unicode for
encoding Sinhala: The character codes encode characters, not glyphs, so there are no special code-
point values for the conjunct ligatures or contextual forms of the vowels. The characters are stored in
logical order, as they are pronounced, meaning vowel signs always follow their consonants, even
when they’re drawn to their left. The code points for the consonant characters include the inherent a
sound; the al-lakuna is used to cancel the inherent vowel and signal the formation of conjunct-
consonant clusters (when conjunct consonant clusters are formed, the al-lakuna will not show up as a

 Sinhala

 A Practical Programmer’s Guide to the Encoding Standard 237

separate glyph, even though it’s typed and stored). The joiner and non-joiner characters can be used
to control the formation of ligatures and consonant conjuncts.

Consonant forms carrying a nukta are used for writing Tamil using the Sinhala script; these aren’t
separately encoded. Interestingly, the Sinhala block doesn’t include a code-point value for the nukta.
The Unicode standard points this out, but doesn’t say what to do about it. Since the other Indic
blocks each include their own nuktas, it’s unclear which one to use with Sinhala, if indeed any of
them is appropriate. The actual answer will depend on individual implementations and fonts. The
Unicode Sinhala block includes a code point for the kunddaliya, even though it’s not used in modern
writing, but doesn’t include code point values for the Sinhala digits.

Thai

So much for the Indian scripts. The next four scripts we’ll look at in this chapter are used in
Southeast Asia for various Asian languages. These scripts all descend from the South Brahmi forms,
but show greater diversification, reflecting the greater diversity of languages represented.

The Thai script is used to write the Thai language of Thailand.60 The Thai and Lao scripts both have
their roots in a script developed in 1283 by King Ramkhamhaeng of Sukhothai. They had diverged
into separate scripts, with different spelling rules, by the sixteenth century.

Thai has a whopping forty-six consonants:

�� �¡�¢�£�¤�¥�
¦�§�¨�©�ª�«�¬��®�¯�°�±�

Interestingly, Thai only has twenty-one consonant sounds. The extra letters represent sounds that
aren’t distinguished anymore in modern pronunciation, but still carry etymological information and
are used to distinguish tone.

Thai doesn’t have independent vowel signs like the other Indic scripts. Instead, the letter °, which

represents the glottal stop, is used with the dependent vowel signs to write an initial vowel sound.

Thai consonants are generally considered to carry an inherent o sound, with the other vowel sounds

represented with the twenty-one dependent vowel signs, here shown on °:

°³�°´�°µ�°·�°¸�°¹�°º�°»�°¼�Á°³�Á°�Á°È�Â°³�Â°�Ã°³�Ã°�Á°µ³�°Îµ�Ä°�Å°�Á°µ�

Thai, like many Asian languages, is a tonal language. Different consonants carry different inherent
tones, but there’s a set of four tone marks as well:

60 The information in this section and the next comes from Anthony Diller, “Thai and Lao Writing,” in The

World’s Writing Systems, pp. 457-466, with some additional info coming from Nakanishi, pp. 76-79.

 Scripts of India and Southeast Asia

238 Unicode Demystified

°n�°o�°p�°q�

When a consonant has both a dependent vowel sign and a tone mark on it, the tone mark moves up
and gets smaller to make room for the vowel sign:

°¹Ê�

Thai doesn’t have conjunct consonants. There’s a virama (°½) that’s used to cancel the inherent vowel

when the Thai script is used to write Pali, but normal Thai doesn’t use a virama—successive
consonants are just juxtaposed and you have to know when to pronounce the inherent vowel and
when not to.

This isn’t a big deal, since Thai spelling in general isn’t phonetic—there are only three sounds that
can occur at the end of a syllable, but most of the letters can be used in this position, for example.
Sometimes there are extra letters at the end of a word that aren’t pronounced; sometimes the

thanthakhat (�r) is written over a silent letter to indicate that it’s silent.

There are two special symbols that are used like letters in the middle of words: the maiyamok (Ç) is

used to represent repetition of the syllable that precedes it, and the paiyannoi (²) is used to indicate

elision of letters from long words or phrases. The sequence ²¨² means “etc.”

There are also a bunch of special Thai punctuation marks: the fongman (Ð) is used the way we use a

bullet: to mark items in lists, or at the beginnings of verses or paragraphs. The angkhankhu (Û) is

used at the ends of long segments of text, the sequence Û³ marks the end of an even longer segment

of text, such as a verse in poetry. The khomut (Ü) may follow this sequence at the end of a

paragraph or document.

Spaces don’t generally separate words in Thai text (although space is sometimes added between
words when necessary to justify text between the margins); instead, spaces are used between phrases
or sentences, where you’d use a comma or period in English.

Finally, there’s a set of Thai digits:

Ñ�Ò�Ó�Ô�Õ�Ö�×�Ø�Ù�Ú�

The Thai block
The Unicode Thai block runs from U+0E00 to U+0E7F. It’s based on TIS 620, the Thai national
standard.

 Thai

 A Practical Programmer’s Guide to the Encoding Standard 239

Unicode encodes Thai in a radically different manner from how it encodes the other Indic scripts. In
particular, in order to maintain compatibility with existing usage and the Thai national standard, the
Thai block breaks the logical-order rule. Like many of the other Indic scripts, Thai has left-joining
and split vowels. But unlike them, in Thai, a left-joining vowel precedes the consonant it modifies in
storage (top- and bottom-joining vowels do still follow their consonants in storage). Split vowels are
represented using two separate code-point values, one each for the left-hand and right-hand
components of the split vowel. When a consonant has both a top-or bottom-joining vowel and a tone
mark, the tone mark follows the vowel in memory.

Even though spaces aren’t generally used between words in Thai, when text is wrapped from one line
onto the next, the split still has to happen on a word boundary. This can be done automatically by the
text-rendering software, or U+200B ZERO WIDTH SPACE, which has no visual presentation, can
be used to tell the text-rendering software where it’s safe to break the lines. In justified text, the zero-
width space might actually widen to be visible.

Lao

The Lao script is used to write the Lao (or Laotian) language of Laos. It’s very closely related to the
Thai script, the two having both evolved from the script invented by King Ramkhamhaeng in 1283.
The letterforms are very similar, although there are a lot fewer letters. The Lao script has twenty-
seven consonants:

� �

� � � � �

As with Thai, there are no independent vowels, but there are eighteen dependent vowel signs, shown

here on :

� � � � � � � � � � � �

� � � �

[as usual, this is wrong: the left- and right-joining vowels are too far from the consonant, and
the top- and bottom-joining vowels should be above or below the consonant, not next to it]

Lao has a tonal system similar to that of Thai, relying mostly on different combinations of letters to
indicate tone, but supplementing this with four tone marks:

� � � �

[as with the top-joining vowels, the tone marks should display above the consonant]

 Scripts of India and Southeast Asia

240 Unicode Demystified

In Lao, as in Thai, there are multiple consonants with the same sound but different inherent tone.

Some consonants that don’t have counterparts with the opposite tone are written with , which is

silent but changes the tone. Sometimes, this letter forms a ligature with the letter carrying the actual
consonant sound:

 + =

 + =

The symbol is used to represent the l or r sound (the letter) when it occurs after another

consonant:

 + = [the “lo” mark should appear underneath the consonant, not beside it]

These forms are the only remaining remnants of an earlier system of conjunct consonants; other than
these forms, Lao is written like Thai: the characters for successive consonant sounds are just
juxtaposed, with the reader understanding when the inherent o is not pronounced. Like Thai, Lao
doesn’t use a virama. Like Thai, Lao doesn’t generally use spaces between words, using them instead
where we’d normally use a comma.

Lao, like Thai, has an ellipsis character () and a repetition character (). There is also a

distinctive set of Lao digits:

� � � � � � � � � �

Although both the languages and writing systems are similar, the Laotian government instituted a set
of spelling reforms in the 1960s, with the result being a divergence in spelling between Lao and Thai.
Thai spelling preserves etymological details at the expense of phonetics. Lao spelling is phonetic at
the expense of etymology.

With the exception of the conjunct-consonant forms, all of the letters in the Lao script have direct
counterparts in the Thai script, making the two scripts freely convertible (at least when used to write
Lao, since Thai has more letters). There is a sizable Lao-speaking minority in Thailand; they
generally use the Thai script to write their language.

The Lao block
Since the Thai and Lao scripts are so closely related and convertible, the Unicode Lao block
(U+0E80 to U+0EFF) is organized with the characters in the same relative positions within their
block as the analogous characters in the Thai block. Lao follows the same encoding principles as
Thai, with characters stored in visual order rather than logical order. Thus, left-joining vowel signs
precede their consonants in memory, even though they’re spoken after the consonants. Split vowels
are represented using two separate character codes: one, representing the left-joining part of the
vowel, precedes the consonant in memory, and the other, representing the right-joining part of the

 Lao

 A Practical Programmer’s Guide to the Encoding Standard 241

vowel, follows it. The subscript version of is represented using a separate character code from the

full-size version, and is treated as a combining mark. The two ligatures (and) also get

separate code point values, although they have compatibility decompositions back to the original let-
ters.

Khmer

The Khmer script is used to write the Khmer, or Cambodian, language of Cambodia. This script goes
back to about the sixth century.61 Khmer shares the same general design as the other Indic scripts.
There are thirty-five consonants…

� �

� � � � � � � � � � � � � �

…and seventeen independent vowels:

� � � � � � � � � � � � � � � � �

As with the other Indic scripts, the Khmer consonants have an inherent vowel, but unlike the others
we’ve looked at so far, they don’t all have the same inherent vowel: There are thirteen “first series”
consonants, which carry an inherent a:

� � � � � � � � � � � � � � �

The rest of the consonants belong to the “second series” and carry an inherent o:

� � � � � � � � � � � � � � � � � � � ��

There are twenty-one dependent vowel signs (there isn’t an independent vowel character for every
possible vowel sound, since not all vowel sounds occur at the beginning of a word)…

� � � � � � � � � � � �

� � � �

61 My sources for this section are Eric Schiller, “Khmer Writing,” in The World’s Writing Systems, pp. 467-

473, and Nakanishi, 74-75.

 Scripts of India and Southeast Asia

242 Unicode Demystified

[as always, Word isn’t honoring the overhang on the vowel signs: the right-joining vowels
should be closer to the consonants and the top- and bottom-joining vowels should actually be
above and below the consonants]

…but these represent different sounds depending on whether they’re used with a first-series or
second-series consonant. Sometimes it’s necessary to put a second-series vowel sound on a first-

series consonant, or vice-versa. Diacritical marks are used to do this: The muusikatoan ()

converts a second-series consonant to a first-series consonant, and the triisap () converts a first-

series consonant to a second-series consonant.

Like most of the other Indic scripts, Khmer does have conjunct consonants. Normally, the second
consonant in a pair is written as a subscript under the first one…

[ka] + [ta] = [kta]

…but sometimes the subscript has an ascender that sticks up to the right of the main consonant…

[tho] + [yo] = [thyo] [Is this a good example?]

…and sometimes the subscript has a completely different form from its normal form:

[ko] + [vo] = [kvo] [Is this a good example?]

The letter representing the r sound ([ro]), when used as a subscript, picks up an ascender that sticks
up to the left of the main consonant:

[ko] + [ro] = [kro]

The r character thus appears to precede the main consonant even though its sound follows it (this is
analogous to the left-joining dependent vowels).

The vowel-shifter characters muusikatoan ([glyph]) and triisap ([glyph]) can change shape in certain
circumstances. If the consonant has an ascender that sticks up into the space these characters
normally occupy, or if there’s a vowel sign in that position, the character takes a different shape and
moves under the consonant:

[sa] + [ii] + [triisap] = [sii] + [triisap] = [sii (subscript triisap)]

The nikahit ([glyph]) represents nasalization, the reahmuk ([glyph]) represents a final glottal stop,
and the bantoc ([glyph]) shortens the preceding vowel.

Like Thai and Lao, Khmer is written without spaces between words; instead, spaces are used more or
less where we’d use a comma. The khan ([glyph]) is used at the ends of sentences or groups of
sentences. The bariyoosan ([glyph]) marks the end of a section. There is a distinctive set of Khmer
digits:

 Khmer

 A Practical Programmer’s Guide to the Encoding Standard 243

� � � � � � � � � �

The Khmer block
The Unicode Khmer block runs from U+1780 to U+17FF. It includes not only the regular Khmer
letters, but a series of rare letters and symbols used only in transcribing Sanskrit and Pali. It also
includes a wide selection of punctuation marks.

The encoding principle is the same as the Indic scripts (and different from Thai and Lao): the vowel
signs always follow the consonants, even when the consonant glyph appears before or around the
consonant. Conjunct consonants are formed by using U+17D2 KHMER SIGN COENG, the Khmer
analogue to the Indic virama. This code point has no visual presentation (the glyph shown in the
Unicode standard is arbitrary); its function is only to signal the formation of a conjunct consonant.
Even though the following (subscript) form of r appears to the left of the preceding consonant, it’s
still represented in memory following the main consonant (and the coeng).

If there’s a series-shifter in a syllable, it follows all the consonants in the cluster, and precedes the
vowel. Any other marks on the cluster come last.

Myanmar

The Myanmar script, which is used to write Burmese, the language of Burma, dates back to the early
twelfth century. It is descended from the Mon script, which ultimately derives from the South Brahmi
scripts.62 As with the other scripts in this chapter, it follows the same basic structure as the other
Indic scripts. There are thirty-four consonants:

� �

� � � � � � � � � � � �

There are seven dependent vowel signs (here shown on), each of which represents a combination

of a vowel and a tone:

� � � � � � �

[This is closer than I’ve gotten with most of the other combining-vowel examples, but still not
there: the one left-joining vowel should be closer to the consonant, and the top- and bottom-
joining vowels should be centered on their consonants, not skewed to the right]

62 My sources for Myanmar are Julian K. Wheatley, “Burmese Writing,” in The World’s Writing Systems, pp.

450-456, and Nakanishi, pp. 72-73.

 Scripts of India and Southeast Asia

244 Unicode Demystified

The letter is a neutral consonant that is used to represent independent vowel sounds, but there are

also a few independent vowel signs, used generally in Indian loanwords.

The dependent vowel sign takes a different shape when its normal shape would cause the

consonant-vowel combination to be confused with another consonant:

[pa] + [a] = [paa]

Myanmar has conjunct consonants. Most of the time, the second consonant is written as a subscript
under the first one…

[ma] + [ma] = [mma]

…but the consonants [ya], [ra], [wa], and [ha], representing the y, r, w, and h sounds, take special
diacritic forms when they’re used in conjuncts:

[kha] + [ya] = [khya]
[ma] + [ra] = [mra]
[ma] + [wa] = [mwa]
[ra] + [ha] = [rha]

These characters can also participate in three-consonant clusters:

[la] + [ha] + [ya] = [lhya]

The anusvara () and visarga () from the Indic languages, along with a subscript dot () are

used as tone marks. A virama, or “killer” (), cancels a consonant’s inherent a sound when a word

ends with a consonant sound and occasionally in the middles of words.

Burmese is written with spaces between phrases rather than words. For punctuation, the danda ()

and double danda (), corresponding roughly to the semicolon and period, are borrowed from the

Indic languages. There is also a unique set of Myanmar digits:

� � � � � � � � � �

The Myanmar block
The Unicode Myanmar block (U+1000 to U+109F) follows the same basic principles as the other
Indic blocks: the dependent vowel signs always follow their consonants in memory, even when the
vowel is drawn to the left of the consonant; each letter gets only one code point value, even if its
shape changes depending on context; and conjunct consonants are formed by placing the virama
between the consonants. (The zero-width non-joiner can be used to break up a conjunct in the middle
of a word and force the virama to be visible.)

 Khmer

 A Practical Programmer’s Guide to the Encoding Standard 245

Unlike the other Indic blocks, the Myanmar block doesn’t include precomposed code point values for
the split vowels. All Myanmar split vowels are made up of the glyphs for two other vowels (or one or
two vowels plus a tone mark), and these are always represented in Unicode by using the code point
values for the individual pieces, both of which follow the consonant in memory.

Tibetan

And, finally, we get to Tibetan. The Tibetan script is used not only to write Tibetan as spoken in
Tibet, but also the Dzongkha language spoken in Bhutan. Sanskrit is also transcribed into Tibetan
characters. The earliest examples of Tibetan writing date to the eighth and ninth centuries.63
Tradition holds that the Tibetan script was created in the sixth century by a man named Thumi
Sambhota, a member of a delegation sent to India by the king of Tibet to study Buddhism and the
Indian languages.

Tibetan, like Chinese, is a monosyllabic language, so the principles of Indic writing are modified a
bit to deal with Tibetan pronunciation. Still, the basic principles remain the same. There are thirty
consonants:

� �

� � � � � � � �

Tibetan has one independent vowel, representing the same inherent a sound the consonants all

have: . The other vowel sounds are represented by using the dependent vowel signs applied to

this letter. There are four dependent vowel signs (shown here on):

� � � �

[as usual, the positioning isn’t working—the vowel signs should appear directly over or
under the consonants, not next to them]

There are additional consonant and vowel characters that are used in loanwords and transliterated
Sanskrit.

A Tibetan syllable has single core consonant, or “radical,” which may combine with additional
consonant characters. Only the core consonant has the inherent a. Some combinations of

consonants stack on top of one another. The consonants , , and adopt an abbreviated

shape when they appear above certain other consonants:

63 The information in the section on Tibetan comes from the lengthy character block description in the

Unicode standard, pp. 240-248; Leonard W. J. van der Kuijp, “The Tibetan Script and Derivatives,” in

The World’s Writing Systems, pp. 431-436; and Nakanishi, pp. 88-89.

 Scripts of India and Southeast Asia

246 Unicode Demystified

[ra] + [ka] = [rka]

The consonants , , , , and adopt an abbreviated shape when they appear below

certain other consonants:

[ka] + [la] = [kla]
[ka] + [ya] = [kya]
[ka] + [ra] = [kra]
[ka] + [wa] = [kwa]

Certain consonants just go before a consonant stack, and certain ones just go after it. A consonant
after the main consonant of the syllable might represent a word-final consonant rather than part of
the stack, in which case the vowel signs go on the consonant before it. If the main consonant of the
syllable keeps its inherent a (i.e., it doesn’t have a vowel sign), another consonant after it is treated
as a syllable-ending consonant. If it’s not supposed to—that is, if the syllable ends with the

inherent a sound—the syllable will end with . For example,

 is dag…

…but is dga.

[spacing is broken again—the horizontal headstrokes on all the characters should be
touching]

A syllable can consist of up to four consonants in a row, with the main consonant optionally being
a consonant stack. (In most words like this, most of the letters are actually silent; this reflects the
fact that Tibetan spelling hasn’t changed in centuries.)

Syllables (words, basically) are separated from one another with dots called tshegs, which are
aligned along the baseline like periods in English text (Tibetan is written hanging from the
baseline, like Devanagari, rather than sitting on it, like English, though, so the tsheg appears on the
upper-right shoulder of the last character in the syllable). When text is justified between margins,
extra tshegs are added at the end of the line to pad it out to the margin.

The rules for how consonant stacks form are very regular for Tibetan, but a much wider variety of
conjuncts can be formed in Sanskrit and other languages written using Tibetan characters. There is
also a complex system of abbreviation used in Tibetan writing that can break most of the normal
character-joining rules.

Tibetan is normally written without spaces, although the tsheg serves the same basic purpose.
There is a wide variety of punctuation marks used with Tibetan, the most important of which are

the shad () and the nyis shad (), which derive from the Devanagari danda and double danda.

They’re very roughly equivalent to the comma and period: the shad marks the end of an
expression, and the nyis shad marks a change in topic. There is also a unique set of Tibetan digits:

 Tibetan

 A Practical Programmer’s Guide to the Encoding Standard 247

� � � � � � � � � �

The Tibetan block
The Unicode Tibetan block is quite large, running from U+0F00 to U+0FFF. In addition to the
basic Tibetan letters, it includes extra letters used for transliterating various other languages and a
very wide variety of punctuation marks, cantillation marks, and astrological signs.

The Tibetan block follows a radically different encoding practice from the other Indic blocks.
Instead of using a virama character to signal the formation of conjunct consonants, each consonant
is encoded twice: The first series of code point values is to be used for consonants when they
appear by themselves or at the top of a conjunct stack, and the second series is to be used for
consonants that appear in a conjunct stack anywhere but at the top (only certain combinations are
legal in Tibetan, but all the consonants are encoded this way to allow for non-Tibetan conjuncts,
such as those you get in Sanskrit). Thus, [kra] (kra), which would be encoded like this in
Devanagari (and most of the other Indic scripts)…

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+0930 DEVANAGARI LETTER RA

…is instead encoded like this in Tibetan:

U+0F40 TIBETAN LETTER KA

U+0FB2 TIBETAN SUBJOINED LETTER RA

Since the letter can change shape when it appears at the top of a conjunct stack, something you

don’t always want in some non-Tibetan languages, Unicode includes a separate code point value,

U+0F6A TIBETAN LETTER FIXED-FORM RA, to represent a that keeps its full size and

shape all the time. Likewise, since , , and change shape when they appear at the bottom

of a conjunct stack, Unicode provides separate code point values—U+0FBA TIBETAN SUB-
JOINED LETTER FIXED-FORM WA, U+0FBB TIBETAN SUBJOINED LETTER FIXED-
FORM YA, and U+0FBC TIBETAN SUBJOINED LETTER FIXED-FORM RA—that also keep
their normal shape no matter what. These alternate code point values should never be used in
encoding native Tibetan.

The Philippine Scripts

Unicode 3.2 adds four additional scripts to write various languages of the Philippines. These four
scripts are sandwiched into a comparatively small area of the Unicode encoding space running
from U+1700 to U+177F.64

64 Most of the small amount of information on the Philippine scripts here comes from section 9.16
of PDUTR #28, supplemented by some material from Joel C. Kuipers and Ray McDermott,
“Insular Southeast Asian Scripts,” The World’s Writing Systems, pp. 474-484.

 Scripts of India and Southeast Asia

248 Unicode Demystified

The four Philippine scripts are related to each other, probably coming from a common ancestor.
They’re clearly related to the Southeast Asian scripts, and probably came to the Philippines from
Southeast Asia by way of Indonesia, possible as late as the 14th century.

The Tagalog script fell into disuse in the 1700s under European colonization, superseded by the
Latin alphabet. The other three scripts, Hanunóo, Buhid, and Tagbanwa, are all still used, but to
varying degrees. Hanunóo is still relatively popular, used most often (interestingly enough) to
write love poetry. Buhid and Tagbanwa are less often used.

The four Philippine scripts all have a similar structure. Each has three independent vowels…

…and from twelve to fourteen consonants:

[Will need to fix this drawing so the rows are straight]

As with most of the other Indic scripts, the consonants all carry an inherent a sound, and the vowel
sound can be changed through the addition of a vowel mark. There are only two dependent vowel
marks in the Philippine scripts (there are more vowel sounds; the vowel marks each represent more
than one sound). In each script, the two marks are the same (depending on the scvript, a dot, dash,
or chevron); whether the vowel mark is drawn above or below the consonant determines which
sound it represents.

In all four languages, syllables have a consonant-vowel-consonant format. Most of the time,
syllable-ending consonants are simply not written, although there are virama-like marks in Tagalog
and Hanunóo. The Hanunóo virama (called the pamudpod) is used somewhat more often. In both
Tagalog and Hanunóo, the virama is always visible; the consonants do not form conjuncts. In
Hanunóo and Buhid, however, certain consonant-vowel combinations form ligatures.

The Philippine scripts are generally written from left to right, as the other Indic scripts are, but you
also see them written from bottom to top, with the lines running from left to right. This seems to
be a byproduct of the instruments usually used to write these scripts.

Punctuation marks similar to the danda and double danda in Devanagari are used with all four
scripts.

 Tibetan

 A Practical Programmer’s Guide to the Encoding Standard 249

In Unicode, the four scripts are encoded in four successive blocks in the range from U+1700 to
U+177F. The Tagalog block runs from U+1700 to U+171F, the Hanunóo block from U+1720 to
U+173F, the Buhid block from U+1740 to U+175F, and the Tagbanwa block from U+1760 to
U+177F. Characters that correspond between the scripts are encoded at analogous positions in
their respective blocks. The punctuation marks are encoded one four all scripts, in the Hanunóo
block.

 251

CHAPTER 10 Scripts of East Asia

Now we come to the last of the four major groups of modern scripts. This last group comprises the
East Asian scripts. In particular, it covers the various writing systems used to write Chinese,
Japanese, Korean, and (prior to the 1920s) Vietnamese. These scripts are often referred to
collectively as the “CJK” scripts (for “Chinese, Japanese, and Korean”), or sometimes the “CJKV”
scripts (for “Chinese, Japanese, Korean, and Vietnamese”).

This group of scripts is fundamentally different from the others. If you’ll remember, the European
alphabetic scripts all either descended from the Greek alphabet or arose under its influence. The bi-di
scripts of the Middle East all either descended from the ancient Aramaic alphabet or arose under its
influence. The Indic scripts used in southern Asia all descended from the ancient Brahmi script. The
Brahmi script is generally thought to have its roots the Aramaic script, and the Greek and Aramaic
alphabets are both direct descendants of the ancient Phoenician alphabet. So the Phoenician alphabet
can properly be thought of as the ancestor of all the writing systems we’ve looked at so far.

Not so the CJK scripts. These scripts all either descended from or arose under the influence of the
Chinese characters. The Chinese characters have no known antecedent. They’re not known to have
evolved from anybody else’s writing system. Just as the ancient Phoenician alphabet (well, actually
its earlier ancestors) arose spontaneously in Mesopotamia with no outside influence, the Chinese
characters arose spontaneously in China with no outside influence.

So the writing systems of East Asia are related to each other, but they’re not related to any of the
other scripts we’ve looked at. They share some unique characteristics:

 Scripts of East Asia

252 Unicode Demystified

x� The Chinese characters are used in almost every system we’ll look at. Unlike the other scripts,
where the characters stand for sounds, Chinese characters stands for whole words or ideas65, so
there are orders of magnitude more Chinese characters than there are characters in any of the
other writing systems— they number in the tens of thousands. Needless to say, the individual
characters can get quite complex. Moreover, there are multiple variant forms of many Chinese
characters, and new Chinese characters are still being coined.

x� All of the CJK languages, except for Yi, make use of some kind of system of phonetic characters
to supplement the Chinese characters. How important this system is varies with language—the
Chinese system is rarely used, the Korean phonetic system is used almost exclusively, and the
Japanese phonetic systems are somewhere in the middle. The modern Yi script is completely
phonetic, and doesn’t actually use the Han characters, but arose under their influence.

x� All of these writing systems make use of characters that are all the same size and shape (that is,
the characters are all designed to fit into a square, and successive characters in a passage of text
all fit into the same-size squares). The characters do not interact typographically—they don’t
change shape depending on context, they don’t connect, and they don’t form ligatures. Each
character stands alone. A page of CJK text often looks like the characters were laid out on graph
paper.

x� All of these writing systems are traditionally written vertically. That is, the characters in a line of
text start at the top of the page and work their way down, with lines of text starting on the right-
hand side of the page and working their way to the left. Under the influence of Western writing
and Western printing and computing equipment, however, all of these scripts are now also written
like the Latin alphabet: on horizontal lines running from left to right and progressing from the top
to the bottom of the page.

x� Spaces are not used between words (in fact, the whole question of what constitutes a “word” in
Chinese writing can be somewhat complicated), except sometimes in Korean.

x� Many of these writing systems make occasional use of a system of interlinear annotation (i.e.,
notes between lines of text) to clarify the pronunciation or meaning of unfamiliar characters.

65 Not entirely true, but a decent approximation for now (and, in fact, the approximation that leads to their

being called “ideographs”). Bear with me, and we’ll get into the meat of the matter in the next section.

The Han characters

Since the Chinese characters form the cornerstone, in one way or another, of all the scripts we’ll be
talking about, we’ll start be looking at them.

The Chinese characters are called hanzi in Mandarin Chinese, kanji in Japanese, hanja in Korean,
and chu Han in Vietnamese. All of these expressions mean “Han characters,” the term we’ll also use
for them from here on out. Han, from the Han Dynasty, is used to refer to traditional Chinese culture.
In other words, in Asia, “Han” more or less means “Chinese.”

 The Han characters

 A Practical Programmer’s Guide to the Encoding Standard 253

The Han characters have a very ancient history.66 The earliest examples of Chinese writing date back
to about 1200 BC. The Han characters in use today are directly descended from these early
examples. The shapes of the characters have changed over time, and many more characters have been
added, but the general principles underlying the system have remained constant through more than
three millennia.

The Han characters are variously referred to as “ideographs,” “logographs,” and “pictographs,” all of
which are sort of right and sort of wrong. “Ideographs,” the term the Unicode standard uses, implies
that the characters simply stand for things and concepts and not for sounds. In practice, this is more
or less true, especially for non-Chinese speakers, but for Classical Chinese (and, to a lesser degree,
for modern Chinese languages such as Mandarin), the Han characters also have a strong phonetic
function. “Logographs” implies that the characters stand for words. Again, this is close enough,
although the simple “syllable = word = character” idea that many have of Chinese doesn’t always
hold in practice. Polysyllabic words in Chinese are usually written with multiple characters, so it may
be more accurate to think of the characters as “syllabographs.” “Pictographs” is just plain too
simplistic. It implies that all the Han characters are little pictures of the things they represent. Some
may have started out that way, and many of the simplest characters still work like that, but for most
characters, the truth is more complicated.

Western writing and Chinese writing probably started out in more or less the same way. Writing
wasn’t invented to tell stories; it was invented to keep records.67 Say you have ten sheep and three
head of cattle and you want to make a record of how many pieces of livestock you have. So on some
handy object you have, maybe a leaf or a piece of bark or a piece of clay, you draw a little picture of
a sheep and follow it with ten scratch marks and a little picture of a bull and follow it with three
scratch marks:

Now say you want to record a business transaction. Say you give your neighbor Joe three of your
sheep in exchange for two of his cattle. You might draw something like this:

66 My sources for information on the Han characters are William G. Boltz, “Early Chinese Writing,” in The

World’s Writing Systems, pp. 191-199; Victor H. Mair, “Modern Chinese Writing,” op. cit., pp. 200-208;

Ken Lunde, CJKV Information Processing (Cambridge: O’Reilly, 1999), pp. 27-65; and Nakanishi, pp. 82-

87.
67 See, for example, Georges Ifrah (trans. David Bellos, E. F. Harding, Sophie Wood, and Ian Monk), The

Universal History of Numbers (New York: Wiley, 2000), p. 77ff.

 Scripts of East Asia

254 Unicode Demystified

Here we have the basics of pictographic writing. The simplest Han characters are pictographs just
like this:

 man

 tree

 mountain

 river

 mouth

Of course, some of them you have to use your imagination with a little more than others:

 woman

 sun

 moon

As often happens, the pictographs tend to become simpler and more stylized over time, looking less
and less like the things they represent. The straight lines in the “sun” and “moon” characters, for
example, reflect the fact that the tools these characters were originally written with didn’t do circles
well.

In many cases, it’s fairly simple to come up with a picture to describe an abstract concept, giving rise
to characters that can properly be called “ideographs”:

 up

 down

 The Han characters

 A Practical Programmer’s Guide to the Encoding Standard 255

 middle

 one

 two

 three

You can also do variations on a single character to mean different things. For example, if you add an
extra stroke to the “tree” character, you get “root”:

 root

You can also use characters to mean one of a couple related concepts. For example, the “sun” and
“moon” characters also represent “day” and “month.” The character for “root” also means “origin.”

Then you can combine characters. For example, take two trees and put them next to each other…

�

…and you get the character for “woods.” Add another tree…

�

…and you get the character for “forest.” Put “sun” and “moon” together…

�

…and you get the character for “bright.”

So far we haven’t talked about how the Han characters can be used to represent sounds; all the
discussion so far as revolved around the semantic values of the characters—that is, how they are used
to represent things or concepts. To understand how phonetics get involved, consider this example:

 Scripts of East Asia

256 Unicode Demystified

These three pictures represent the word “carpenter.” To get “carpenter,” you just take the names of
the three objects and string them together: you have a picture of a car, a picture of a pen, and a
picture of a tear running down someone’s cheek. This, as you probably know, is called a rebus, and
examples abound. A favorite old chestnut is this one…

 STAND
 I

…which means “I understand” (that is, “I” under “stand”). Rebuses involving only the names of the
letters and numbers abound on personalized license plates these days. Another oldie but goodie is

OU812

…which, of course, means “Oh, you ate one too?” and was the title of an old Van Halen album (yeah,
I’m really dating myself here).

So if we follow the “rebus principle,” we see that a Han character can be used not only for the word
the character originally meant to symbolize, and not just other words with similar or related
meanings, but also for words that sound like the original word. For example, consider the character

�

This character means “king.” No, there’s nothing about it that really leaps out at you and says “king.”
This is another example of the stylization these shapes undergo over time. The original version of
this character68 looks like a human figure standing on a line. This doesn’t really say “king,” either
(maybe the line is a carpet or dais or something), but it’s closer.

Anyway, I’m digressing. The word for “king” in Chinese is “wang.” Given this, you could use this
character for other words that are pronounced the same way. In this way, the same character can be
used to mean “to go toward,” which is also pronounced “wang” (but with a different intonation).
There’s no semantic or etymological connection between the two words; they just happen to be
pronounced similarly. But because we have a character for “wang” meaning “king,” we can also use
it for “wang” meaning “to go toward,” which doesn’t lend itself well to inventing an ideograph.

Another example is this character:

�

This character originally meant “cowrie shell” (these were once used as currency), and was
pronounced “bei.” This character also came to be used to represent the word “bai,” which meant
“defeat.”

68 See the Boltz article in The World’s Writing Systems; table 14.1 on p. 192 and the discussion of the

character on pp. 192-193, from which this example, and all of the following examples, were lifted.

 The Han characters

 A Practical Programmer’s Guide to the Encoding Standard 257

So between using a character to represent a group of semantically related words (such as “root” and
“origin”) and using a character to represent a group of words with similar pronunciations, you can
greatly increase the expressive power of these characters.

This is the point where the development of Chinese writing goes off in a different direction from the
direction the development of Western writing took. The Phoenicians took existing pictographs and
began using them to represent their initial sounds. (This is kind of like the “Alpha, Bravo, Charlie”
system used by the U..S. military for spelling out words.) For example, the word beth meant “house”
and was represented by a little picture of a house. Over time, the character came to represent the “b”
sound at the beginning of “beth,” instead of the whole word “beth” or the concept of “house,” and its
shape also gradually changed to look less and less like a house (or anything else). This process
eventually led to the Phoenician alphabet (and the picture of a house eventually evolved into the
Latin letter B and practically every other alphabetic letter representing the “b” sound).

Chinese writing occasionally made feints in the same direction, but the Han characters never lost
their semantic and etymological baggage. The characters, right down to modern times, have always
represented both sounds and ideas.

Now if you’re continually making the characters do double, triple, or quadruple duty, you’re
introducing ambiguity into the system. Up to a point, you can use context to determine which of
several different words is intended for a particular character in a particular spot, but it gets unwieldy
after a while.

The system that evolved with the Han characters involved using an extra character to resolve the
ambiguity. If we go back to our “cowrie shell” example, we could set apart the “defeat” meaning by
adding another character that clarified the meaning. The character chosen was this one…

…which means “strike” and is pronounced “pu.” Combine the two of them together and you get this:

�

[fix to use Traditional Chinese form—the left-hand part should be the same as the example
above]

The figure on the left represents the sound “bei,” and the figure on the right represents the concept of
“strike,” and together you get “bai,” or “defeat.”

The same thing can also work in the other direction. Consider the character…

 Scripts of East Asia

258 Unicode Demystified

…which normally means “mouth” and is pronounced “kou.” It also came to be used to represent the
word “ming,” which means “to call out.” This time, you have a semantic similarity with a difference
in pronunciation. The resolve the ambiguity, they added this character…

…which means “brighten” and is also pronounced “ming.” This gives us this:

Again, you have two components, one representing the sound “ming” and a second representing the
concept “mouth.” Together they represent the word “ming” meaning “to call out.”

This process is actually recursive. You can now take the compound character and do the same thing
with it. So we take our new compound character…

…representing the word “ming” and meaning “to call out” and use it to represent yet another word
that’s pronounced “ming,” this time meaning “inscription (as on a bronze vessel)”.

Now to set it apart from the meaning “to call out,” you add another component:

�

This means “metal.” Add it to the other two…

�

…and you get a unique character meaning “inscription.”

This process can theoretically continue ad infinitum, although in practice the characters generally
become unreadable if they have more than five or six components. Characters with more than five or
six components are quite rare.

So this is basically how the Han characters work. As you might imagine, this gives rise to a few
interesting problems. First, what’s to keep different people from coming up with totally different
characters for the same words? Two different people might follow the same basic rules, but use

 The Han characters

 A Practical Programmer’s Guide to the Encoding Standard 259

different component characters, leading to two different, but both perfectly valid, characters for the
same word. Who decides which one wins?

This problem is akin to the problem to standardizing spelling of words across a population that uses
an alphabetic script, and the standard solution is the same: publish a dictionary. (Of course, this
works best if you’re a powerful emperor and can force people to follow the dictionary’s
prescriptions.) The first known dictionary of Han characters was compiled by Xu Shen in about AD
100, and it had the effect (over time, anyway) of standardizing on one way of writing each word. Xu
Shen’s dictionary, the Shuo wen jie zi, contained 9,353 characters. It began by dividing them into unit
characters (those that couldn’t be broken down into component parts) and compound characters
(those that could). With the compound characters, Xu Shen put together a list of 540 component ele-
ments, at least one of which occurred in each compound character. These component elements are
called “radicals,” and one of them was classified as the main radical in every compound character. In
this way, a hierarchy is imposed on the component parts of a compound character, and this both helps
standardize the characters for each word and to ensure that the system that had developed by that
time, using components that represent both sound and meaning, remains the standard way of writing
Chinese words.

By the early eighteenth century, the number of characters had grown to almost 50,000, and the
Kangxi emperor commissioned a new dictionary, the Kangxi Zidian. It was completed in 1716 and
contained 47,021 characters. The Kangxi dictionary, like the many others before it, preserved the
basic classification of characters according to radical first seen in the Shuo wen jie zi, but despite the
huge growth in the number of characters, was able to classify them all using just 214 radicals. Unlike
the Shuo wen jie zi, the Kangxi dictionary organizes characters within each radical group according
to the number of additional pen strokes they contain beyond those used to write the radical.

The Kangxi dictionary remains the definitive authority for classical Chinese literature, and its system
of 214 radicals continues to be used today to classify Chinese characters. In fact, this system of
radicals is used in the radical-stroke index in the Unicode standard itself. (This system of organizing
the characters by radicals and strokes works pretty well; even a non-Chinese speaker such as yours
truly was able to find most characters in the Unicode radical-stroke index with only a modicum of
effort.)

One of the beauties of the Han characters is that since they represent words, and by extension ideas,
the same text can (with proper education, of course) be read and written by speakers of many
different languages. (Of course, the farther the spoken language gets from classical Chinese, the less
help the phonetic cues in the characters are.) In a phonetic writing system, someone who doesn’t
speak a particular language but uses the same script can still look at the writing and have at least a
vague idea of how the words are pronounced, but probably little or no idea what they mean. With the
Han characters, someone can look at something other than his native language written using the Han
characters and get a vague idea of what it says, but have little or no idea how it’s pronounced. It’s
interesting to compare the situations of China and India. Both are vast countries consisting of
hundreds of millions of people of many different ethnic groups speaking many different languages.
But in India, even relatively closely-related languages are frequently written with their own scripts. In
China (with a number of important exceptions such as Inner Mongolia and Tibet) all the different
spoken languages use the same written language.

(Of course, standard written Chinese consists of characters designed either based on Classical
Chinese pronunciation or modern Mandarin pronunciation, and the characters are arranged according
to Madarin grammar, so speakers of other Chinese languages, such as Cantonese, are effectively
reading and writing a different language from the one they speak. There actually are Han characters

 Scripts of East Asia

260 Unicode Demystified

specific to Cantonese and other Chinese languages, but up until recently, there’s been no
comprehansive attempt to put them into any encoding standards. This began to change with Unicode
3.1, which includes meny Cantonese-specific characters, but there’s still much to do.)

Just as the various Indian scripts spread outside of India, the Han characters have come to be used
outside of China. The Han characters were the first writing system used in both Japan and Korea,
although both have since supplemented the Han characters with their own scripts. Until recently, the
Han characters were also used in Vietnam. In all of these places, people also coined new characters
using the same techniques the original ones were constructed with (but presumably according to
Japanese or Korean pronunciation). In fact, the Vietnamese developed a whole system of characters,
the chu Nom, for writing Vietnamese. These characters look and behave like Chinese characters, but
are indigenous and were used instead of the traditional Chinese characters. The Japanese and
Koreans didn’t go this far; they used their own characters along with the traditional Chinese
characters.

This points to one of the other great things about the Han characters—the system is very malleable,
and it’s easy to coin new characters for new words. Because of this, the number of Han characters
has steadily grown over the years. This chart shows the numbers of characters in various Chinese
dictionaries down through the years69:

Year (AD) Number of Chinese Characters

100 9,353

227-239 11,520

480 18,150

543 22,726

751 26,194

1066 31,319

1615 33,179

1716 47,021

1919 44,908

1969 49,888

1986 56,000

1994 85,000

Because of this, it’s proper to think of the Han characters as an open-ended writing system. It’s
impossible to say just how many Han characters there are, because some occur so rarely, and new
ones are constantly being invented.

Of course, this doesn’t mean everybody knows every character—this would clearly be impossible.

2,400 characters is generally considered the lower limit for basic literacy, with most educated people

having a working repertoire of four or five thousand and some especially literate people up to eight

thousand. Studies have repeatedly shown that 1,000 characters cover 90% of written Chinese, 2,400

cover 99%, 3,800 cover 99.9%, 5,200 cover 99.99%, and 6,600 character cover 99.999% of written

Chinese. Thus, the vast majority of Chinese characters are extremely rare, many so rare that neither

their pronunciation nor their meaning is known—only their shape. Some may have only been used

69 This table is taken directly from Lunde, p. 58.

 The Han characters

 A Practical Programmer’s Guide to the Encoding Standard 261

once or twice in all of history.70 Unfortunately, many of these characters do occur, however rarely, in

modern writing and it must be possible to represent (and thus input and print) them.

(It’s worth pointing out that this is fairly analogous to words in English. The average English
speaker has a working vocabulary roughly equivalent to the number of characters the average literate
Chinese reader has in his working vocabulary. And new characters get invented at roughly the same
rate as new English words get invented. No one regularly uses all the words in Webster’s Third, and
even though two people may have vocabularies of about the same size, they won’t share all the same
word.)

70 These statistics and the following sentences are taken almost verbatim from the Mair article in The World’s

Writing Systems, pp. 200-201.

Variant forms of Han characters

Of course, despite efforts at standardization, variant forms of the characters do creep in over time.
This tends to happen most often with more complicated characters: people come up with quicker and
less-complicated ways of writing them, and some of these catch on and come into widespread use.
Which forms catch on will tend to vary according either to a particular writer’s preference, or, more
often, according to regional convention.

As an extreme example, there are at least six variant forms of the character for “sword” in Japanese:

More important than this kind of thing, however, are national variants. Over time, some characters
have developed different forms in Japan and Korean than they have in China, for example. In the
example above, the first character is a Japanese-specific variant of the second character.

Of particular importance is the difference between Traditional Chinese and Simplified Chinese. In
the 1950s, the Mao government in the People’s Republic of China undertook a systematic effort to
simplify written Chinese. Among the outcomes of this effort were the Pinyin system of writing
Chinese words with Latin letters, and new versions of several thousand Han characters, many of
which were so drastically simplified as to be unrecognizable given only their original forms.

Today, the new forms are used exclusively in the People’s Republic of China, and the old forms are
still used in Taiwan. The term “Simplified Chinese” has come to refer to Chinese as written in
mainland China, and “Traditional Chinese” has come to refer to Chinese as written in Taiwan. These
days the difference between Simplified and Traditional Chinese goes beyond merely using characters
with different shapes; the choice of which ideographs to use in the first place also tends to be dif-
ferent between the locales. The traditional forms of the characters also tend to be used in Hong Kong

 Scripts of East Asia

262 Unicode Demystified

and among Chinese outside of China, while the simplified forms of the characters tend to be used in
Singapore.

Japan and Korea tend to have their own forms, which sometimes match the Traditional Chinese form,
sometimes match the Simplified Chinese form, and often are completely different. This means the
same basic character can have as many as four different shapes, depending on the place where it’s
being used (the line between saying this and saying that the four different places have different, but
historically related, characters for expressing the same concept is actually quite thin).

Here are some examples of characters with variant forms in Traditional Chinese, Simplified Chinese,
and Japanese71:

Gloss T.C. S.C. J

broad

country

infant

east

open

see

picture !

old

not/without

deficient/vacancy

hall

surround/enclose

abundant

The mapping between Simplified and Traditional Chinese isn’t always straightforward, either, as in
many cases the language reformers mandated the same simplified character for several different
words that originally had different traditional characters. For example, all of these characters in
Traditional Chinese…

71 These examples are taken from “Comparative Table of Sinitic Characters,” The World’s Writing Systems, pp.

252-258

 Variant forms of Han characters

 A Practical Programmer’s Guide to the Encoding Standard 263

…have the same representation in Simplified Chinese:

The four Traditional Chinese characters have widely varying meanings, but their pronunciations are
all variations on “gan.” Here, rather than simplifying the more-complicated characters, they simply
fell back on rebus writing.72

Korean-specific variants are harder to find—generally the Korean forms of the Han characters follow
the Traditional Chinese forms, but Korean font-design principles (things like stroke length and
termination) tend to follow Japanese font-design principles rather than Chinese ones.

72 This example is taken from Jack Halpern, “The Pitfalls and Complexities of Chinese to Chinese

Conversion,” an undated white paper published by the CJK Dictionary Publishing Society.

Han characters in Unicode

Unicode includes a truly huge number of Han characters: 70,195 different characters are included in
Unicode 3.1. The Han character set in Unicode represents a truly huge effort by a lot of East Asian-
language experts over a long period of time.

 Scripts of East Asia

264 Unicode Demystified

Unlike pretty much all of the other modern scripts encoded in Unicode, there’s no set number of Han
characters.73 They number well into the tens of thousands, but there’s no definitive listing of all of
them. Not only are new characters being created all the time, but there are numerous characters that
appear maybe only once or twice in all East Asian writing. Some of these might just be idiosyncratic
ways of writing more common characters, but some are new coinages created for some ad-hoc
purpose in some piece of writing (often called “nonce forms”). There are characters in some Chinese
dictionaries whose pronunciations and meanings have both been lost.

So the idea of official character sets goes back well before the introduction of information technology
into the Han-character-using world. Not only do you have sets of characters collected in dictionaries,
but various governmental entities publish official lists of characters that are to be taught in school to
all children, or that restrict the set of characters that can be used in official government documents,
etc. This is more or less akin to states in the U.S. publishing vocabulary lists containing words that
every child at certain grade levels should know.

These lists form the basis of the various encoding standards used in the various Han-character-using
countries, but all of the character encoding standards go beyond these lists of basic characters to
include rarer characters. Each of the main locales using the Han characters—the People’s Republic
of China, Taiwan, Japan, North and South Korea, Vietnam, Hong Kong, and Singapore—have
developed their own sets of character-encoding standards, generally for their own use.

Unicode uses many of these as the basis for its collection of Han characters. The CJK Unified
Ideographs area, the main body of Han characters in Unicode, is based on no fewer than eighteen
different source standards, containing approximately 121,000 characters total. Yet the CJK Unified
Ideographs area contains only 20,902 characters.

How is this possible? Well, consider the various ISO 8859 standards. Together, the first ten parts of
ISO 8859 comprise 1,920 printing characters. However, this number is misleading because each part
of ISO 8859 contains the ASCII characters (in fact, the various extended Latin encodings included in
ISO 8859 also contain considerable overlap). Thus, 960 characters of that 1,920-character total
represent ten copies of the 96 ASCII characters. Unicode only encodes these once.

In the same way, there’s considerable overlap between the eighteen source standards that the CJK
Unified Ideographs block are based on. Unfortunately, determining just which characters are
duplicates and which aren’t isn’t all that straightforward.

Unicode’s designers followed several rules in deciding which characters were duplicates and could
therefore be weeded out (or “unified”):

x� If one of the encoding standards that went into the original set of Han characters (the ones
designated as “primary source standards” by the committee) encodes two characters separately,
then Unicode does too, even if they would otherwise have been unified. This is called the “Source
Separation Rule,” and is analogous to the round-trip rule used in most of the rest of the Unicode
standard. For characters added to Unicode more recently, the Source Separation Rule is not fol-
lowed—round-trip compatibility is only guaranteed for the original primary source standard (this
is also true from some more recent source standards in other parts of Unicode). The various
different versions of the “sword” character we looked at earlier are encoded separately in the JIS

73 Most of the information in this section comes either from the Unicode standard itself, pp. 258-267, or from

Lunde, pp. 66-137.

 Han characters in Unicode

 A Practical Programmer’s Guide to the Encoding Standard 265

X 0208 standard, which is a primary source standard, and so are also encoded separately in
Unicode.

x� If two characters look similar but have distinct meanings and etymologies, they aren’t unified.
This is called the “Noncognate Rule.”

For example, this character, which means “earth”…

�

…looks a lot like this one…

�

…but this second character is completely unrelated to the first character. It means “warrior” or
“scholar.” These two characters each get their own code point values in Unicode.

For characters that are related historically and have similar shapes, closer examination is required to
decide whether or not to unify them. The basic principle is that if the characters have the same
“abstract shape”—that is, if the differences between then can be attributed merely to differences in
typeface design—they can be unified. Otherwise, they’re considered to be distinct.

To figure out whether the differences between two characters are merely typeface-design differences,
the characters are decomposed into their constituent parts. If they have different numbers of
components, or if the components are arranged differently, the characters are not unified. For
example, these two characters have different numbers of components74…

 �

…and these two characters have the same components, but arranged differently:

 �

If corresponding components in the two characters have a different structure, or are based on
different radicals, the characters are not unified. For example, these two characters have one
corresponding component that has a different structure in the two characters…

 �

74 The following set of examples are all taken from the Unicode standard, p. 265.

 Scripts of East Asia

266 Unicode Demystified

…and these two characters are similar, but based on different radicals:

 �

This leaves us with relatively minor differences, such as stroke overshoot…

…stroke initiation and termination…

…and stroke angle:

[these would look a lot better if we could get access to the original EPS files from TUS]

These differences (and thus the above pairs of characters) are considered differences in typeface
design, and these pairs of characters are unified in Unicode.

One result is that, for the most part, the Simplified and Traditional Chinese versions of most
characters are encoded separately in Unicode, as are the Japanese variants when they’re different.
Still, there are cases where this didn’t happen because the shapes were close enough to be unified,
but different typeface designs are still preferred in different locales. For example, rhe Traditional
Chinese character for “bone”…

…looks like this in Simplified Chinese:

The differences between the two were small enough for them to be unified. In these cases, the choice
of typeface is considered outside the scope of Unicode, just as the choice of typeface is outside the

 Han characters in Unicode

 A Practical Programmer’s Guide to the Encoding Standard 267

scope with the other scripts in Unicode (such as when historical and modern versions of letters are
unified even when they have different shapes, for example Old Cyrillic and modern Cyrillic letters).

The result of the rigorous application of these principles is the Unified Han Repertoire, the collection
of Han characters in Unicode. The Unified Han Repertoire is often nicknamed “Unihan.” This is how
the 110,000 characters in the original eighteen source standards were boiled down to the 20,902
characters in the original Unihan collection (this original collection of characters, the ones in the CJK
Unified Ideographs area, was originally called the Unified Repertoire and Ordering, or URO). The
same principles have also been applied to the collections of characters that were added after the
original version of Unicode.

There is one other interesting problem that had to be solved: which order to put the characters in.
Unicode’s designers didn’t want to specifically follow the ordering of any of the source standards,
since this would appear to favor one country over the others. They opted instead for a culturally-
neutral ordering based on the ordering of the Kangxi dictionary. This is regarded as authoritative in
all the countries that use the Han characters, and contains most of the characters in Unicode. For
characters that aren’t in the Kangxi dictionary, there’s a list of three other dictionaries (one each for
Japanese, Chinese, and Korean) that were used instead. The character in question was located in one
of these dictionaries and placed in the Unicode order after the nearest character in that dictionary that
was also in the Kangxi dictionary.

The CJK Unified Ideographs area
The CJK Unified Ideographs area runs from U+4E00 to U+9FAF. This is the original set of Han
characters in Unicode. It contains 20,902 characters drawn from eighteen different source standards.

The source standards are divided into groups that are given letters: the “G source” consists of seven
national standards from mainland China, the “T source” consists of three sections from the
Taiwanese national standard, the “J source” consists of two Japanese national standards, and the “K
source” consists of two Korean national standards. Eight additional sources which aren’t official
national standards and are collected from all the preceding locales constitute the “U source,” but
characters that exist only in the U source aren’t included in this block.

The CJK Unified Ideographs Extension A area
The CJK Unified Ideographs Extension A area runs from U+3400 to U+4DBF. It adds 6,582
additional characters drawn from thirteen additional sources. These include three extra G-source
standards (plus extra characters from some of the original sources), six additional T-source standards
(basically, the rest of the Taiwanese national standard, which is huge), another J-source standard, two
more K-source standards, two Vietnamese standards (the “V source”), and a bunch of extra supple-
mental (“U source”) materials (again, characters only in the U source don’t actually go in this area).
This collection follows the same unification and ordering rules as the original Unihan collection
(except that they dropped the Source Separation Rule), but is encoded separately because this
collection came along after the other collection had already been encoded. Extension A was added in
Unicode 3.0.

The CJK Unified Ideographs Extension B area
Unicode 3.1 opened up the non-BMP space for colonization, and the Ideographic Rapporteur Group,
the group responsible for maintaining the Unihan collections, took to it with a vengeance. Plane 2,

 Scripts of East Asia

268 Unicode Demystified

the Supplementary Ideographic Plane (or “SIP”), now contains 42,711 Han characters. These make
up the CJK Unified Ideographs Extension B area (sometimes called “Vertical Extension B”), which
runs from U+20000 to U+2A6D6.

The characters are drawn from twenty new source standards: eight new G-source standards, most of
which are dictionaries instead of character-interchange standards (the KangXi dictionary was one of
them), a collection of characters used in Hong Kong (the new “H source”), five new T-source
standards (characters added to the Taiwanese national standard in its most recent incarnation), two
new J-source standards, a new K-source standard, and three new V-source standards. Extension B
doesn’t add any U sources (supplemental works consulted by the IRG but not formally submitted by
any of the member countries).

Most of the characters in Extension B are quite rare, although this is also where new characters from
non-Mandarin languages go, so there are a lot of Cantonese-specific characters, many of which you
see in common things like Hong Kong place names, in here.

The CJK Compatibility Ideographs block
The CJK Compatibility Ideographs block runs from U+F900 to U+FAFF. The South Korean national
encoded standard, KS X 1001 (originally KS C 5601), includes duplicate encodings for a bunch of
Han characters that have multiple pronunciations in Korean (the Unicode standard likens this to
having a separate code point value for each different pronunciation of the letter a). These characters
are pure duplicates: they look identical and have the same meaning; they just have variant
pronunciations. However, KS X 1001 is a primary source standard, so the Source Separation Rule
dictates that Unicode also had to give these characters multiple code points. The designers of
Unicode compromised, giving them separate code-point values, but putting them into a separate
zone, the CJK Compatibility Ideographs area, rather than interspersing them with the other Han
characters in the main Unihan area. They did the same thing with duplicate characters that were
inadvertently included in a few other source standards. All of these characters have canonical—not
compatibility—decompositions to the original characters in the CJK Unified Ideographs area.

There are actually twelve characters in this block that aren’t duplicates and can be considered part of
the main Unihan collection. They’re here rather than in the main Unihan block because they were
drawn from the supplemental sources (the “U source”) rather than from the national standards. These
characters don’t decompose and aren’t compatibility characters, despite the name of the block they’re
in.

The CJK Compatibility Ideographs Supplement block
The SIP also contains the CJK Compatibility Ideographs Supplement block, which runs from
U+2F800 to U+2FA1D. These characters are also duplicates, but were added to maintain round-trip
compatibility with the most recent version of CNS 11643, the Taiwanese national standard. These
characters also have canonical decompositions to characters in the main Unihan area.

The Kangxi Radicals block
The Kangxi Radicals block, which runs from U+2F00 to U+2FDF, contains the 214 radicals used in
the Kangxi dictionary to classify the Han characters. Most of these radicals can also be used as
ideographs, and are already encoded in the main Unihan block. The characters here aren’t Han
characters; they’re just radicals and they’re not supposed to be used as Han characters. Unicode

 Han characters in Unicode

 A Practical Programmer’s Guide to the Encoding Standard 269

classifies them as symbols rather than letters to emphasize this. All of these characters have
compatibility decompositions to the ideographs that consist of just the radical.

The CJK Radicals Supplement block
The set of radicals used to classify characters varies from dictionary to dictionary, and some radicals
have variant shapes depending on the character that includes them (or a different shape in Simplified
Chinese than in Traditional Chinese). The CJK Radicals Supplement block, which runs from
U+2E80 to U+2EFF, includes a bunch of these supplemental radicals and supplemental shapes.

Indeographic description sequences

It hardly seems like, with more than 70,000 characters, any more would be necessary. But the set of
Han characters is an open-ended set, with more being created every day (a common source, for
example, is proud parents wanting to give their children unique names). As if that weren’t enough,
not all of the variant forms of the encoded characters are given separate encodings. When there are
big differences, they are, but as we saw earlier, smaller differences that can be attributed to font
design are unified. The problem is that there are many cases where there are definite regional
preferences for particular font designs, meaning it can sometimes be difficult to get precisely the
glyph you want, even when the character is encoded. Unicode provides a couple of ways of dealing
with these problems.75

Let’s start by looking at a rare glyph we might need these techniques for. Consider this character:

[should probably get John to send me the EPS of this character… might also be possible to put
it together from the pieces using Illustrator]

This is an archaic form of this character…

…which means “dry”. This passage from the writings of Mengzi, the Second Sage of Confucianism,
uses it76:

75 Most of the material in this section is drawn from John H. Jenkins, “New Ideographs in Unicode 3.0 and

Beyond,” Proceedings of the Fifteenth International Unicode Conference, session C15. In particular, all of

the examples in this section are ripped off from that source.

76 Jenkins supplies this English translation for the excerpt, attributing it to D.C. Lau: “When the sacrificial

animals are sleek, the offerings are clean, and the sacrifices are observed at due times, and yet floods and

droughts come, then the altars should be replaced.”

 Scripts of East Asia

270 Unicode Demystified

A modern edition would just use the modern glyph, but a scholar seeking an accurate transcription of
the original text might need an accurate way to represent the ancient glyph. There are a number of
ways of dealing with this in Unicode.77

The oldest and simplest solution is the geta mark (U+3013), which looks like this: . This mark is
used by Japanese printers to reserve space on the line for a character they can’t print. Using it, the
passage above would look like this:

This gives you a good visual tip-off that there’s a character in this passage that can’t be rendered, but
it doesn’t tell you anything about that character. Unicode 3.0 introduces a refinement of this idea that
gives you a little more information. It’s called the ideographic variation indicator (U+303F) and
looks like this:

P�

The idea is to use this in conjunction with some character that is encoded in Unicode. You precede
that character with the ideographic variation indicator to say that the character you really want is
somehow related to the character following the ideographic variation mark. It might be a glyphic
variant of that character, look kind of like it, mean the same thing, or whatever. If we use it in our
example, it winds up looking like this:

�
P

This may not be a whole lot better than using the geta mark, but it at least provides some information
as to what’s really desired. You could, of course, just use the substitute glyph, and in this example at
least, the meaning of the passage would still get across. But the ideographic variation indicator gives
a visual signal that it isn’t the glyph you really wanted to use.

Unicode 3.0 also introduced a much richer way of getting across which character you mean when it
isn’t available. This is called the ideographic description sequence, and it makes use of the
characters in the Ideographic Description Characters block (U+2FF0 to U+2FFF). The basic idea

77 Actually, this character is encoded in Unicode, in the new CJK Unified Ideographs Extension B area, so this

example may not be the best. Nevertheless, the character was added in Unicode 3.1, so if you were dealing

with a Unicode 3.0 or earlier implementation, or didn’t have a font that actually contained this character, you

might still have to use the techniques described here.

 Han characters in Unicode

 A Practical Programmer’s Guide to the Encoding Standard 271

behind ideographic description sequences is simple: Most Han characters are simply combinations of
two or more other Han characters. You could get at least a decent approximation of the character you
want by using the characters that make it up along with some kind of character indicating how they
are combined together. The ideographic description characters fulfill that role of indicating how other
ideographs are combined together.

For example, let’s say you want to combine this character…

�

…which means “well,” with this one…

�

…which means “frog,” to produce a “frog in a well” character:78

[can probably put together a decent-looking version of this glyph in Illustrator]

You could use the character U+2FF1 IDEOGRAPHIC DESCRIPTION CHARACTER ABOVE TO
BELOW (²) to indicate you want to stack the other two characters on top of each other, yielding
something that looks like this:

²

Perhaps not the most beautiful sequence of characters ever designed, but it does a good job of saying
what you mean.

More complicated sequences are also possible. You could, for example, break down the “frog”
character even further, since “frog” is made up of individual characters meaning “insect” and
“pointed jade” (this is obviously the phonetic). Either of these sequences could also be used to
describe our “frog in a well” character:

² ± �

² ± ²

78 “Like a frog at the bottom of a well” is a common expression in Chinese for a narrow-minded
person, which is where this example comes from.

 Scripts of East Asia

272 Unicode Demystified

What this shows is that the ideographic description characters are recursive. The basic rule is that
you start an ideographic description sequence with an ideographic description character, and then
follow that character with the two (or three) characters that are to be composed, in order from left to
right (or top to bottom). These characters may be regular Han characters, radicals, or ideographic
description sequences themselves.

This can go to fairly wild extremes. Let’s go back to the old character from the Mengzi example. It
can be described like this:

±´¼±

Crystal clear, huh? This points up one of the problems with ideographic description sequences.
They’re designed to be machine-readable, and some human readability is sacrificed in the process.
The sequence can be parsed like this:

±´¼± !

¼

´

±

[There appears to have been an error importing this drawing—the question mark should be
the same character as the one directly below it: the one that looks kind of like the number 5.]

Of course, this takes a bit of work on the part of the reader. It also gets kind of messy when you place
a sequence like this into actual text:

±´¼±

Of course, what you really want is for a sufficiently sophisticated text-rendering engine to give you
this when it sees that sequence:

 Han characters in Unicode

 A Practical Programmer’s Guide to the Encoding Standard 273

Unicode gives implementations the freedom to do this if they want. But it’s important to note that this
isn’t required of systems that know about the ideographic description characters. It’s perfectly legal
for an implementation to just draw them as regular visible glyphs, as in the preceding example. (It is
not legal, by the way, to make them invisible and just show the Han characters they operate on.) The
idea is that these characters can be used to describe a missing character, not that they can be used to
represent that character. They’re more akin to the phrase “an e with an acute accent over it” than they
are to the sequence U+006E U+0301.

Part of the reason for this is that they’re really still only approximate descriptions of what is intended.
For example, this character…

[Compositor: This character is U+23CE7. I don’t have any fonts with the Plane 2 Chinese
characters in them]

…can be described like this:

± ²

But it might also theoretically be represented like this:

± ²

This is because the “water” character () usually adopts an abbreviated shape () when it’s used

as part of another character. But there’s always the possibility that it shouldn’t do that in your
particular case. There’s no way to say which you mean using the facilities that Unicode gives you.

It’s important to remember that ideographic description sequences are explicitly not combining
character sequences. The ideographic description characters are classified as symbols, not as
combining marks or formatting characters. Multiple methods of describing the same character using
ideographic description sequences are possible and are explicitly not equivalent. If an ideographic
description sequence is used to describe a character that’s actually encoded in Unicode, it’s explicitly
not equivalent to that character. An ambitious Unicode implementation can parse an ideographic
description sequence and attempt to render the character it describes, but it doesn’t have to.
Ideographic description sequences are basically intended as a way of representing some character
until it’s actually officially encoded in Unicode.

To make like easier on implementations that want to parse ideographic description sequences and try
to display the characters they describe, the Unicode standard prescribes a grammar for their use and
specifies than an individual ideographic description sequence may be no longer than sixteen
characters, may not contain more than six Han characters or radicals in a row with no intervening
ideographic description characters (this is to minimize how far back a process examining the text
from a random spot in the middle has to scan to figure out whether it’s in an ideographic description

 Scripts of East Asia

274 Unicode Demystified

sequence or not), and should be the shortest possible sequence that will adequately describe the
character. Breaking these rules, using ideographic description characters in ways other than specified
by their grammar, or using them in conjunction with characters other than the Han characters and
radicals all have undefined effects.

Other methods of dealing with alternate glyphs for already-encoded characters have been batted
around and may eventually be added to Unicode. Right now, the preferred way to specify a particular
glyph for an encoded character is to use a higher-level protocol to specify a font. You can also use
the Plane 14 tagging characters (see Chapter 12) to help a system interpreting plain text pick an
appropriate font. Some systems might use a heuristic method to examine the characters themselves
with no tagging or out-of-band information to pick appropriate glyphs (the basic idea is something
like “If there’s kana nearby, treat it as Japanese, if there’s Hangul nearby, treat is as Korean, etc.”),
but this type of algorithm can be fooled.

There’s been talk about using the Unicode 3.2 variation-selector mechanism as a method of selecting
variant forms of the Han characters. This might cut down on future encodings of characters that are
widely acknowledged to be variants of each other. There aren’t any variation-selector/Han-character
combinations in Unicode 3.2, but the IRG is working on standardizing a bunch for later Unicode
versions.

Bopomofo

The Han characters always have both a phonetic and a semantic value, and sometimes it’s necessary
to use characters that have a purely phonetic purpose. The National Phonetic Alphabet (Zhuyin Zimu,
or Zhuyin for short, also spelled “Chu Yin” and “Guoyin”) was invented in 1911 for this purpose, as
part of a general literacy campaign in China after the fall of the Manchu regime. This alphabet is also
referred to by the nickname “bopomofo,” which is the names of the first four letters run together into
one word.

There are twenty-one Bopomofo consonants…

�

…sixteen vowels…

�

…and four tone marks:

¯ ´ ß `

The characters are either written on a horizontal line from left to right or on a vertical line from top to
bottom, just like the Han characters. They are written in pronunciation order and don’t interact
typographically. The tone marks generally occur after the syllables they apply to (in vertical text,
they sometimes occupy a column of their own to the right of the main characters).

 Han characters in Unicode

 A Practical Programmer’s Guide to the Encoding Standard 275

Bopomofo are rarely used alone; usually they’re used to annotate regular Chinese text with
pronunciations. (For more information on how this works, see the “Ruby” section later in this
chapter.) You generally see them in children’s books or other educational materials.

The Bopomofo block
The Unicode Bopomofo block, running from U+3100 to U+312F, contains the basic set of
Bopomofo characters used to write Mandarin, plus three characters used to write non-Mandarin
dialects. The tone marks are unified with Western accent marks in the Spacing Modifier Letters
block.

The Bopomofo Extended block
The Bopomofo Extended block, running from U+31A0 to U+31BF (there wasn’t enough room to put
these characters in the same block as the other Bopomofo characters) contains a bunch of less-
universally-recognized Bopomofo characters used to write various non-Mandarin Chinese languages.
A few additional tone marks are also unified with characters in the Spacing Modifier Letters block.

Japanese

Japanese may have the most complicated writing system of any language spoken today. It’s written in
a combination of three complete scripts, sometimes supplemented with Latin letters and various other
marks.79

The history of written Japanese goes back to around the third century, when the Han characters were
first used write Japanese (in Japanese, the Han characters are called kanji). But Japanese isn’t
actually linguistically related to Chinese (although it contains a lot of words borrowed from Chinese),
and so the Han characters never worked as well for Japanese. Most of the phonetic cues in the Han
characters don’t help in Japanese (one estimate holds that only 25% of the commonly-used Kanji
characters contain useful clues as to their Japanese pronunciations). Furthermore, while Chinese is
generally monosyllabic and noninflecting (or at least has a lot fewer polysyllabic words than most
other languages, including Japanese and Chinese), Japanese is polysyllabic and has a fairly complex
inflectional system. Writing Japanese exclusively with Kanji characters generally means that the
grammatical endings on words aren’t written and must be supplied by the reader, or that they have to
be represented using Kanji characters with the right pronunciations, which can be confusing
(especially since almost all Kanji characters have at least two pronunciations in Japanese).

Eventually a standardized set of Kanji characters came to be used for writing the grammatical
endings and for other types of phonetic representation. These came to be known as the man’yogana
(“Chinese characters used phonetically to write Japanese”), and their shapes gradually became more
simplified and differentiated from their shapes when used as regular Kanji characters. This process
culminated in the two modern Japanese syllabic scripts: Hiragana and Katakana (collectively called
“Kana”), which were finally officially standardized by the Japanese government in 1900. The

79 My sources for the section on Japanese are Janet Shibamoto Smith, “Japanese Writing,” in The World’s

Writing Systems, pp. 209-217; Lunde, pp. 42-47; and Nakanishi, pp. 94- 95.

 Scripts of East Asia

276 Unicode Demystified

Hiragana were derived from more cursive, calligraphic forms of the original characters, while the
Katakana were very simplified variants of the printed forms of the characters.80

Both forms of Kana are what is known as “pure syllabaries,” that is, each Kana character represents
an entire syllable of spoken Japanese. Unlike so-called “alphasyllabaries,” such as Hangul, which
we’ll look at next, Kana characters can’t be broken down into component parts that represent the
individual sounds in the syllable.

The more cursive form, Hiragana, is generally used to write native Japanese words and grammatical
endings. There are forty-eight basic Hiragana characters:

 – K S T N H M Y R W

A

I

U

E

O

–

(The characters and are rarely used nowadays.)

Each character (with the exception of , , , , , and) represents the combination of

an initial consonant sound and a vowel sound. The vowels by themselves are represented by , ,

, , and , and are used not just at the beginnings of words but as the second characters in

diphthongs. There is only one syllable-final consonant, and it’s represented by . Thus, the system

isn’t a 100% perfect syllabary—there are a number of syllables that are actually represented using
more than one Hiragana character.

Not all of the characters have the pronunciation shown in the chart above. For example, is

actually pronounced “tsu,” is pronounced “chi,” �is pronounced “fu,” and is pronounced

“shi.” is actually pronounced “m” before “b” and “p” sounds.

80 Lunde provides a very interesting table (pp. 46-47) showing which Kana characters derived from which

Kanji characters.

 Japanese

 A Practical Programmer’s Guide to the Encoding Standard 277

In addition to the basic sounds shown in the table above, diacritical marks are used to widen the
palette of available sounds. Two strokes on the upper right-hand shoulder of the character, called
nigori or dakuten, are used with certain characters to turn their initial consonant sound from an

unvoiced sound into a voiced sound. For example, (“sa”) becomes “za” when the dakuten is

added (). The characters in the h-series (i.e., , , , , and) are special: a small

circle on the upper-right shoulder, called maru or handakuten, gives them an initial p sound. The

dakuten gives them an initial b sound. That is, is pronounced “ha,” is pronounced “pa”, and

 is pronounced “ba.” Finally, the dakuten can be added to to get “vu” (). These

combinations of basic Hiragana characters and diacritical marks give us another twenty-five
syllables:

 G Z D B P V

A

I

U

E

O

Smaller versions of some of the Hiragana characters are also used more or less like diacritics. For
example, Japanese has palatalized syllables (syllables with a y sound between the consonant and the
vowel). These are represented using a basic character representing the initial consonant and the i

sound, followed by a small version of , , or representing the y sound and the final vowel.

For example, nya is represented with (“ni”) followed by a smaller version of (“ya”): .

The one other case of two initial consonants, kwa, is represented similarly: (“ku”) plus a small

version of (“wa”): . This gives us another thirty-six possible combinations:

 K S T N H M R G Z D B P

YA

YU

YO

 Scripts of East Asia

278 Unicode Demystified

The small version of is used to indicate consonant gemination (i.e., the doubling or prolonging of

a consonant sound): Thus, is “butsuda,” but is “Buddha” (pronounced

“budda”).

The small versions of the bare vowels (, , , , and) are used with certain characters

for borrowed sounds. Generally, the resulting syllable is a combination of the initial consonant sound

from the main character and the vowel sound denoted by the small character. For example, is

“fa,” is “tu,” and is “cha.”

Long vowel sounds are usually represented by using two of the regular vowel characters in a row. For

example, “ ” is written as . The one exception is , which is written .

When Hiragana is written vertically, the character is occasionally used to indicate that the
preceding two characters are to be repeated. Adding the dakuten changes the initial consonant on the
repeated sequence to a voiced consonant. This example…

�

�

�

�

�

[need to correct example so that the two halves of the repeat mark touch]

…is pronounced “tenden.” Notice, by the way, that the repeat mark takes up two display cells,
visually indicating that it’s repeating two characters.

Katakana, the more angular form of Kana, is used for foreign words and onomatopoeia. Sometimes,
native Japanese words are written in Katakana for emphasis or to indicate euphemism or irony (in
other words, using Katakana for a word that’s normally written in Kanji or Hiragana is similar to
putting quotation marks around an English word that’s not actually part of a quotation). Katakana
works almost exactly the same way as Hiragana. There are forty-eight basic characters:

 – K S T N H M Y R W

A

I

U

 Japanese

 A Practical Programmer’s Guide to the Encoding Standard 279

E

O

–

(Again, the characters and are rarely used nowadays.)

Dakuten and handakuten work exactly the same way with Katakana (with a few additional syllables
possible):

 G Z D B P V

A

I

U

E

O

Smaller versions of certain Katakana characters also work the same way as their Hiragana
counterparts:

 K S T N H M R G Z D B P

YA

YU

YO

 = “Buddha”

 =“fa”

 = “tu”

 = “cha”

 Scripts of East Asia

280 Unicode Demystified

Long vowels are generally represented in Katakana using a dash (“choon”) instead of a doubled

vowel. That is, “” is written as rather than .

With Katakana, the �mark is occasionally used to indicate repetition. Unlike the Hiragana

repetition mark, the Katakana repetition mark only repeats the last character: for example, is

“koko.”

Like Chinese, Japanese is traditionally written in vertical columns that run from the right-hand side of
the page to the left-hand side, but it’s becoming more common to see Japanese written in horizontal
lines with the same reading order as English. Spaces are not used between words, although word
boundaries are usually fairly detectable due to the mixture of scripts and use of punctuation in most
Japanese text. Japanese text is not word-wrapped: there are certain punctuation marks that can’t
appear at the beginning of a line and others that can’t occur at the end of a line, but basically line
breaks can occur anywhere, including the middles of words. Latin letters are used for certain foreign
words and expressions, and numbers are written using both Kanji characters and Western numerals,
depending on context.

Anyway, if you put all these writing systems together, you get something that looks like this:81

'7%

It breaks down as follows:�

Original text Meaning Pronunciation Script

'7%� EUC EUC Romaji

� such as… nado Kanji

� possessive marker no Hiragana

� encoding enkGLQJX Katakana

� method hh Kanji

� topic marker wa Hiragana

� Japanese nihongo Kanji

� and to Hiragana

� English eigo Kanji

� subject marker ga Hiragana

� to mix konk Kanji

� doing shite-iru Hiragana

� text tekisuto Katakana

81 This example is ripped off from Lunde, p. 3.

 Japanese

 A Practical Programmer’s Guide to the Encoding Standard 281

� object marker o Hiragana

� support sap WR Katakana

� do shimasu Hiragana

Put it all together and you get “Encoding methods such as EUC can support texts that mix Japanese
and English.”

The Hiragana block
The Unicode Hiragana block runs from U+3040 to U+309F. The basic syllables, the syllables with
dakuten and handakuten, and the small versions of the syllables all get individual code points. In
addition, the dakuten is encoded as U+3099 COMBINING KATAKANA-HIRAGANA VOICED
SOUND MARK and the handakuten as U+309A COMBINING KATAKANA-HIRAGANA SEMI-
VOICED SOUND MARK. These are regular Unicode combining characters, and the syllables that
use them have canonical decompositions to their unadorned forms and the combining marks.
However, the standard practice in native Japanese encoding standards is to use the precomposed
versions of the characters. The analogous characters in Japanese encodings don’t have combining
semantics, so Unicode also has non-combining versions of these characters.

The Hiragana repetition marks are also encoded in this block as U+309D HIRAGANA ITERATION
MARK and U+309E HIRAGANA VOICED ITERATION MARK. A special version of the
Hiragana repetition mark for use in vertical text is encoded in the CJK Symbols and Punctuation
block as U+3031 VERTICAL KANA REPEAT MARK. (A clone with the dakuten is encoded at
U+3031, and since this character normally takes up two display cells, the upper and lower halves are
encoded at U+3033, U+3034, and U+3035.)

The Katakana block
The Unicode Katakana block runs from U+30A0 to U+30FF and encodes the Katakana characters in
the same relative positions as the Hiragana characters are encoded in the Hiragana block, along with
a few extra characters that don’t have counterparts in Hiragana. The combining voiced and semi-
voiced sound marks from the Hiragana block are also used with Katakana, and the appropriate
characters used them in their canonical decompositions. The choon mark is encoded as U+30FC
KATAKANA-HIRAGANA PROLONGED SOUND MARK. The Katakana repetition marks are
also included here, as is a centered dot that is used to separate words in a sequence of foreign words
written in Katakana.

The Katakana Phonetic Extensions block

Unicode 3.2 adds a new Katakana Phonetic Extensions block running from U+31F0 to U+31FF. It
contains a bunch of additional “small” Katakana characters used for phonetic transcription of Ainu
and some other languages.

The Kanbun block
The Kanbun block (U+3190 to U+319F) contains a small set of characters that are used in Japanese
editions of classical Chinese texts to indicate the Japanese reading order. These are small versions of
certain ideographs and are usually written as annotations to the side of a line of vertically-arranged

 Scripts of East Asia

282 Unicode Demystified

Chinese text. All of these characters have compatibility mappings to regular Han characters, since
they’re just smaller versions of them used as annotations.

Korean

Like Japanese, the Han characters (called hanja in Korean) were originally used to write Korean,
with the oldest example dating to about 414.82 Korean, which is distantly related to Japanese83 but not
to Chinese or the other Asian languages, isn’t really any better suited to writing with Hanja than
Japanese is, and various phonetic systems similar to Japanese Kana were devised to supplement the
Han characters. Several of these systems are obsolete, but one of them—Hangul—has come to be the
main writing system used for modern Korean. Interestingly, even though Hangul was invented in
1446, the Chinese characters persisted as the preferred method of writing Korean right up to the
beginning of this century; Hangul was accorded a kind of second-class status as the writing of the
uneducated. Since Korea was liberated from Japan in 1945, however, Hangul has risen steadily in
importance and the Han characters have increasingly fallen into disuse. In North Korea today,
Hangul is used pretty much exclusively, although a small set of Hanja is still taught in school. In
South Korean, Hanja are still used, but they tend to make up a small minority of the characters in
most modern texts.

Hangul (also spelled Hankul or Hangeul, and also called by a variety of other names, including
[before 1910] changum, enmun, or kwukmun, or [in North Korea] chosengul or wuli kulcha) was
invented in 1446 by the sage King Sejong. Although it bears a superficial resemblance to the Han
characters (probably not accidentally) and borrows some concepts from other writing systems, it’s
pretty much a pure invention rather than something that kind of grew organically from other origins,
as almost every other writing system we’ve looked at did. The design is based on sound linguistic
principles, and it’s quite well-suited to the writing of Korean.

Hangul is basically an alphabetic script, consisting of letters called jamo, which represent both
consonant and vowel sounds (unlike the Middle Eastern and Southeast Asian scripts, the vowels are
neither left out nor written as marks that attach to the consonants; they’re independent characters in
their own right like the vowels in the Latin, Greek, and Cyrillic alphabets). However, instead of being
written sequentially like letters in Western alphabets are, Hangul jamo are arranged into blocks
representing whole syllables. The blocks fit into square display cells, like the Han characters, and
look kind of like them. There have been proposals to write the jamo sequentially on a line of text, but
they’ve never caught on. Even though it requires more different pieces of movable type, the
arrangement into syllable blocks makes more efficient use of space and is (arguably, at least) more
efficient to read as well.

There are five basic consonant characters, whose shapes originally were designed to resemble the
positions of the speech organs while making the sounds84:

82 The material on Hangul, especially the examples and tables, comes from Ross King, “Korean Writing,” in

The World’s Writing Systems, pp. 218-227.
83 At least according to some linguists; there’s a lot of controversy on this point.
84 The illustration comes from King, op. cit., p. 220.

 Korean

 A Practical Programmer’s Guide to the Encoding Standard 283

(The shapes have changed a little since the inventions of the characters, but you can still see the basic
principles at work in the modern shapes.) The other consonants were then organized into families
according to the five basic ones, with extra strokes added85:

�k �n �s �m �ng

� �t c �p �

�kh �th �ch �ph �h

�kk �tt �ss �pp �

� � cc � �

� �l � � �

The construction of the vowels isn’t quite as concrete: Three basic shapes—the horizontal line,
representing earth, the dot, representing the heavens, and the vertical line, representing man—were
used in various combinations to represent the vowels86:

�i� �u �wu

�ey �e �o

�ay

 a

(The dot has since morphed into a short stroke.) These also combine in various ways to form
diphthongs:

� �uy �wuy

 �oy

 �ywu

�yey �ye �yo

�yay
 �ya

�wey �we

85 This table is reproduced directly from King, op. cit., p. 222.
86 Ibid., p. 221

 Scripts of East Asia

284 Unicode Demystified

�way
 �wa

A syllable consists of an initial consonant, a vowel, and, optionally, a final consonant. If the vowel is
based on a vertical line, the initial consonant goes to its left. If the vowel is based on a horizontal
line, the initial consonant goes above it. If the vowel is a combination of vertical and horizontal
strokes, the initial consonant goes in the upper left-hand corner. The final consonant, if there is one,

goes underneath the initial consonant and the vowel. Syllables beginning with a vowel sound use

as their initial consonant (it’s silent at the beginning of a syllable). There are certain combinations of
final consonants that can go at the end of a syllable; the first sound goes to the left of the second.
Thus, the reading order within a syllable block is left to right, top to bottom:

 (p) + (a) = (pa)

 (p) + (a) + (m) = (pam)

 (s) + (o) = (so)

 (s) + (o) + (n) = (son)

 (silent) + (a) = (a)

 (silent) + (wa) = (wa)

 (silent) + (a) + (ng) = (ang)

 (p) + (a) + (l) + (p) + (t) + (a) = (palpta)

 (silent) + (i) + (l) + (k) + (t) + (a) = (ilkta)

Like Chinese and Japanese, Korean is traditionally written in vertical columns running from right to
left across the page, but horizontal writing is becoming more common, especially in North Korea. In
South Korea, as noted before, Hangul is mixed with Hanja, while Hangul is used exclusively in North
Korea. Spaces are frequently, but not always, used between words. When spaces are not used
between words, lines can be broken anywhere (except for certain punctuation marks), but when
spaces are used, line boundaries must come between words, as in Western writing. There are no
native Korean numerals—numbers are written using Han characters or Western numerals.

The Hangul Jamo block
There are two basic ways of representing Hangul in Unicode: unique code point values can be given
to each possible syllable block, or unique code point values can be given to the individual jamo,
which would then be used in combination to build up syllable blocks. The designers of Unicode
opted to have it both ways.

The Hangul Jamo block, which runs from U+1100 to U+11FF, gives a code point value to each
jamo. The basic encoding approach is based on the Johab encoding from the Korean national
standards. The Johab encoding classifies the jamo into three categories: initial consonants (or
choseong), vowels (jungseong), and final consonants (jongseong). There are 19 possible initial
consonants, 21 possible vowels and vowel combinations, and 27 possible final consonants and

 Korean

 A Practical Programmer’s Guide to the Encoding Standard 285

combinations of final consonants. Each of these gets its own code point value (in Johab, each of these
categories gets a unique five-bit combination, which are then concatenated, with a 1 bit on the front,
to form a 16-bit character code, but in Unicode, each jamo combination is given a full 16-bit code
point value). This approach means that a jamo that can appear either at the beginning or the end of a
syllable has a different code point value depending on its position within the syllable. It also means
that combinations of vowel or consonant jamo get their own code point values. In this way, every
syllable can be represented using a sequence of three jamo (for those that only consist of two jamo,
invisible “filler” characters are also provided).

Unicode doesn’t define decompositions for any of the jamo, even those that are made up of
combinations of smaller jamo. This is consistent with standard Korean encodings and with the way
Koreans think of the jamo. The characters in this block have combining semantics: a sequence of
initial-consonant, vowel, final-consonant represents a single syllable block, not three isolated jamo.
(Any arbitrary sequence of initial consonants, followed by any arbitrary sequence of vowels,
followed by any arbitrary sequence of final consonants, are defined by the standard to be a single
combining character sequence representing one syllable, although any sequence consisting of
something other than exactly one of each category is considered to be malformed.)

In addition to the 67 modern Hangul jamo, the Hangul Jamo block includes a bunch of ancient jamo
that aren’t used in modern Korean, plus two invisible “filler” characters that can be used to make
each syllable consist of three code points even when it doesn’t contain three jamo.

The Hangul Compatibility Jamo block
The Hangul Compatibility Jamo block, which runs from U+3130 to U+318F, contains duplicates of
the characters from the Hangul Jamo block, but these characters are intended to be used to represent
individual jamo, rather than being used in combination to represent whole syllables (that is, they
don’t have combining semantics like the characters in the Hangul Jamo block). This block doesn’t
make a distinction between initial and final consonants, since the characters aren’t intended to be
used in combination.

All of the characters in this block have compatibility decompositions to characters in the regular
Hangul Jamo block. This has an interesting side effect: The compatibility jamo don’t conjoin, but the
regular jamo do. This means that if you convert a passage of compatibility jamo to Normalized Form
KD or KC, they combine together into syllables. The conjoining jamo can be prevented from
clustering together by inserting non-Korean characters (the zero-width space works nicely for this).

The Hangul Syllables area
The Korean Johab encoding allows for an encoding of every possible combination of the 67 modern
jamo, even though only about 2,500 actually occur in written Korean. This is a grand total of 11,172
possible syllables. Even though the characters in the Hangul Jamo block work the same way as the
Korean Johab encoding, a single syllable takes up six bytes in Unicode, but only two bytes in Johab.
So Unicode, as of Unicode 2.0, also provides a unique 16-bit code point value for every one of the
11,172 syllables representable using Johab. These occupy the Hangul Syllables area, which runs from
U+AC00 to U+D7FF. The ordering is the same as Johab, but the relative positions aren’t—Johab
contains holes, while the Unicode Hangul Syllables area keeps all the characters contiguous,
squeezing out the holes.

 Scripts of East Asia

286 Unicode Demystified

Unicode defines a syllable represented using a code point from this area to be equivalent to the same
syllable represented using three code points from the Hangul Jamo block—in effect, even though the
Unicode Character Database doesn’t specifically spell them all out, the characters in this block all
have canonical decompositions to sequences of characters from the Hangul Jamo block. The Hangul
Jamo block and the Hangul Syllables area are arranged in such a way that converting from one
representation to the other can be done algorithmically (rather than requiring a translation table of
some kind).

The Hangul Syllables area only contains combinations of the 67 modern jamo. Syllables using the
archaic jamo can only be represented using sequences of characters from the Hangul Jamo block.

Halfwidth and fullwidth characters

Now that we’ve taken a look at the characters involved and how they work, we can go back and look
a little more closely at some of the interesting issues involved in dealing with these characters.

You’ll often hear the terms “halfwidth” and “fullwidth” (or their Japanese equivalents, hankaku and
zenkaku) used in conjunction with various characters. These terms have their origin in the variable-
width character encoding standards used for most East Asian languages: Japanese variable-length
encodings such as SHIFT-JIS or EUC-JP included the characters from both the JIS X 0201 and JIS X
0208 standards, but these standards overlap, resulting in a bunch of characters with two different
encodings: a one-byte version and a two-byte version. This collection included the ASCII characters
and a basic set of Katakana.

The double encoding of these collections of characters led to a distinction being made by many
implementations in how they should be displayed. In a monospaced East Asian typeface, all of the
regular East Asian characters (Kanji, Kana, Bopomofo, Hangul, etc.) fit into a square design space:
they’re as wide as they are high. The foreign characters (in particular, the Latin letters, digits, and
punctuation) would be sized to take up half of one of these display cells: they were half as wide as
they were high. This came to be identified with the encoding length: one-byte characters occupied
half a display cell, and two-byte characters occupied an entire display cell. For those characters that
had both one-byte and two-byte encodings, this was the difference: the two-byte version would fit
into a single display cell, and the one-byte version would fit two to a display cell. For the Latin
letters, this meant the two-byte versions were shown using glyphs that were stretched horizontally
and surrounded with extra white space. For the Katakana characters, this meant the one-byte versions
would be squooshed horizontally to fit in half of a display cell (the original encodings of halfwidth
Katakana only included the basic 48 characters: distinctions between regular and small kana were
lost, and the dakuten and handakuten were treated as separate spacing marks that appeared in their
own half-width display cells after the characters they modified).

Even in these days of proportional fonts and sophisticated typesetting, the distinction between
halfwidth and fullwidth occasionally remains a useful one. East Asian word-processing software, for
example, often still systematically treats fullwidth and halfwidth characters differently for the
purposes of line breaking and line layout.

In order to retain backwards compatibility with the various East Asian character encoding standards
that give certain characters redundant one- and two-byte encodings, Unicode does the same for these
characters, segregating the redundant versions off in a separate block within the Compatibility Zone
(see below). These are the only characters in the Unicode standard that are officially designated as
either “halfwidth” or “fullwidth.”

 Halfwidth and Fullwidth forms

 A Practical Programmer’s Guide to the Encoding Standard 287

Unicode Standard Annex #11, “East Asian Width,” extends these definitions to the entire Unicode
character repertoire, allowing applications that treat “halfwidth” and “fullwidth” characters
differently to know how to treat every character in Unicode. It does this by classifying the Unicode
characters into six categories. An application resolves these six categories down to two broad
categories, “narrow” and “wide,” depending on context. The six categories are:

x� Fullwidth (F). These are the characters in the compatibility zone with “FULLWIDTH” in their
names. These always get treated as “wide.”

x� Halfwidth (H). These are the characters in the compatibility zone with “HALFWIDTH” in their
names. They always get treated as “narrow.”

x� Wide (W). These are the other East Asian characters. This category includes those characters that
have counterparts in the H category (the regular Katakana), plus all the other East Asian
characters: Han, Hangul, Hiragana, Katakana, Bopomofo, all of the symbols that are designed for
use in East Asian typography (or taken exclusively from East Asian encoding standards), and so
on. These characters, of course, always get treated as “wide.”

x� Narrow (Na). These are the characters that have counterparts in the F category. Basically, this
includes the ASCII characters. They’re obviously always treated as “narrow.”

x� Ambiguous (A). These are the characters that have two-byte encodings in the legacy East Asian
encodings and thus usually get treated in East Asian systems as “fullwidth,” but that normally are
treated by other systems the same way Latin characters are. This category includes the Cyrillic
and Greek alphabets, plus some math symbols. These characters get treated as either “wide” or
“narrow” depending on context. In an East Asian context, they’re “wide”; otherwise, they’re
“narrow.” (UAX #11 doesn’t really define what an “East Asian context” means, leaving that up to
implementation; the basic idea is that an “East Asian context” would be a document or other piece
of text consisting predominantly of East Asian characters, or a piece of text set using an East
Asian font, even for the Western characters.)

x� Neutral. This contains all characters that don’t occur in any East Asian legacy character encoding
standards and, by extension, don’t occur in East Asian typography. Officially, they’re neither
“wide” nor “narrow,” but for all practical purposes can be treated as “narrow.” This category
includes the Arabic and Devanagari alphabets.

x� Combining marks don’t have an East Asian width property at all—they’re defined to take on the
East Asian width property of the character they’re applied to, just as they take on most of the
other properties of the characters they’re applied to.

The East Asian width properties of all Unicode characters are given in the EastAsianWidth.txt file in
the Unicode Character Database (see Chapter 5).

It’s important to keep in mind that the classification of characters into “halfwidth” and “fullwidth”
(or, as UAX #11 does it, into “wide” and “narrow”) categories doesn’t mean that these characters are
always typeset this way. Purely monospaced typefaces aren’t used any more in East Asian typesetting
than they are in Western typesetting. It’s true that the Han characters (and the characters that are used
with them, such as Bopomofo, Kana, and Hangul) are generally all set in the same-size display cells
(which aren’t always square, by the way—newspapers, for example, often use fonts with rectangular
display cells in order to fit more text on a page), punctuation and symbols often aren’t. Latin letters
and digits are usually set using proportional typefaces as well, and there are various justification
techniques that are used in different situations that fix it so that even when most of the characters are
the same size, you don’t get that “graph paper” look. Furthermore, there are proportional fonts that
actually do use different-sized display cells for certain Han and Han-related characters. For an
extensive treatment of all these issues, see Chapter 7 of Ken Lunde’s CJKV Information Processing.

 Scripts of East Asia

288 Unicode Demystified

The Halfwidth and Fullwidth Forms block
Unicode’s Halfwidth and Fullwidth Forms block, which runs from U+FF00 to U+FFEF, is the
dumping ground for all the characters that have redundant one- and two-byte encodings in legacy
East Asian encoding standards. All of the characters in this block have compatibility mappings to
characters elsewhere in the standard. It includes fullwidth versions of all the ASCII printing
characters, halfwidth versions of the basic Katakana characters, halfwidth versions of the modern
Hangul jamo, halfwidth versions of certain symbols and punctuation marks, and fullwidth versions of
several currency symbols.

Vertical text layout

As mentioned repeatedly throughout this chapter, East Asian text is traditionally written vertically,
with characters proceeding in a line from the top of the page to the bottom, and with lines of text
proceeding from the right-hand side of the page to the left. Books in Chinese or Japanese, like books
in right-to-left languages such as Hebrew, appear to English speakers to be bound on the wrong side:
they begin at what we normally think of as the back.87

Thanks to Western influence and the inability of early computer systems to handle vertical text, most
East Asian languages are also now written horizontally, with characters running from the left to the
right and lines running from the top to the bottom, as in English text.88 The main East Asian
characters don’t really behave any differently when they’re arranged horizontally as opposed to
vertically, but many other characters do. Consider this example89:

�

�

(This is basically the same example from our discussion of the bi-di algorithm translated into
Japanese: “Ryoji said, ‘I have 23 children,’ and smiled.”)

This is what it looks like laid out vertically:

87 I’m relaying rather heavily for this section and the next section on Lunde, pp. 336-386.

88 Although right-to-left writing also happens: Nakanishi (p. 114) gives an interesting example of a single

newspaper page from Taiwan containing Chinese text written vertically, left to right, and right to left.
89 Many thanks to Koji Kodama for his help translating the vertical-text examples.

 Vertical text layout

 A Practical Programmer’s Guide to the Encoding Standard 289

Notice what happened to the Japanese quotation marks (): In the vertical text, they were rotated

90 degrees clockwise. This happens with a lot of punctuation marks: parentheses, ellipses, dashes,

and so forth all get rotated. Some undergo additional transformations. A more subtle transformation

can be observed if you look closely at the period and comma (). Their shapes stay the same, but

they occupy a different position relative to the other characters: In horizontal text, the period and

comma appear in the lower left-hand corner of its display cell, like a Western period. But in vertical

text, they appear instead in the upper right-hand corner. Various other characters, such as the small

kana in Japanese, keep their shapes but get drawn in different parts of their display cells depending

on the directionality of the surrounding text.

Except for a few characters in the compatibility zone (see Chapter 12), Unicode adheres to the
characters-not-glyphs rule for those characters whose glyphs change depending on the directionality
of the surrounding text. An implementation that supports vertical text must be smart enough to make
the appropriate glyph selections when drawing vertical text.

In some cases, exactly how the character is transformed depends on the locale: The colon (:), for
example, looks the same in horizontal Japanese and Chinese text, but in Japanese vertical text it turns
sideways. In Chinese text, on the other hand, it remains upright but gets smaller and moves to the
upper right-hand corner of its display cell:

�

�

Chinese: Japanese:

Unicode doesn’t give these language-specific transformations separate code point values, just as it
doesn’t for language-specific variants of certain Han characters. The assumption is that you’ll use a
font designed for the language you’re writing in, and that the font will be selected either manually by

 Scripts of East Asia

290 Unicode Demystified

the user and specified using a higher-level protocol, or selected automatically by the system based on
analysis of the text (or, in a pinch, use of the language-tagging characters).

Things get even more fun when you start mixing non-Asian text with Asian text. Let’s say, for
example, that we used Western digits for the “23” in our pervious example:

�� �

When you write this vertically, there are three basic ways you can treat the “23.” You can keep the
digits upright and stack them vertically:

You can rotate the number ninety degrees clockwise:

 Vertical text layout

 A Practical Programmer’s Guide to the Encoding Standard 291

23

Or you can keep the “23” upright and put the digits side-by-side in a single vertical display cell:

��

The third approach (often referred to in Japanese as tate-chu-yoko, or “horizontal in vertical”) is
generally reserved for abbreviations and other very short snippets of text, where you’ll even see it
done with native characters (you’ll see month names, which are written in Japanese with a Western

numeral and the “moon” character, written in a single display cell (), and will see some

abbreviations consisting of as many as four or five characters stuck into a single display cell ().
The second approach, rotating the horizontal text, works best for long snippets of foreign text.

Since Unicode allows for mixing of languages that were much harder to mix before, such as Arabic
and Japanese, you also run into the possibility of mixing right-to-left text with vertical text. There are

 Scripts of East Asia

292 Unicode Demystified

no hard-and-fast rules for how to do this. Generally, especially with Arabic, you’d do it by rotating
the text. It makes sense to keep the overall top-to-bottom writing direction, so you’d probably rotate
right-to-left text ninety degrees counterclockwise:

�
�

Of course, you could also mix left-to-right, right-to-left, and vertical text in the same document. In
this case, you’d probably rotate all of the horizontal text the same direction (probably ninety degrees
clockwise) and use the Unicode bi-di algorithm to lay out the individual pieces of the horizontal text
relative to each other (which means the right-to-left text would actually read from the bottom of the
page up).

T
he first tw

o books of the B
ible are

and
.

Unicode doesn’t set forth any specific rules for mixing vertical and horizontal text. The correct
behavior depends on the situation. (It’s unclear that there’s a word-processing system out there that
can even handle all of the above examples.)

Ruby

Even native speakers of the languages that use the Han characters don’t know all of them. This
means that in East Asian typography (especially Japanese) you’ll see annotation techniques used to

 Ruby

 A Practical Programmer’s Guide to the Encoding Standard 293

help readers deal with unfamiliar characters. The most common of these techniques is something
called interlinear annotation. This is usually referred to, at least in Japanese, as “ruby” or furigana.90

The basic idea is that you adorn a character with one or more smaller characters that clarify its
meaning or, more commonly, its pronunciation. In Japanese, you might see an unusual Kanji
character adorned with a few small Hiragana characters that give the Kanji character’s pronunciation.
The rubies go above the character being annotated in horizontal text, and (generally) to the right in
vertical text. The effect is something like this, using English:

Slobodan Milosevic was defeated by

Vojislav Kostunica in the Yugoslav

general election.

SLO-buh-dahn mi-LO-she-vitch

VOY-slav ko-SHTOO-nit-sa

Ruby occurs relatively rarely in most text, but frequently in children’s books or books written for
non-native speakers learning the language. It’s most common in Japanese, but also occurs in Chinese
and Korean.

The Interlinear Annotation characters
Ruby is one of those things generally best left to a higher-level protocol, but Unicode includes some
very rudimentary support for ruby for those situations where it absolutely has to be exchanged using
plain text. (They can also be useful as an internal implementation detail, giving implementations a
way to store the annotations in with the actual text without getting them mixed up.) There are three
characters in the Specials block that are used to represent ruby:

U+FFF9 INTERLINEAR ANNOTATION ANCHOR

U+FFFA INTERLINEAR ANNOTATION SEPARATOR

U+FFFB INTERLINEAR ANNOTATION TERMINATOR

This is how they work: U+FFF9 marks the beginning of a piece of text that is to be annotated.
U+FFFA marks the end of the piece of text to be annotated and the beginning of the annotation.
U+FFFB marks the end of the annotation. The above example would be represented as follows (with

the anchor, separator, and terminator characters represented by �, �, and � respectively):�

�Slobodan�SLO-buh-dahn� �Milosevic�mi-LO-she-vitch� was defeated by

�Vojislav�VOY-slav� �Kostunica�ko-SHTOO-nit-sa� in the Yugoslav general
election.

Unicode doesn’t give you any way to control how exactly the ruby will be laid out, and it also
stipulates that paragraph separators can’t occur inside annotations. A paragraph separator inside an
annotation terminates the annotation.

90 Ken Lunde, the Japanese text-processing expert whose book provided a lot of the information in
this chapter, has a daughter named Ruby, which somehow seems quite appropriate.

 Scripts of East Asia

294 Unicode Demystified

You can attach more than one annotation to a piece of annotated text by separating the annotations
with extra instances of U+FFFA INTERLINEAR ANNOTATION SEPARATOR.

Generally you only want annotations to be significant when you’re laying out or otherwise rendering
text; for other operations, such as sorting and line breaking, you want them to be transparent. So most
applications can safely ignore all three annotation characters, plus all characters that occur between
U+FFFA and U+FFFB (or between U+FFFA and the end of a paragraph). Typically, unless you
know you’re interchanging text with something you know understands these characters, they, along
with any annotations, should be filtered out.

Yi

Finally, before we leave East Asia, let’s take a quick look at one more writing system. The Yi (or
Lolo or Nuo-su) people are one of the largest minority groups in China. Most live in various parts
of southwestern China, but they’re scattered all over southeastern Asia. The Yi language is related
to Tibetan and Burmese and is written with its own script, called, not surprisingly, the Yi script,
but also called Cuan or Wei.91

Classical Yi is an ideographic script, like the Chinese characters, and although it probably arose
under the influence of the Han characters, it’s not directly related to them, and the characters have
a notably different look from Han characters. The earliest examples of Yi writing date back about
500 years, although linguists suspect it may have an actual history going back as much as 5,000
years. It’s estimated that there are somewhere between 8,000 and 10,000 different characters in the
surviving examples of classical Yi writing. Because the Yi have been scattered geographically, the
same characters look quite different from group to group; there was never really any
standardization.

In the 1970s, in an effort to increase literacy in Yi, a new writing system for Yi was developed. It
takes some of the old Yi ideographs and removes their semantic value, creating a purely phonetic
script. Like the Japanese Kana scripts, modern Yi writing is a pure syllabary: each character
represents a whole syllable, and the characters can’t be broken down into smaller components
representing the original sounds (as, for example, Korean Hangul syllables can).

There are a lot more possible Yi syllables than there are Japanese syllables, so the Yi syllabary is
considerably larger than the Japanese syllabaries. Each Yi syllable consists of an optional initial
consonant and a vowel. There are forty-four initial consonants and ten vowels, for 440 possible
syllables. Each syllable can have four tones, so each syllable has four different symbols, one for
each tone. This means that there are 1,760 possible syllables in Yi. Of course, not all of these
syllables actually exist in Yi: the standard Yi syllabary actually has 1,165 characters. (Compare
Korean, where there are over 11,000 possible Hangul syllables, but only 2,500 or so actually occur
in Korean.)

The characters representing the various Yi syllables don’t have anything in common (they’re
derived instead from earlier ideographic characters with those sounds), with one exception: each
syllable actually has three unique characters. The fourth tone (the middle-rising tone) is actually
written using the character for the middle-high tone and putting an arch (an inverted breve) over it.

91 My sources for this section are the Unicode standard itself and Dingxu Shi, “The Yi Script,” in The

World’s Writing Systems, pp. 239-243.

 Yi

 A Practical Programmer’s Guide to the Encoding Standard 295

Thus there are actually 819 unique Yi characters; the rest are duplicates with the arch over them.
For example, here are the four characters for the syllable pi (these represent that syllable with,
respectively, the high, middle-high, low-falling, and middle-rising tones):

� � � �

Yi is written horizontally, from left to right.

The Yi Syllables block
Currently, Unicode encodes only the modern Yi syllabary, not the classical Yi ideographic script.
The Unicode Yi Syllables block runs from U+A000 to U+A48F and is based on the Chinese
national standard for Yi, GB 13134-91, and contains separate code point values for each of the
1,165 syllables. The characters representing syllables with the middle-rising tone get their own
code point values, and even though they’re the same as the characters representing the syllables
with the middle-high tone with an added arch, they don’t decompose and can’t be represented with
combining character sequences. Unlike the Han characters and the Hangul syllables, each Yi
syllable has an assigned name rather than an algorithmic name. The names are an approximation of
the syllable’s sound, with an extra character added to the end to indicate the tone: That is, the four
characters shown in the previous example have the following code point values and names:

U+A038 YI SYLLABLE PIT

U+A03A YI SYLLABLE PI

U+A03B YI SYLLABLE PIP

U+A039 YI SYLLABLE PIX

The Yi Radicals block
The Yi Radicals block (U+A490 to U+A4CF) contains a group of radicals which function
similarly to the radicals in the Han characters. The Yi syllables are divided into categories
according to certain visual elements (radicals) they have in common, and these radicals are used to
facilitate lookup in dictionaries. This block contains fifty radicals.

 297

CHAPTER 11 Scripts from Other Parts of the
World

After four chapters and more than 150 pages, we’ve taken a good in-depth look at the four major
script groups still in use around the world today. To recap:

x� In Chapter 7, we looked at the five European alphabetic scripts, which are descended from the
ancient Phoenician alphabet by way of the ancient Greek alphabet. These scripts are all alphabetic
in nature, consists of upper-/lower-case pairs, are written from left to right, and use spaces
between words. There is little or no typographic interaction between characters in the printed
forms of these scripts, but most of these scripts make moderate to heavy use of combining dia-
critical marks. These scripts are used throughout Europe and other parts of the world colonized by
the Europeans.

x� In Chapter 8, we looked at the four Middle Eastern scripts, which are descended from the ancient
Phoenician alphabet by way of the ancient Aramaic alphabet. These scripts are consonantal in
nature, generally using letters for consonant sounds and writing most vowel sounds, if at all, with
combining marks above or below the consonants. They’re written from right to left. Two of these
scripts, Arabic and Syriac, are cursive, with the characters in a word generally being connected
and with the shapes of the letters varying greatly depending on the surrounding letters. These
scripts are used in the Middle East (i.e., southwestern Asia and northeastern Africa) and
throughout the Muslim and Jewish worlds.

x� In Chapter 9, we looked at the fifteen Indic scripts, which are descended from the ancient Brahmi
script, which in turn is probably descended from the ancient Phoenician alphabet by way of the
Aramaic alphabet. These scripts are alphasyllabic in nature, with individual characters for
consonant and vowel sounds reordering, reshaping, and combining in interesting ways to form
clusters representing syllables. They’re written from left to right and most, but not all, of them use
spaces between words. These scripts are used throughout south and southeastern Asia.

x� Finally, in Chapter 10, we looked at the Han characters, which have an independent history going
back more than 3,000 years and didn’t descend from anything. They’re ideographic or

 Scripts from Other Parts of the World

298 Unicode Demystified

logographic in nature, numbering in the tens of thousands, have numerous regional and historic
variants of some characters, and are an open-ended set to which new characters continue to be
added. They’re supplemented in various ways by the other three scripts we looked at, two of
which are syllabic (Japanese and Yi) and one of which is alphabetic (Korean). These scripts are
traditionally written vertically, but can also be written from left to right, spaces are not used
between words (except in Korean), and the characters generally don’t interact typographically.
These scripts are used in East Asia.

All in all, we’ve looked at twenty-eight different writing systems, but you may have noticed
something interesting: We’ve really only looked at Europe and Asia. What about the other
continents?

The Europeans colonized Africa, Australia, and the Americas, and so their languages (along with
Arabic in northern Africa) have come to be spoken on those continents, and their writing systems
(especially the Latin alphabet) have come to be the chief writing systems used in those places.
Among the indigenous languages used in most of those places, most of those that are still spoken
either don’t have a written language or historically didn’t and now have a recently-developed written
language based on one of the European scripts (usually the Latin alphabet). But there are exceptions.

In this chapter, we’ll take a look at the four major exceptions. These four scripts don’t fit well into
any of the other categories we’ve looked at, although some of them are related to the others. Three of
the four are indigenous to areas outside Europe and Asia.

Mongolian

The exception is the Mongolian alphabet, which is (not surprisingly) used in Mongolia. Mongolian is
written using this alphabet in Inner Mongolia (the Mongolian district in China); in Outer Mongolia
(the Mongolian People’s Republic), Mongolian was written using the Cyrillic alphabet for much of
the twentieth century, but the Mongolian alphabet was restored by law in 1992. (Unlike other
biscriptal languages, such as Serbo-Croatian, there is no direct one-to-one mapping between the two
versions of written Mongolian; spelling of words in the two scripts is independent.)

The Mongolian alphabet is at best only very distantly related to the other Asian and Southeast Asian
scripts; it’s actually a cousin of the Arabic alphabet. It has been used in Mongolia since the early
thirteenth century, when it evolved from the old Uighur script, which had evolved from the ancient
Aramaic alphabet. (Modern Uighur is written using the Arabic alphabet.)

Like Arabic, Mongolian letters are cursively connected and change their shape depending on the
surrounding letters. But there are a couple of important differences:

x� The Mongolian script is fully alphabetic, using full-fledged letters for both vowels and
consonants, instead of using combining diacritical marks for vowel sounds.

x� The Mongolian script (like the ancient Uighur script before it) is written vertically. Letters
proceed from the top of the page to the bottom, and lines of text proceed from left to right (unlike
the East Asian scripts, where lines proceed from right to left).

The effect is similar to what you’d get if you took a page of Arabic writing and rotated it ninety
degrees counterclockwise. In fact, this is probably how the difference happened: Right-handers
often write Arabic vertically in lines that go from left to right across the page, even though it’s
read horizontally—this helps keep from smudging the page. It’s not a big leap from writing with
the page held like this to reading it that way as well.

 Mongolian

 A Practical Programmer’s Guide to the Encoding Standard 299

The Mongolian alphabet has thirty-five letters:

[example]

(In this example, the same letterforms are used as are used in the Unicode code charts—this is
generally the initial or independent form of the letter. Some letters have the same initial forms, and so
for some letters some other form of the letter is used so that they all appear different in the example.)

The Mongolian alphabet is also used for a few other languages, including Todo, Sibe, and Manchu.
The Mongolians also use their alphabet for religious and classical texts in Sanskrit and Tibetan; extra
letters are added for each of these languages.

As with Arabic, the letters of the Mongolian alphabet change shape depending on their context, with
most letters having initial, medial, and final forms. Some letters have similar appearances, with the
initial form of one letter serving as the medial form of another, or the final form of one letter being
the initial form of another, etc. Context and the principle of vowel harmony, which specifies which
combinations of letters in a word are legal, allow similar-looking characters to be differentiated.
Certain pairs of letters also form ligatures.

The shaping rules for Mongolian are actually more complicated than those for Arabic. Some letters
take on special shapes in certain contexts, and these can’t always be determined algorithmically;
sometimes the correct shape for a letter is something other than the default choice, and the exact
shape to use is a matter of spelling (i.e., different in that position depending on the actual word).
Some letters have up to ten different contextual glyph shapes.

Spaces are used between words in Mongolian, but white space also appears within some words.
Many words consist of a stem word with one or more suffixes attached to it; these suffixes are
separated from the basic word with a small space. Sometimes the presence of the space causes the
letters on either side of it to take on special shapes. Also, sometimes when the letters [a] (a) or [e] (e)
appear at the end of the word, they’re separated from the rest of the word with a break in the
continuity of the cursive stroke; this usually affects the shape of the preceding letter.

Like many writing systems, Mongolian has its own period ([glyph]), comma ([glyph]), colon
([glyph]), and so forth. A special symbol ([glyph]) is used to mark the end of a chapter or a text. In
Todo, hyphenation is indicated with a small hyphen at the beginning of the line containing the second
half of the divided word, rather than with a hyphen at the end of the line containing the first half, as
in English. There is also a set of Mongolian digits:

[example]

There aren’t any really hard-and-fast rules governing what happens when Mongolian text is
combined with text written in other scripts. If words from normally horizontal scripts are included in
the middle of a Mongolian text, they’re generally rotated ninety degrees clockwise, as they would be
in Chinese or Japanese (right-to-left scripts would be rotated ninety degrees counterclockwise, to
preserve the top-to-bottom ordering, unless the included excerpt consisted of a mixture of left-to-
right and right-to-left text). If a few snippets of Mongolian are included in a generally left-to-right
text, the Mongolian can be rotated ninety degrees counterclockwise, preserving the left-to-right
reading order of the text (this generally only works with short excerpts, though, as the relative order

 Scripts from Other Parts of the World

300 Unicode Demystified

of successive lines of Mongolian text would be backwards when you do this—for long blocked
quotes using the Mongolian script, it’d be better to preserve the vertical directionality).

[This section would probably be better with some examples and a bit more specificity on the
shaping behavior. Unfortunately, my normal sources are failing me: the article on Mongolian
in TWWS really sucks and doesn’t give any of the needed detail. Need to find a better source
on Mongolian to supplement the information in TUS itself.]

The Mongolian block
The Unicode Mongolian block runs from U+1800 to U+18AF. It includes not only the basic
Mongolian alphabet, but extensions necessary for Todo, Sibe, Manchu, Sanskrit, and Tibetan; the
digits; and various Mongolian- and Todo-specific punctuation marks.

As with all of the other scripts that have contextual glyph shaping as one of their basic features,
Unicode only encodes the letters themselves, not the individual glyphs. There’s no “presentation
forms” block containing code point values for the individual glyph shapes for the Mongolian letters.

There are a few special formatting characters in the Mongolian block: the three characters U+180B,
U+180C, and U+180D, MONGOLIAN FREE VARIATION SELECTOR ONE, TWO, and THREE,
are used to affect the contextual shaping of the letters. They’re intended for the situations where a
letter has a special shape only in certain positions or words and you can’t get the correct shape using
the zero-width joiner and non-joiner (which work the same way on Mongolian as they do on Arabic).
The free variation selectors have no visible representation themselves; they simply serve as a signal
to the text rendering process to use an alternate glyph for the preceding letter. The three free-
variation selectors allow for up to three alternate glyphs for each letter. The characters have no effect
when they follow something other than a Mongolian letter.

U+180E MONGOLIAN VOWEL SEPARATOR is similar in function to the free variation selectors,

but is intended specifically to be used before word-final [a] and [e]. Unlike the free variation

selectors, it does have a visual presentation: it appears as a thin space. But it also causes the

preceding character to take on a special shape.

Finally, U+202F NARROW NO-BREAK SPACE has a special function in Mongolian: it’s used for
the other situations where suffixes are set off from the base word with a small space. This character
counts as part of the word; it’s used for word-internal space. It can also cause special choices of
contextual glyph selection.

The narrow no-break space works differently in Mongolian than does the regular non-breaking space
(U+00A0). The regular no-break space is a normal-size space rather than a narrow one, so it’s not
suitable for use as a word-internal space in Mongolian; it also doesn’t cause any special Mongolian
glyph selection to happen. It can be used to glue two words together on the same line, but shouldn’t
be used for the word-internal spaces.

Finally, special mention should be made of U+1806 MONGOLIAN TODO SOFT HYPHEN. This
works like the regular soft hyphen (see Chapter 12)—that is, it marks a legal hyphenation position in
a Todo word and is invisible unless the word is actually hyphenated there, but it appears at the
beginning of the second line rather than at the end of the first line.

At the time version 3.0 of the Unicode standard was published, the definition of the Mongolian block
was incomplete. In particular, it lacked full information on the Mongolian shaping rules, especially

 Mongolian

 A Practical Programmer’s Guide to the Encoding Standard 301

the definition of exactly which glyphs the free variation selectors caused when used in conjunction
with each of the letters. The book anticipated publication of the full Mongolian shaping rules as a
Unicode Standard Annex and mentions a special committee made up of experts from China,
Mongolia, and other interested parties similar to the Ideographic Rapporteur Group that is working
on this document. As I write this in late February 2001, that annex has not yet appeared on the
Unicode Web site, even in draft form. The updated information was also not included in UAX #27,
Unicode 3.1, so apparently the definition of Mongolian is still incomplete in Unicode 3.1.

[Need to do research to find out what the current status of this work is, probably updating this
section closer to publication time after finishing the rest of the chapters. If it’s possible to get
my hands on a copy of “Users’ Convention for System Implementation of the International
Standard on Mongolian Encoding,” alluded to on p. 289 of TUS (I’m assuming this will either
be the eventual UAX, or the UAX will be a summary of this document), I should do so and
include the preliminary information here.]

Ethiopic

The Ethiopic script was originally developed to write the Ge’ez language spoken in ancient Ethiopia. Ge’ez
today is limited to liturgical use, but its writing system is also used to writing several different modern
languages spoken in Ethiopia and Eritrea, including Amharic, Oromo, Tigre, and Tigrinya.92

Ge’ez and Amharic are southern Semitic languages, cousins of Arabic and Hebrew. The writing system is
also of Semitic origin, more distantly related to the Arabic and Hebrew alphabets. It doesn’t actually
descend from the Phoenician alphabet, like so many other modern scripts, but it shares a common ancestor
with the Phoenician alphabet.93 The Ethiopic script was adapted from an earlier script, the Sabean script,
which was used for Sabean, another southern Semitic language. A distinct writing system for Ge’ez
developed sometime in the early fourth century. Several letters have since been added to represent sounds in
Amharic that aren’t also in Ge’ez (the added characters can frequently be identified by a barbell-shaped

stroke at the top of the character—compare and , for example).

Originally, Ethiopic was a consonantal script, like Hebrew and Arabic, with letters representing only
consonant sounds. The basic Amharic consonantal alphabet has thirty-three letters:

� �

This was fairly quickly deemed unsuitable for Ge’ez, and a system of vowel marks was developed to
supplement the basic consonantal script. Unlike Hebrew and Arabic, where the vowel sounds are
represented (if at all) with various dots placed near and around the basic letter, the Ethiopic consonants
sprouted various appendages to represent the vowels, and these became mandatory. There are seven vowel
sounds, so there are seven combinations of base consonant and vowel mark. Here’s a typical example, on
the basic letter qaf:

92 My sources for the section on Ethiopic are Getatchew Haile, “Ethiopic Writing,” in The World’s Writing Systems,

pp. 569-576; as well as the Unicode standard itself, pp. 284-286; and a couple facts from Nakanishi, pp. 102-103.

93 See chart on p. 89 of The World’s Writing Systems.

 Scripts from Other Parts of the World

302 Unicode Demystified

� � � � � � �

A few consonants also have labialized forms, where a w sound is interpolated between the main consonant
sound and the main vowel sound. The consonant sprouts extra appendages to represent these combinations:

� � � � �

The formation of some of these different consonant-vowel combinations can be irregular. Sometimes the
character sprouts a leg to provide a place for the vowel mark to attach…

� � � � � � �

…and the marks for some vowels aren’t always consistent. Compare, for example, these three versions of
lawe…

� � �

…with the corresponding versions of hawt:

� � �

Because of all this variation in the basic forms, today the Ethiopic script is generally thought of as a
syllabary, with each character representing a combination of consonant and vowel sounds (sometimes with
the interpolated w). The syllabary is normally shown as a 43 by 8 matrix: 43 consonants (there are ten extra
consonants for writing languages other than Amharic) and eight vowels. This gives you 344 possible
characters, although the actual number is smaller (not every syllable actually exists in the languages
represented).

Ethiopic is written from left to right, and the syllable characters don’t interact typographically.

Traditionally, a colon-like mark () was used to separate words, but the ordinary Western space is becoming

common. Other punctuation consists of the word-space character with other marks added to it: is a period,

 a comma, a semicolon, and a question mark, for example.

Ethiopic has its own system of writing numbers. It uses an additive-multiplicative system similar to that
used in Chinese, rather than Western positional notation (for more info, see Chapter 12). These are the basic
number characters, representing the numbers from 1 to 10 and 100:

� � � � � � � � � �� �

 Ethiopic

 A Practical Programmer’s Guide to the Encoding Standard 303

The Ethiopic block
The Ethiopic block (U+1200 to U+137F) separately encodes all of the syllables, arranging them in the
traditional consonant-vowel matrix, with gaps left for combinations of sounds that don’t have corresponding
characters. The Ethiopic syllables don’t decompose; despite their historical relationship, they’re all treated
as separate, independent characters in Unicode. This block also contains the Ethiopic wordspace characters
and the other punctuation marks, as well as a complete set of Ethiopic numerals.

Cherokee

Unlike all of the other scripts we’ve looked at so far, the Cherokee script doesn’t have a long history. It was
invented in 1821 by Sequoyah, a monolingual Cherokee, and was quickly picked up by the Cherokee nation
in general, having spread as early as 1824.94 Sequoyah apparently got the idea from seeing written English,
and then went on to invent his script based on the general idea. The modern forms of many of the characters
resemble Latin, Greek, or Cyrillic letter and Arabic digits, although there’s no relationship between the
sounds of the characters in Cherokee and the sounds of similar-looking characters in other scripts.
(Sequoyah’s original letterforms are said to have been unique, but the forms were later modified by mis-
sionaries to look more like European letters in an effort to make the language easier to print.)

The Cherokee script is a syllabary, with eighty-five characters representing various combinations of thirteen
basic consonants and six vowels:�

� � � � � �

� � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � � �

� � � � � �

� � � � � � �

� � � � � � � � �

� � � � � � �

� � � � � �

� � � � � �

� � � � � �

94 My source is Janine Scancarelli, “Cherokee Writing,” in The World’s Writing Systems, pp. 587-592.

 Scripts from Other Parts of the World

304 Unicode Demystified

These 85 characters actually represent a far wider selection of actual sounds, as can be seen by the fact that
there are multiple characters in certain cells of the chart, representing variants of the basic consonant sounds
in those syllables. (Other cells have similar variant sounds, but they’re all represented with the same

character.) With a few exceptions (often involving , which represents the s sound without a vowel),

successive consonant sounds with no intervening vowel sounds are written using an arbitrary syllable with
the right consonant sound—the vowel sound is understood to be silent.

Cherokee is written from left to right, with Western punctuation and spaces between words (in handwritten
Cherokee, words are sometimes separated by raised dots). Cherokee writing is basically caseless, but some
printed materials in Cherokee use larger forms of the syllables in a way analogous to capital letters in
English. The Cherokee syllables don’t interact typographically and aren’t used with combining diacritical
marks. Sequoyah also invented a Cherokee numeration system, but it never caught on—today numbers are
either written out in words or written using regular Western digits.

The Cherokee block
The Unicode Cherokee block runs from U+13A0 to U+13FF. It just contains the basic Cherokee syllables.
Normal Western spaces, numerals, and punctuation are used with these characters. Unicode treats Cherokee
as uncased; it doesn’t include separate code point values for the larger versions of the letters used in some
printed Cherokee materials; these must be represented using out-of-band styling information.

Canadian Aboriginal Syllables

The Canadian aboriginal syllabary is used to write various Native American languages in Canada.95 It
was originally invented in 1841 by the Wesleyan missionary James Evans to write Cree and Ojibwe,
and the letterforms were originally based on a form of British shorthand. The characters generally
represent syllables (combinations of initial consonant and vowel), but additional characters are used
to represent syllable-initial vowels and syllable-final consonants. The basic Cree syllabary consisted
of sixty-three characters, as follows:

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

95 My source is John D. Nichols, “The Cree Syllabary,” in The World’s Writing Systems, pp. 599-611.

 Canadian Aboriginal Syllables

 A Practical Programmer’s Guide to the Encoding Standard 305

� � � � � �

� � � � � �

The vowels alone were represented with triangles pointing in various directions; the syllables were
then represented with various other character shapes, with the orientation specifying the vowel sound.
Small superscripted forms of the various syllables were generally used to represent syllable-final
consonant sounds.

This script spread fairly rapidly to the different Native American communities in Canada, and it’s
now used for a variety of languages in the Algonquian, Inuktitut, and Athapascan languages families.
Among others, the script is used to write Eastern and Western Algonquian, Cree, Ojibwe, Naskapi,
Inuktitut, Inuktun, Athapascan, Chipewyan, and Carrier.

As the script was adopted by each new group, it was modified as necessary to suit that language, with
various new characters being added and dots and other marks added to many of the original
characters. The end result is that virtually every language using this writing system has its own
version with its own characters and its own mapping of the characters to sounds. Generally speaking,
the spelling of the various languages isn’t standardized, and various dots and marks used with the
characters may be omitted by some writers.

The Canadian syllables are written from left to right, spaces are used between words, and (with one

exception) English punctuation marks are used. The exception is the period, which looks like this:

The Unified Canadian Aboriginal Syllabics block
The Unified Canadian Aboriginal Syllabics block (U+1400 to U+167F) contains all of the characters
necessary to write all the languages that are written with scripts based on the original Cree syllabary.
The unification is based on glyph shape: if the same syllable has a different glyph in different
languages, they’re still encoded separately, and if different languages use the same shape for different
sounds, they’re still unified. The basic idea is to allow the mixture of different Canadian aboriginal
languages in the same document without forcing a change of fonts.

Many of the characters in this block consist of a basic letterform with various added dots or other
marks. These characters don’t decompose—they’re treated as fully independent first-class syllables
rather than combinations of a basic character and one or more marks.

The Canadian aboriginal period and the chi sign (), used to write the name of Christ in some texts,

are also included in this block.

Historical scripts

With that, we’ve rounded out the set of 32 modern scripts encoded in Unicode. With the characters
in these blocks, all of the modern written languages in common business or official use can be
represented. There are certainly other modern scripts that are in use and could be encoded (and

 Scripts from Other Parts of the World

306 Unicode Demystified

most eventually will be), but the current Unicode set is sufficient to write at least one language
written by practically every literate person on Earth.

However, there are many more writing systems that have fallen into disuse but still occur in
scholarly writing about them. In many cases, there are also communities of hobbyists that use
them. Unicode 3.1 includes encodings for five such scripts, and we’ll take a brief look at each of
them next.

Runic
The Runic script was used in various parts of Europe from the first century to the nineteenth
century.96 Its origins are uncertain, but the earliest inscriptions using runes were found in Denmark
and Germany. The traditional Runic alphabet (or “futhark,” a name derived from the sounds of the
first six letters) consisted of twenty-four letters:

� � � � � � � � � � � � � � � � � � � �

� � � �

The use of runes spread north and west into Scandinavia and the British Isles, and as it spread to
new peoples, various changes occurred both in the alphabet itself (addition and removal of letters,
changes in their sounds) and in the shapes of the individual letters. In Scandinavia, the alphabet
was shortened to sixteen letters, but in Britain it was extended to twenty-eight letters.

Runic was a full alphabetic script, with letters for both consonant and vowel sounds. Like many
early writing systems, the writing direction varied: some inscriptions were written from left to
right, some from right to left, and some in alternating directions (“boustrophedon”). Spaces
weren’t used between words, but sometimes words were separated by various dots. Certain pairs of
letters form ligatures in certain inscriptions.

The Runic block in Unicode (U+16A0 to U+16FF) contains 75 letters. Letters with common
historical origins are generally unified (there are a few exceptions, notably the so-called “long
branch” and “short twig” runes), even when their shapes differ significantly. For this reason, a user
must use a font designed especially for the variety of Runic he wants to represent. The Unicode
Runic block also includes a few Runic punctuation marks whose exact meaning is unknown, and a
few special runes that were only used for writing numbers. One interesting quirk of the Runic
block is that the name of each character is actually the concatenation of several names for the
character, in the cases where the same character was used in different places and times and had
different names. This helps figure out which character you want when it’s been unified with several
other characters that had different names.

96 The material from the Unicode standard is supplemented by material from Ralph W. V. Elliott, “The

Runic Script,” The World’s Writing Systems, pp. 333-339.

 Historical Scripts

 A Practical Programmer’s Guide to the Encoding Standard 307

Ogham
Ogham (pronounced “Ohm”) was used in the fifth and sixth centuries for inscriptions on stone in
early Irish (the surviving examples are generally territory markers and tombstones).97 Its origins
are uncertain, but there’s some consensus that Ogham was inspired by the Latin script. It’s
alphabetic in character, with characters for both consonants and vowels. There are twenty basic
marks, organized into four groups of five:

�

[spacing problems again—the center line in all these marks should connect]

These characters originally were series of notches cut along the edge of the stone: the first group
would be cuts in the stone along one face, the second group along the other face, the third group
crossing both faces, and the fourth group would be notches just in the edge between the faces.
Inscriptions would begin on the lower left-hand corner of the stone and continue up the left side,
along the top, and down the right side. There was no punctuation or word division.

In later periods, Ogham was also written on paper, where a central line would often be used to
symbolize the edge of the stone (hence the forms shown above). Six additional letters (“forfeda”)
were added during this time. The normal left-to-right writing direction is usually used when writing
Ogham on paper, and spaces are more common, at least in scholarly work.

The Unicode Ogham block runs from U+1680 to U+169F and includes the twenty-six Ogham
letters, plus a space character consisting of just the center line with no marks crossing it (in fonts
that don’t use the center line, this looks the same as a regular space) and “feather marks,” chevron-
like marks used to mark the beginning and end of a text.

Old Italic
The Latin alphabet evolved from the ancient Etruscan alphabet, which evolved from an ancient
form of the Greek alphabet. There are a bunch of related alphabets used around Italy in that same
period that derived from the same version of the Greek alphabet. They may be thought of as
siblings of the Etruscan alphabet. The Unicode Old Italic block, which runs from U+10300 to
U+1032F in the SMP (i.e., Plane 1), is a unification of these various Etruscan-related alphabets
used in Italy beginning in roughly the eighth century BC. In particular, the Etruscan, Umbrian,
North and South Picene, Faliscan, Sabellian, Oscan, Volscian, Elimian, Sicanian, and Siculan
alphabets are unified into the Old Italic block (various other alphabets from that area and time
period, such as Gallic, Venetic, Rhaetic, and Messapic, belong to different families and aren’t
unified here. They remain unencoded in Unicode 3.1). The unified letters are related historically
and phonetically, but don’t necessarily look the same in each of the unified alphabets; use of a font
customized for the particular alphabet you want to represent is therefore required.

These alphabets were generally written from right to left, with boustrophedon sometimes
occurring, but since modern scholarly usage generally turns them around and writes them left to
right (the better to include glosses and transcriptions in modern Latin letters), Unicode encodes

97 The material from the Unicode standard is supplemented with material from Damian McManus,

“Ogham,” The World’s Writing Systems, pp. 340-345.

 Scripts from Other Parts of the World

308 Unicode Demystified

them as strict left-to-right characters. The directional-override characters can be used to display
these characters in their original directionality; rendering engines should use mirror-image glyphs
when these characters are written from right to left.

Punctuation was not used in any of these alphabets, and spaces were not used between words,
although in later usage dots were sometimes used between words. Unicode doesn’t include special
codes for these dots, unifying them instead with similar symbols elsewhere in the standard. The
numbering system used was not well attested, but some fairly well-attested numeral characters are
included in this block; they work like Roman numerals.

Gothic
The language of the Goths, from a now-extinct branch of the Germanic languages, has come down
to us only in very few examples, but is important to scholars because of the historical importance
of the Goths and its status as a representative of a now-extinct branch of a major language group.98
The few examples of written Gothic are written in a distinctive script that tradition holds was
invented by the Gothic bishop Wulfila in the late fourth century, primarily to allow for a translation
of the Bible into Gothic. Indeed, almost all examples of written Gothic are Bible fragments, and
these fragments are important for Biblical scholarship. Many sources have been proposed for
Wulfila’s script—it probably derived at least partially, if not completely, from the Greek alphabet.

The Gothic alphabet has twenty-seven letters:

 �

Two of these (and), as far as we know, were only used for writing numerals. The letter

is written with a diaeresis () when it occurs at the beginning of a word or at certain

grammatically-significant positions within a word. Contractions are written with a bar over the

word (, xus, was the abbreviation for “Christ,” for example).

As with many ancient alphabets, the letters were also used to write numbers (as we saw, there were
two letters that, as far as we know, were only used for this purpose)—numerals were set off with a

dot on either side (
• •

) or with lines above and below ().

Gothic was written from left to right; spaces were not used between words, but spaces, centered
dots, and colons were all used between phrases and for emphasis.

The Unicode Gothic block runs from U+10330 to U+1034F in the SMP and contains only the

twenty-seven Gothic letters. is represented using the code point for (U+10339), followed

by U+0308 COMBINING DIAERESIS. Similarly, U+0305 COMBINING OVERLINE is used for

98 The information from the Unicode standard is supplemented by Ernst Ebbinghaus, “The Gothic

Alphabet,” The World’s Writing Systems, pp. 290-293.

 Historical Scripts

 A Practical Programmer’s Guide to the Encoding Standard 309

the bar that indicates contractions. Numerals are set off using either U+00B7 MIDDLE DOT

before and after, or with a combination of U+0304 COMBINING MACRON and U+0331

COMBINING MACRON BELOW attached to each character. The normal space, middle-dot, and

colon characters are used for phrase division and emphasis.

Deseret
Unlike the other historical scripts in the current version of Unicode, all of which are of
considerable antiquity, the Deseret alphabet is a modern invention. It was developed in the 1850s
at the University of Deseret, now the University of Utah, and promoted by the Church of Jesus
Christ of Latter-Day Saints (the Mormons).99 The word Deseret comes from the Book of Mormon,
which defined it to mean “honeybee.” (The beehive was used as a symbol of cooperative industry
by the early Mormons, who used “Deseret” as the name of the region where they were settling.)

The interesting thing about the Deseret alphabet is that it was invented for the writing of English,
not some exotic language only spoken historically or by some small group of people. The idea was
to provide a completely phonetic way of writing English in an effort to make it easier for Mormon
immigrants from Europe to learn English. It was heavily promoted by Brigham Young over a
period of some fifteen years, but never really caught on. On the other hand, it’s never completely
died out, either—there is still interest among some Mormons, and some new materials continue to
be published from time to time using this alphabet.

The Deseret alphabet has thirty-eight letters, sixteen vowels and diphthongs…

 (long i) (long e) (long a) (long ah) (long o) (long oo)

 (short i) (short e) (short a) (short ah) (short o) (short oo)

 (ay) (ow) (wu) (yee)

…and twenty-two consonants:

 (h) (pee) (bee) (tee) (dee) (chee) (jee) (kay)

 (gay) (ef) (vee) (eth) (thee) (es) (zee) (esh)

 (zhee) (er) (el) (em) (en) (eng)

The letters are written from left to right, spaces are used between words, punctuation and numerals
are the same as in English, and no diacritical marks or other complex typography are required. The
letters come in capital/small pairs, but they differ only in size, not in shape. One interesting quirk
of Deseret writing was that when the name of a letter was pronounced the same as an actual word,

99 The information from the Unicode standard is supplemented by John H. Jenkins, “Adding Historical

Scripts to Unicode,” Multilingual Computing & Technology, September 2000.

 Scripts from Other Parts of the World

310 Unicode Demystified

that word can be written using only that letter: For example, (ay) is used for “I,” (bee) is

used for “be” and “bee,” (thee) is used for “the” and “thee,” and so forth.

This example in Deseret letters:

��
��

�
…says “In the second century of the Christian Era, the empire of Rome comprehended the fairest
part of the earth, and the most civilized portion of mankind.” It’s the opening of “The Decline and
Fall of the Roman Empire.”

The Unicode Deseret block runs from U+10400 to U+1044F in the SMP and contains upper- and
lower-case forms of the thirty-eight Deseret letters; since the punctuation and numerals are the
same as English, and diacritics aren’t used, no other characters are encoded in this block.

 311

CHAPTER 12 Numbers, Punctuation, Symbols,
and Specials

It’s been a long trip, but we’ve finally covered all of the writing systems in Unicode 3.2. But we’re
not done yet with our guided tour of the character repertoire. At this point, we’ve looked at basically
all of the characters in Unicode that are used to write words: the various letters, syllables, ideographs,
diacritical marks, and so on that are used to write the various languages of the world. In this chapter,
we’ll look at everything else:

x� The various characters used to write numeric values, and the various characters used with them.

x� The punctuation marks.

x� The special Unicode characters and non-character code points, including control characters,
invisible formatting characters, non-characters, and other characters with special properties.

x� Various symbols.

x� Various miscellaneous characters, such as the dingbats, the box-drawing characters, the geometric
shapes, and so on.

We’ve checked out some of these characters as we’ve gone through the writing systems, mainly the
ones that are used only with particular scripts. In this chapter, we’ll look at those characters briefly
again in the context of a more comprehensive treatment of their character categories.

Numbers

Written numbers are probably older than written words, and it’s just as import to have characters for
the writing of numeric values as it is to have characters for the writing of words. There are lots of
digit and numeral characters in Unicode, as well as many characters that do double duty as digits or

 Numbers, Punctuation, Symbols, and Specials

312 Unicode Demystified

numerals and as something else (usually letters or ideographs). In this section, we’ll look at all of
them.

Western positional notation
The numeration system we use in the United States and Europe is called positional, or place-value
notation. When used to write decimal numbers, positional notation makes use of nine basic “digit”
characters that represent not only the values from one to nine, but also those values times the various
powers of ten. The exact value of a digit (i.e., which power of ten you multiply by) is determined by
the digit’s position within the numeral. The rightmost digit in an integer keeps its nominal value, and
each succeeding digit to the left has its nominal value multiplied by a higher power of 10. A special
placeholder digit, called a “zero,” is used to mark digit positions that aren’t used, so that the
meanings of the surrounding digits are unambiguous.

The positional system of numeration and the shapes of the characters we use as digits have their
origins in India somewhere around the fifth century AD.100 In the West, the characters are commonly
called “Arabic numerals” because the Europeans got this system of numeration from the Arabs. (As if
this weren’t confusing enough, the Arabs call their numerals “Hindi numerals” because they got them
from the Indians.)

Although pretty much everybody using positional notation uses digits derived from the original
Indian ones, the shapes have diverged quite a bit in the intervening centuries. Unicode includes
sixteen different sets of decimal digits. Each set of digits is used to make up numerals in the same
way our familiar Western digits are. In some countries, both the Western digits and the native digits
are used. Unicode encodes each set of digits in the block for the script that uses those digits (the
Western digits are in the ASCII block), and in every case puts them in a contiguous block arranged in
ascending order from 0 to 9. Number-formatting code (i.e., code that converts a number from its
internal representation into characters for display to the user) can thus be adapted to use a locale’s
native digits rather than the European digits simply by telling it which code point to use for 0—the
others follow automatically.

Here’s a table of the various sets of decimal digits in Unicode [still need to fill in Mongolian]:

European U+0030 0 1 2 3 4 5 6 7 8 9

Western Arabic U+0660

Eastern Arabic U+06F0

Devanagari U+0966 � � � � � � � � � �

Bengali U+09E6 �

Gurmukhi U+0A66

Gujarati U+0AE6

Oriya U+0B66 �

100 Ifrah, p. 420.

 Numbers

 A Practical Programmer’s Guide to the Encoding Standard 313

Telugu U+0C66 �

Kannada U+0CE6 �

Malayalam U+0D66 �

Thai U+0E50 Ñ Ò Ó Ô Õ Ö × Ø Ù Ú

Lao U+0ED0

Tibetan U+0F20

Myanmar U+1040

Khmer U+17E0

Mongolian U+1810

There are other characters in Unicode that have the “decimal digit” property, but they’re either
presentation forms, or the series isn’t complete because a different system of numeration is used
(typically, the zero is missing and there are additional characters for 10, 100, and so on).

Alphabetic numerals
Many cultures, notably the Greeks and Hebrews, although there are others, have used the letters of
their alphabets as digits as well as letters. Typically the way this works is that the first nine letters of
the alphabet represent the values 1 to 9, the next nine letters represent the multiples of 10 from 10 to
90, the third group the multiples of 100 from 100 to 900, and so on. In some languages, such as
Greek and Gothic, some of the letters eventually fell into disuse as letters but continued to be used as
digits. In Hebrew, the alphabet only had twenty-four letters, so 700, 800, and 900 had to be written
using combinations of characters. In most languages that used letters to write numbers, there was
some special mark that was used to distinguish numerals from words.

None of the cultures that used alphabetic notation for writing numbers still does, except sometimes
for things like list numbering or dates (similar to when we might use Roman numerals). Unicode, in
keeping with its principle of unification, just designates the regular letters as doing double duty as
digits when alphabetic notation is used for historical reasons. In all cases, letters that came to be used
only as digits, and the special distinguishing marks used to mark sequences of letters as numerals
instead of words are also encoded.

Roman numerals
Just as we’re all familiar with Arabic numerals, we’re all familiar with Roman numerals, where the
letters I, V, X, L, C, D, and M are used in various combinations to represent numeric values. Roman
numerals used a basically additive notation, with the values of the characters just being added up to
get the value of the whole numeral (XVIII = 10 + 5 + 1 + 1 + 1 = 15) [the subtractive notation that
causes IV to be interpreted as 4 was a later development, and doesn’t really change the basic nature
of the notation]. The I, V, and X characters probably evolved out of early methods of representing

 Numbers, Punctuation, Symbols, and Specials

314 Unicode Demystified

numeric values by making notches or scratch marks in things–similar methods exist in lots of ancient
cultures.

The basic way of representing Roman numerals in Unicode is the same as for representing alphabetic
notation: to use the normal Latin-letter characters. There’s no need for special I, V, X, etc.
characters for writing Roman numerals. There are, however, exceptions.

The M for 1,000 was a fairly late development; before it the symbol �was used in Roman

numerals to represent 1,000. You could represent higher powers of 10 by adding concentric circles:

for example, represents 10,000. You cut these symbols in half to represent half the value:

represents 5,000, and this is also where D for 500 comes from. Unicode includes code points for

these three characters in the Number Forms block at U+2180, U+2182, and U+2181 respectively.

In more recent centuries, you’ll see the symbols for the large numbers represented using whole
characters. In situations where printers didn’t have type for the special characters, they’d fake them

using C, I and an upside-down C: would be written as CI and as CCI . The upside-down

C is in the Number Forms block at U+2183. [MS Word bug is causing bad spacing between
upside-down Cs]

A more modern practice represents large numbers using bars over the traditional letters: a bar over a

letter multiples its value by 1,000:
X

[fix alignment], for example, represents 10,000. You can
use U+0305 COMBINING OVERLINE to do this.

Finally, even though Unicode doesn’t need special code-point values for the other Roman-numeral
characters, it has them. This is a legacy issue: Several Japanese and Chinese character-encoding
standards have code points for the Roman numerals (where they’re useful for such things as making a
whole Roman numeral show up in a single display cell in vertical text), and Unicode adopts them as
well for full round-trip compatibility with these standards. For this reason, the Unicode Number
Forms block includes two sets of Roman numerals, representing the values from 1 to 12, plus 50,
100, 500, and 1,000. One series uses capital letters and the other uses small letters. Thanks to this,
you can represent “VIII” either with four code points, for the letters V, I, I, and I, or with a single
code point, U+2167, representing the concept “Roman numeral 8.” These characters occupy the
range U+2160 through U+217F in the Number Forms block, and all of them have compatibility
decompositions to sequences of regular letters.

Han characters as numerals
Certain Han characters represent basic numeric values and are combined using an additive-
multiplicative system to write the other numeric values. These are the basic characters representing
the numbers from 1 to 9:

1 2 3 4 5 6 7 8 9

 Numbers

 A Practical Programmer’s Guide to the Encoding Standard 315

They’re used in conjunction with these characters that represent various powers of 10:

10 100 1,000 10,000 100,000,000 1,000,000,

000,000

The additive-multiplicative principle is pretty simple: if one of the basic-number characters appears
before a power-of-10 character, their values are multiplied together. If it appears after it, their values
are added together. So you get this:

 = 2

 = 10

 = 12

 = 20

 = 22

 = 222

For values above 10,000 you get a new character every power of 10,000 instead of every power of
10. This is analogous to how in English, for values above 1,000, you introduce a new word for every
power of 1,000 instead of every power of 10. Just as 123,456 is “one hundred twenty-three thousand
four hundred fifty-six,” so 1,234,567 in Han characters is

The last part is simple, representing 4,567 with pairs of characters for 4,000, 500, and 60, and a
single character for 7:

The first part follows the same principle for 123 (a single character for 100, a pair of characters for
20, and a single character for 3) and follows this sequence with the character for 10,000, which
multiplies the whole sequence by 10,000. Thus, this sequence represents 1,230,000:

 Numbers, Punctuation, Symbols, and Specials

316 Unicode Demystified

Other Han characters are also used in special situations to represent numbers, particularly in
accounting. For example, let’s say somewhere in the amount on a check you have…

…representing 2. All you have to do is add another stroke to it to get 3:

In fact, you can add two additional strokes to get 5:

For this reason, alternate characters that can’t be altered just by adding a couple strokes are used on
checks or in other places where it’s necessary to deter counterfeiting. Exactly which characters are
substituted varies from region to region, but here’s a fairly complete selection:101

1 2 3 4 5 6 7 8 9 10 100 1,000 10,000

Another Han character is sometimes used to represent the value 0:

101 My source for the information in this chart is the Unicode standard, p. 97.

 Numbers

 A Practical Programmer’s Guide to the Encoding Standard 317

Sometimes, you’ll also see the Han characters used with Western positional notation. In these
situations, a special zero character is used. 1,203 would normally be written like this…

…but you may occasionally see it written like this, using positional notation:

All of the characters shown above are regular Han characters in the CJK Unified Ideographs block,
where some have other meanings and some are used exclusively for writing numbers. The one

exception is , which is in the CJK Symbols and Punctuation block.

Also in the CJK Symbols and Punctuation block are the so-called “Hangzhou-style” numerals. They
come to Unicode via a number of different East Asian encoding standards, but their provenance is
rather cloudy. Some of them are similar to the “regular” Han characters for numbers, but based on
vertical lines instead of horizontal lines:

� � � � � � � � � � � �
1 2 3 4 5 6 7 8 9 10 20 30

It appears these are another set of “commercial” numerals, used by shopkeepers in parts of China
(and maybe also Japan) to mark prices.102

Finally, the Japanese and Koreans, and less frequently the Chinese, also use the Western digit
characters to write numbers.

Other numeration systems
Tamil uses the same additive-multiplicative system used with the Han characters. The characters for
1 through 9 are…

� � � � � � � � �

…and the following characters represent 10, 100, and 1,000, respectively:

102 My information here comes from Thomas Emerson, “On the ‘Hangzhou-Style Numerals in ISO/IEC 10646-

1,” a white paper publshed by Basis Technology. Emerson cites the source encodings for these characters,

his best information as to what they’re used for, and goes on to say that the term “Hangzhou” isn’t attested in

any source he could find—he proposes the term “Suzhou,” which was attested in a number of sources,

instead. (Thanks, by the way to Tom for forwarding his paper to me.)

 Numbers, Punctuation, Symbols, and Specials

318 Unicode Demystified

� � �

This system appears to be dying out in favor of Western numerals.

Ethiopic uses a system that’s kind of a hybrid of the additive system underlying Greek and Hebrew
alphabetic notation and the additive-multiplicative system used in Japanese and Chinese. The
following nine characters represent the values from 1 to 9:

� � � � � � � �

The following nine characters represent the multiples of 10 from 10 to 90:

� � � � � � � � �

The other values from 1 to 99 are represented using pairs of these characters. 100 is represented with
this character:

�

Multiples of 100 are represented by putting pairs of the other characters before the . So 1,234 is
written like this:

The same pattern is followed for values over 10,000: each power of 100 is represented using an

appropriate number of characters. Thus, 123,456 is

A few languages also have special ways of writing fractions. Bengali has several special characters

for writing the numerator of a fraction (, , , , and , representing 1, 2, 3, 4, and one less

than the denominator) and one special character for writing the denominator (, representing a

denominator of 16).

Tibetan has special characters representing the halves. Each is a regular Tibetan digit with a hook
that subtracts 1/2 from its value: For example,

 Numbers

 A Practical Programmer’s Guide to the Encoding Standard 319

…is the Tibetan digit 3, and

…represents 2½ (or “half three”).

Numeric presentation forms
Unicode also includes a bunch of numeric presentation forms. These are all compatibility characters,
included for round-trip compatibility with some national or vendor standard, and most have
compatibility decompositions. Most represent a number with some sort of styling added, but some
are simply single-code-point representations of a sequence of characters. (These latter combinations
pretty much all come from various East Asian encoding standards, where they’re used for things like
list numbering where you want all the digits and punctuation to show up in a single display cell in
vertical text.)

Superscripts and subscripts. Unicode includes superscript and subscript versions of all the digits,
as well as some math operators and the letter n (as in “2n”). The superscripted versions of 1, 2, and 3
are in the Latin-1 block at U+00B9, U+00B2, and U+00B3 respectively, and the other characters are
in the Superscripts and Subscripts block, which ranges from U+2070 to U+209F.

Circled. Unicode includes versions of the numbers 1 through 20 with circles around them in the
range U+2460 to U+2473 in the Enclosed Alphanumerics block. Several other versions of the
numbers from 1 to 10 (sans-serif versions with circles around them, and black circles with white
serifed and sans-serif numbers on them) are in the Dingbats block from U+2776 to U+2793. The Han
characters for 1 to 10 with circles around them are encoded in the Enclosed CJK Letters and Months
block from U+3280 to U+3289.

Parenthesized. Unicode also includes single code points representing the numbers from 1 to 20
surrounded with parentheses in the Enclosed Alphanumerics block from U+2474 to U+2487.

With a period. Unicode also includes single code points representing the numbers from 1 to 20
followed by a period. These are also in the Enclosed Alphanumerics block, from U+2488 to
U+249B.

Fractions. Finally, Unicode has several single code points representing fractions (the so-called
“vulgar fractions”). ½, ¼, and ¾ are in the Latin-1 block at U+00BC, U+00BD, and U+00BE.
Several more, for the thirds, fifths, sixths, and eighths, are in the Number Forms block from U+2153
to U+215E. The Number Forms block also includes a single code point representing just the

numerator 1 and the slash (, U+215F). This can be used with the subscript digits to make other

fractions.

National and nominal digit shapes
The ISO 8859-6 standard didn’t have enough room to encode both the Western digits and the native
Arabic digits, so it had the code points in the ASCII range that normally represent the Western digits
do double duty and represent both the Western digits and the native Arabic digits. When transcoding

 Numbers, Punctuation, Symbols, and Specials

320 Unicode Demystified

from this encoding to Unicode, you’re not guaranteed, for example, that U+0032 represents “2”; it
might actually represent “”, depending on the source material. The original version of ISO 10646
included two characters, U+206E NATIONAL DIGIT SHAPES and U+206F NOMINAL DIGIT
SHAPES, invisible formatting characters that would control whether the digits in the ASCII block get
rendered with their normal glyph shapes or with the local (usually Arabic) glyph shapes. These
characters came into Unicode with the merger with 10646.

These characters were deprecated in Unicode 3.0. The preferred approach to this problem is for the
process that converts from 8859-6 to Unicode to be smart enough to know whether to convert 0x30
through 0x39 to U+0030 through U+0039 or to U+0660 through U+0669. The digit characters in the
ASCII block should now always be treated as representing the European digit shapes.

Punctuation

The other thing you need for a writing system to be complete (generally speaking; there are
exceptions) is punctuation. As with all the other character categories, Unicode includes a wide
variety of punctuation marks, some specific only to one writing system, and some common to several.
As we’ve seen, there are script-specific punctuation marks scattered throughout the Unicode
encoding range. There are also two encoding blocks reserved exclusively for punctuation marks.
We’ll take a brief look at the whole universe of Unicode punctuation and then take a closer look at a
few of the more interesting cases.

Script-specific punctuation
A lot of punctuation marks have been scattered throughout the Unicode encoding range. Some of
these, mainly those in the ASCII and Latin-1 blocks, are where they are for historical or compatibility
reasons; most of the others are specific to one or two writing systems and are kept in the same block
as the other characters in that script. Most punctuation marks are uses to delimit ranges of text in
various ways. Here’s a table showing most of these marks. The rows show which block they’re in
(which generally corresponds to which scripts they’re used with). The columns, on the other hand,
attempt to categorize the marks according to the amount of text they delimit. The first column
contains marks that are used within words or in place of words (abbreviation or elision marks, “etc.”
or “and” signs, etc.). The second column contains marks that are used between words. The third
column contains marks that are used between groups of words (e.g., phrases or list items). The fourth
column contains marks that are used between sentences (or roughly-equivalent groupings of words).
The fifth column contains marks that are used between groups of sentences (e.g., paragraphs or
topics). And the last column contains marks that generally appear at the beginning or end of an entire
text.

[The table is missing glyphs for some characters I couldn’t find a font for. The code point
values for these glyphs are shown in red and need to be filled in with the actual glyphs before
publication.]

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 321

<word word >word sentence >sentence text

ASCII ’

&

/

-

,

;

:

.

!

?

Latin-1 -

·

 ¡

¿

Greek �

Armenian �

 �

�

Hebrew

Arabic

Syriac � � �

�

�

�

�

�

�

�

�

�

Devanagari

Sinhala [0DF4]

Thai Ð Û Ü

Tibetan �

�

�

�

�

�

�

�

�

Myanmar � �

 Numbers, Punctuation, Symbols, and Specials

322 Unicode Demystified

Georgian

Ethiopic � �

�

�

�

�

�

�

Canadian

Aboriginal

 �

Ogham �

�

Khmer �

�

�

 [17F6]

�
� � �

Mongolian [1801]

[1806]

[1807]

 [1802]

[1804]

[1808]

[1803]

[1809]

 [1800]

[1805]

CJK

There are a lot of marks that don’t fit well into this taxonomy (parentheses and quotation marks, for
instance); we’ll look at most of these below.

The General Punctuation block
The General Punctuation block, running from U+2000 to U+206F, is just what its name suggests: It
contains a bunch of punctuation marks that are intended to be used with many different scripts. For
historical reasons, most of the most common punctuation marks, such as the period, comma, question
mark, exclamation points, and so on are actually in the ASCII block, so the General Punctuation
block tends to contain more-specialized or less-ambiguous versions of characters that appear in the
ASCII block and a miscellany of less-common marks.

In particular, it contains a large collection of spaces, dashes, quotation marks, dot leaders, and
bullets, all of which we’ll look at below, as well as various other marks and symbols. It also contains
most of Unicode’s special invisible formatting characters, which we’ll also look at below.

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 323

The CJK Symbols and Punctuation block
The CJK Symbols and Punctuation block, which runs from U+3000 to U+303F, is analogous to the
General Punctuation block, but contains various marks drawn from various East Asian encodings and
specific to East Asian text. These include the period and comma used with CJK characters, a space
that’s correctly sized for use with CJK characters, various parentheses, dashes, and quotation marks,
Kana repetition marks, tone marks, various miscellaneous signs and symbols, and the Ideographic
Variation Indicator, which we looked at in Chapter 10.

Spaces
Now we’ll look at some of the more interesting and important categories of characters in Unicode.
Unicode has a number of groups of characters with similar appearances and semantics, and it’s worth
it to take a closer look at these and understand just what their differences are.

The basic space character in Unicode, the one representing the spaces between these words, is
U+0020 SPACE, Unicode’s equivalent to the ASCII space character.

Then there are a bunch of other space characters that basically differ from the regular space in width
only. In rough order from widest to narrowest, the fixed-width Unicode spaces are:

x� U+2003 EM SPACE , also known as the “em quad”, is a space one em wide. An em is a unit of
horizontal space on a line of type that is exactly as wide as the font in use is high. So a space one
em wide (the em quad) is square, at least in most fonts. The term “em” comes from the fact that in
old Roman inscriptions the capital letter M was square, so the em quad is the width of the capital
letter M (in most modern fonts, the capital M actually isn’t an em wide, but the name has stuck).
The term “quad” comes from the fact that the space is square. U+2001 EM QUAD was a
mistaken duplicate encoding of the same thing, and now has a singleton canonical decomposition
to this character.

x� U+3000 IDEOGRAPHIC SPACE is a space that’s the same width as the Han characters. Since in
most fonts, the Han characters occupy a square space, this can be thought of as basically the same
thing as the em quad, but intended for use in Japanese, Chinese, and Korean text. However, unlike
the em quad, which has a fixed width, the ideographic space can vary in width in justified text.

x� U+2002 EN SPACE, also known as the “en quad,” is a space one half of an em wide. In other
words, it defines a space one half as wide as it is high. Two en quads make an em quad. The term
“en” probably comes from the idea that the en is the width of the capital letter N, but I doubt even
in old Roman inscriptions that the letter N was ever really half the width of the letter M. U+2000
EN QUAD is also a mistaken double encoding, and has a singleton canonical decomposition to
this character.

x� U+2007 FIGURE SPACE is a space that’s the same width as the digits in a typeface that makes
all the digits the same width. It’s useful for lining up figures in columns, as the normal space is
usually narrower than the digits.

x� U+2004 THREE-PER-EM SPACE is a space that’s one-third of an em in width, or one-third as
wide as it is high. Three three-per-em spaces (or “three-em spaces” for short) make an em quad.

x� U+2005 FOUR-PER-EM SPACE is a space that’s one-fourth of an em in width, or one-fourth as
wide as it is high. Four four-per-em spaces (or “four-em spaces” for short) make an em quad.

x� U+2006 SIX-PER-EM SPACE is (all together now) a space that’s one-sixth of an em in width, or
six times higher than it is wide. Six six-per-em spaces (or “six-em spaces”) make an em quad.

x� U+2009 THIN SPACE is more analogous to the regular U+0020 SPACE in that it doesn’t have a
set width. It’s narrower than the regular space, but like it can vary in width when it’s used in
justified text.

 Numbers, Punctuation, Symbols, and Specials

324 Unicode Demystified

x� U+205F MEDIUM MATHEMATICAL SPACE (new in Unicode 3.2) is a thin space for
mathematical typesetting, defined to be four-eighteenths of an em wide.

x� U+2008 PUNCTUATION SPACE is defined to be the same width as the period. Like the figure
space, it’s used for lining up columns of numbers.

x� U+200A HAIR SPACE is the narrowest space of all. In most fonts, it’s only a point or so wide.

x� U+200B ZERO WIDTH SPACE is a space that takes up no horizontal space at all. The name is
kind of an oxymoron (a “space” that doesn’t take up any space?). The zero-width space, despite
its name, is more properly thought of as an invisible formatting character. It’s used to mark word
boundaries in text without actually causing a visible break. For instance, Thai is written without
spaces between words (spaces in Thai are used in a manner roughly analogous to commas in
English), but you’re supposed to respect the word boundaries when laying Thai text out on a line
(i.e., unlike in Japanese text, it’s not okay to break a line of Thai text in the middle of a word).
One way to deal with this problem is to put zero-width spaces in the text to mark the word
boundaries. This will cause word wrapping to do the right thing, but you won’t see any spaces
between the words.

So where does the normal space we all know and love fit into this equation? Unlike most of the space
characters listed above, U+0020 SPACE can vary in width as necessary to produce properly justified
text. The base width before any adjustments are applied varies from font to font but is usually the
same size as the three-per-em or four-per-em space.

In addition to the various spaces listed above, Unicode also defines a class of so-called non-breaking
spaces. The non-breaking characters in Unicode (they’re not all spaces) behave normally except that
code that wraps lines of text isn’t allowed to put the characters on either side of the non-breaking
character on different lines. In other words, the non-breaking characters are used to keep other
characters together on one line of text. Unicode has four non-breaking spaces:

x� U+00A0 NO-BREAK SPACE (often abbreviated “NBSP”) is the basic non-breaking space. It’s
the same width as the regular space (U+0020), and like it can vary in width in justified text, but
unlike the regular space, it doesn’t mark a word boundary for the purposes of word wrapping. In
fact, it specifically prevents word wrapping. For example, in some languages (French, for
example), the space is used as the thousands separator in large numbers instead of a period or
comma, but you don’t want the number split across two lines. Another example is in some
languages, some punctuation is separated by a space from the words they follow. In French again,
there’s usually a space between the last word of a question and the question mark, unlike in
English, where the question marks appears right next to the last word of the question. But again,
you don’t want the question mark to appear at the beginning of the next line. Sophisticated word-
wrapping algorithms will do this correctly, but you can use the NBSP to get the correct effect with
naive word-wrapping algorithms. Because of the NBSP’s use as a thousands separator in French
and some other languages, the Unicode bi-di algorithm treats it as a number separator.

x� U+202F NARROW NO-BREAK SPACE is roughly analogous to the thin space in the way that
the regular NBSP is analogous to the regular space. It’s narrower than a regular space, may or
may not be variable-width depending on the language and font, and doesn’t mark a word
boundary. In Mongolian, this character is used to separate grammatical particles from their stem
words while keeping them semantically part of the same word. (In Mongolian, this character also
causes special shaping behavior, but this isn’t true with any other script.)

x� U+FEFF ZERO WIDTH NO-BREAK SPACE is again not technically a space, despite its name.
In Unicode 2.x, 3.0, and 3.1, it was an invisible formatting character used to control word
wrapping. Starting in Unicode 3.2, however, this use has been deprecated. Now, use U+2060
WORD JOINER instead.

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 325

x� U+2060 WORD JOINER is the new zero-width non-breaking space. It “glues” the two characters
on either side of it together, forcing them to appear on the same line. Any character can be turned
into a non-breaking character by putting U+2060 before and after it.

You could also consider U+180E MONGOLIAN VOWEL SEPARATOR to be a Unicode non-
breaking space, but its use is restricted to Mongolian. In other contexts, it’s either ignored or treated
the same as U+202F NARROW NO-BREAK SPACE, but in Mongolian it causes special shaping
behavior when it precedes certain letters.

Dashes and hyphens
Unicode also has a lot of dashes and hyphens. The original ASCII character (0x2D) did triple duty as
a hyphen, dash, and minus sign. Since ASCII was originally used mostly on computer terminals and
teletype machines where everything was monospaced and these three things looked the same anyway,
it wasn’t a big deal originally. But in real typesetting, these characters look and act differently and it
helps tremendously if the different appearances and semantics have different code point values.

The ASCII hyphen was retained at its same position in Unicode as U+002D HYPHEN-MINUS and
continues to have ambiguous semantics. Several unambiguous characters have been added to replace
it (although U+002D is still the most commonly used):

x� U+2010 HYPHEN is the hyphen character (-). It’s the character used in hyphenated English
words and phrases, such as “day-to-day.” In most typefaces, you get the same glyph for U+002D
HYPHEN-MINUS and U+2010 HYPHEN, but this is the preferred representation for that glyph.

x� U+2013 EN DASH is a dash an en (i.e., half of an em) wide (–). It’s used for things like
separating ranges of values (“1921–1991”).

x� U+2012 FIGURE DASH has the same ambiguous semantics as U+002D HYPHEN-MINUS and
is, like U+002D, in Unicode for compatibility with older standards. It’s defined to have the same
width as the digits in fonts where the digits are all the same width (in many fonts, this means it’s
the same as the en dash).

x� U+2212 MINUS SIGN is the minus sign, used to indicate subtraction or negative numbers (“–23”
or “75 – 27 = 48”). This character usually has the same glyph as the en dash, but it behaves
differently. In particular, most word-wrapping algorithms will wrap words on a hyphen or dash,
but not on a minus sign. The rule of thumb should be to use U+2013 when it’s okay to break the
line after it (such as when it’s used to separate the numbers in a range) and U+2212 when it’s not
(such as in “–23”).

x� U+2014 EM DASH is a dash that’s an em wide (—). In other words, the length of the dash is the
same as the height of the font. The em dash is often used in English to indicate a break in
continuity or to set off a parenthetical expression (“Bill would—if I had anything to say about it—
be in a lot of trouble right now”).

x� U+2015 HORIZONTAL BAR (aka the “quotation dash”) is an even wider dash (—–) used in
some older typographical styles to set off quotations.

There are also a couple of dash characters with special behavior:

x� U+00AD SOFT HYPHEN functions in a manner analogous to the zero-width space—it’s used to
indicate to a word-wrapping algorithm places where it’s okay to hyphenate a word. A word-
wrapping routine can treat it the same as any other dash or hyphen for the purposes of figuring out
where to break a line, but it’s invisible unless it actually appears at the end of a line. At the end of
a line (i.e., when the word containing it actually needs to be hyphenated), it has the same glyph as
the regular hyphen (U+2010).

 Numbers, Punctuation, Symbols, and Specials

326 Unicode Demystified

x� U+2011 NON-BREAKING HYPHEN functions in a manner analogous to the non-breaking space
and opposite to the regular and soft hyphens: you use it when you want a hyphen in a word but
you still want the entire hyphenated word or expression to be on the same line. A word-wrapping
routine isn’t allowed to break lines on either side of the non-breaking hyphen. Again, the glyph is
the same as U+2010.

There are also a few language-specific hyphen characters:

x� U+058A ARMENIAN HYPHEN (�) is just what its name suggests: it works the same way in
Armenian as the regular hyphen works in English, but has an Armenian-specific appearance.

x� U+1806 MONGOLIAN TODO SOFT HYPHEN ([glyph]) is used when Todo is written using
the Mongolian alphabet (it’s a vertical line because the Mongolian script is written vertically). It
works in the same way as the regular soft hyphen, except that when a line is broken at the hyphen
position, the hyphen itself appears at the beginning of the line after the break, as opposed to
Western hyphens, which always appear at the end of the line before the break.

x� U+301C WAVE DASH and U+3030 WAVY DASH are dashes used in Japanese. When Japanese
text is laid out vertically, these two characters rotate.

There are also various other characters that are basically horizontal lines and are occasionally
confused with the dash characters. Notable among them is U+30FC KATAKANA-HIRAGANA
PROLONGED SOUND MARK. You’ll occasionally run across Japanese text that uses one of the
dash characters for the Katakana length mark instead of U+30FC.

You also periodically run into a “swung” dash (“~”). This character isn’t specifically encoded in
Unicode, but since U+007E TILDE generally isn’t used as a tilde anymore (in the old days of
teletype machines, this character would be used in conjunction with the backspace character to form
“ñ”, for example, something you don’t see anymore), most fonts these days use a glyph that’s
vertically centered, rather than one that’s raised above the font’s x-height, for U+007E TILDE. Thus,
this character can be thought of as the Unicode swung-dash character. (Theoretically, you could use
the CJK wave dash, but the metrics are usually wrong for use with Western characters and it’s
usually not in Western fonts.)

Quotation marks, apostrophes, and similar-looking characters
Quotation marks. Even though most languages that use the Latin alphabet use the same marks for
such things as the period, comma, question mark, and exclamation point, they all seem to use
different marks for quotation marks. The situation with quotation marks in Unicode is rather
complicated and ambiguous.

For starters, there’s U+0022 QUOTATION MARK. This is the character that’s familiar to all of us
from typewriter keyboards (and, later on, computer keyboards). It’s used for both opening and
closing quotation marks, and so its glyph shape is a compromise. It usually looks like this:

"

Like the “hyphen-minus” character, this character has ambiguous semantics both because all of the
semantics corresponded to a single key on a typewriter keyboard and because of the limited encoding
space ASCII had. We’re all kind of used to seeing this mark from older computer-generated or
typewritten material, but with the advent of laser printers and computer-generated typography, we’d

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 327

generally prefer to see the quotation marks the way we write them or the way they’ve always
appeared in printed material:

“English”

Unicode provides unambiguous code-point values for these characters as U+201C LEFT DOUBLE
QUOTATION MARK and U+201D RIGHT DOUBLE QUOTATION MARK. Most modern word
processors now map from the U+0022 character you get from the keyboard to either U+201C or
U+201D depending on context, a feature which can work quite well (or course, it doesn’t always
work well, leading to stupidities such the upside-down apostrophe in “the ‘60s” that you see all too
often).

French and a number of other languages use completely different-looking quotation marks. Instead of
the comma-shaped quotation marks used with English, French and a number of other languages use
chevron-shaped quotation marks known in French as guillemets:

« Français »

The guillemets were included in the Latin-1 standard and are thus in the Latin-1 block as U+00AB
LEFT-POINTING DOUBLE ANGLE QUOTATION MARK and U+00BB RIGHT-POINTING
DOUBLE ANGLE QUOTATION MARK.

Now here’s what it gets interesting. These same marks don’t mean the same thing in all languages.
For example, in German, U+201C is actually the closing quotation mark rather than the opening
quotation mark. A quotation is usually punctuated like this in German:

„Deutsch“

The German opening double-quote mark is included as U+201E DOUBLE LOW-9 QUOTATION
MARK. (The “9” refers to the fact that the marks look like little 9s.) The single-quote version of this
character has the same glyph form as the comma—systems should be careful not to use the comma
for a single quote.

You’ll also sometimes see the guillemets used with German text, but in German they point toward
the quoted material, rather than away from it as in French:

»Deutsch«

Swedish and some other Scandinavian languages sidestep the problem of paired quotation marks
altogether, using the same character for both the opening and closing quotation mark. Depending on
typographic style, they can use either the guillemets or (more commonly) the curly quote marks, and
you get the same effect either way:

 Numbers, Punctuation, Symbols, and Specials

328 Unicode Demystified

”svenska” or »svenska»
There are numerous other linguistic and regional variants in quotation-mark usage, but you get the
basic idea. The practical upshot is that while quotation-mark characters come in pairs, exactly which
pair is used depends on language, and whether a given character (with a few exceptions) is an
opening or closing quote also depends on language.

Unicode deals with this by encoding each glyph shape only once and declaring that different
languages should use different code-point values for their quotation marks, rather than just having
abstract “opening quotation mark” and “closing quotation mark” code-point values that have
different glyph shapes depending on language. This kind of goes against the “characters, not glyphs”
rule, but it eases confusion in most situations. Encoding the abstract semantics and depending on
some outside process to pick the right glyphs in this case would have led to different fonts being
necessary for each language that uses (for example) the Latin alphabet, just because their quotation-
mark characters look different, or would have required language tagging along with the regular
abstract characters in order to get the right glyph shapes. Unicode’s designers have gone for this kind
of approach when an entire alphabet is semantically the same but different font styles are preferred in
different languages, but doing it for just the quotation-mark characters is kind of ridiculous.

This leads to a problem: Quotation marks are inherently paired punctuation, like parentheses, but
which character is which member of the pair depends on language. For this reason, the quotation
marks generally can’t be put into the regular Ps and Pe (starting and ending punctuation) general
categories.103 Beginning in Unicode 2.1, two new categories, Pi and Pf (for “initial-quote
punctuation” and “final-quote punctuation” respectively) were created expressly for these characters,
and the quotation marks were grouped rather arbitrarily into one bucket or the other. The idea is that
a process that cares about paired punctuation would know the language the text was in and be able to
map Pi and Pf to Ps and Pe in an appropriate manner for that language.

The initial-quote category consists of the following marks:

« U+00AB LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
‘ U+2018 LEFT SINGLE QUOTATION MARK
 U+201B SINGLE HIGH-REVERSED-9 QUOTATION MARK

“ U+201C LEFT DOUBLE QUOTATION MARK

 U+201F DOUBLE HIGH-REVERSED-9 QUOTATION MARK

‹ U+2039 SINGLE LEFT-POINTING ANGLE QUOTATION MARK

The final-quote category consists of the following marks:

» U+00BB RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
’ U+2019 RIGHT SINGLE QUOTATION MARK
” U+201D RIGHT DOUBLE QUOTATION MARK
› U+203A SINGLE RIGHT-POINTING ANGLE QUOTATION MARK

These two marks always appear at the beginning of a quote and are thus in the normal “starting
punctuation” category:

103 There are a few exceptions to this rule: The low-9 marks used in German and some other languages

always appear at the beginning of a quotation, for example.

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 329

‚ U+201A SINGLE LOW-9 QUOTATION MARK
„ U+201E DOUBLE LOW-9 QUOTATION MARK

East Asian quotation marks. Unicode includes three different pairs of characters used in East Asian
languages:

 U+300C LEFT CORNER BRACKET U+300D RIGHT CORNER BRACKET

�U+300E LEFT WHITE COR NER

BRACKET

U+300F RIGHT WHITE COR NER

BRACKET

 U+301D REVERSED DOUBLE PRIME

QUOTATION MARK

U+301F LOW DOUBLE PRIME

QUOTATION MARK

Within these pairs, the glyph shape does vary depending on context. The brackets turn sideways
when used with vertical text104:

�

�

�

�

[need to fix spacing in this example: characters are too far apart]

The “double-prime” quotation marks may either point towards or away from the quoted text
depending on font design:

 or

[Need to fix second example: quote marks need to be closer to text]

They’ll also change direction and move to different quadrants of their display cells when used with
vertical text. (There’s an additional character, U+301E DOUBLE PRIME QUOTATION MARK,
which is used only when Western text is quoted inside East Asian text; it’s not used with East Asian
quotations.)

Single quotes and the apostrophe. The single-quote character in ASCII was even more overloaded
than the double-quote character. The same code point, 0x27, was used for both the opening and

104 This example and the one that follows are taken from the Unicode standard, p. 153.

 Numbers, Punctuation, Symbols, and Specials

330 Unicode Demystified

closing single quotes, the apostrophe, the acute accent, the prime mark, and occasionally other things.
It’s normally rendered with a direction-neutral glyph like the one used for the double quote…

’

…although sometimes you’ll see it rendered with a left-slanted or curly glyph on the assumption that
0x60, the grave-accent character, would be used as the opening single quote. As with the double-
quote, these characters and their original numeric values have been adopted into Unicode with their
original muddled semantics and extra characters with unambiguous semantics have been added.
We’ve already talked about how quotation marks work, and the rules apply equally to single and
double quotes. Most languages will alternate between double and single quote marks for quotes
within quotes; different languages have different preferences for whether single or double quote
marks should be used for the outermost pair or quotation marks; in British usage, for example, single
quotes are usually used for the outermost pair instead of the double quotes you usually see in
American usage.

There’s the additional problem of the apostrophe, which has exactly the same glyph as the (English)
closing single quote. In many languages, and in Latin-alphabet transcriptions of many languages that
don’t use the Latin alphabet, an apostrophe is used as a letter, usually to represent the glottal stop, as
in “Hawai’i”; in particular the Arabic letter alef and its counterparts in languages such as Hebrew are
usually written with an apostrophe when transliterated into Latin letters.

Unicode draws a distinction between the apostrophe being used as a letter, where U+02BC
MODIFIER LETTER APOSTROPHE is the preferred representation, and the apostrophe being used
as a punctuation mark, where U+2019 RIGHT SINGLE QUOTATION MARK is the preferred
representation (in other words, Unicode doesn’t distinguish between this usage of the apostrophe and
the single quotation mark). Both of these characters have the same glyph shape, but may be treated
differently by some text-analysis processes (such as word wrapping).

As with the double quotes, you’ll usually see a single key that generates U+0027, and the system
automatically maps it to U+2018 or U+2019 as appropriate. This is another argument for not having
a separate character code for the apostrophe—keyboards would probably still generate the right-
single-quote character code. For this reason, U+2019 will probably show up in a lot of places where
the truly appropriate character code would by U+02BC. This is just one example where code that
operates on Unicode text probably can’t assume everything is represented the way it’s supposed to
be.

Modifier letters. In addition to U+02BC, mentioned above, the Spacing Modifier Letters block
includes a number of other apostrophe-like characters. These include U+02BB MODIFIER LETTER
TURNED COMMA, which has the same glyph shape as U+2018 LEFT SINGLE QUOTATION
MARK, and U+02BD MODIFIER LETTER REVERSED COMMA, which has the same glyph
shape as U+201B SINGLE HIGH REVERSED-9 QUOTATION MARK. The same rule applies
here: the modifier-letter characters are to be used when the glyph is used as a letter or diacritical
mark, and the quotation-mark characters are to be used when the glyph is being used as a quotation
mark (or other punctuation mark).

Other apostrophe-like characters. Further adding to the confusion, Unicode includes a whole host
of other characters that look kind of like apostrophes or quotation marks but have distinct semantics
(usually, they also have distinct, but often subtly so, glyph shapes, but this isn’t always the case).

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 331

For example, there are the half-ring characters in the Spacing Modifier Letters block, which are very
similar to the apostrophe and reversed apostrophe. There are the various acute-accent and grave-
accent characters in the ASCII and Spacing Modifier Letters blocks. There are the prime, double
prime, reversed prime, etc. characters in both the Spacing Modifier Letters block, where they’re used
as diacritical marks, and the General Punctuation block, where they’re usually used as math or logical
symbols or as abbreviations for “feet” and “inches” or “minutes” and “seconds.” There are language-
specific marks, such as the Armenian half-ring and apostrophe, which look like the characters in the
Spacing Modifier Letters block or the Hebrew geresh and gershayim marks, which look like the
prime and double-prime marks.

These marks are generally extensively cross-referenced in the Unicode standard, and it’s usually
fairly apparent which of the various similar-looking marks to use if you look in the Unicode standard,
but real life doesn’t always match theory. You’ll very often see some code point value used in a spot
where some other code point value is more appropriate. There are a number of reasons for this.
Sometimes the wrong character is used because only one of several similar-looking characters is
available on the keyboard. Sometimes it’s because fonts only support one code point value.
Sometimes it’s because of usage in a legacy encoding where more appropriate character codes aren’t
available and appropriate adjustments aren’t made when converting to Unicode (sometimes this is a
flaw in the conversion algorithm, and sometimes it’s because Unicode draws a semantic distinction
the original source encoding didn’t draw).

The sad consequence of all this is that code that operates on Unicode text can’t always assume that
the correct code point value has been used to represent some mark; often, a code point value
representing a similar-looking character has been used instead. I mention this here because there are
so many characters that look like apostrophes and quotation marks and often get represented with
U+0022 and U+0027 even in Unicode, but this also happens with many other groups of characters
(see the section below on line-breaking conventions, for example). One can hope that this situation
will improve as Unicode use becomes more widespread, but there’ll probably never be anything
close to 100% purity in use of Unicode code point values.

Paired punctuation

In addition to the quotation marks, there are a bunch of other punctuation marks in Unicode that
come in pairs. Most of them are various types of parentheses and brackets, and most of them are used
in a variety of languages and thus are encoded in the ASCII and General Punctuation blocks. Here’s
a complete list of the non-quotation paired punctuation marks:

(U+0028) U+0029 PARENTHESIS

[U+005B] U+005D SQUARE BRACKET

{ U+007B } U+007D CURLY BRACKET

 U+0F3A U+0F3B TIBETAN GUG RTAGS

 U+0F3C U+0F3D TIBETAN ANG KHANG

 U+169B U+169C OGHAM FEATHER MARK

 U+2045 U+2046 SQUARE BRACKET WITH QUILL

 U+2329 U+232A ANGLE BRACKET

 Numbers, Punctuation, Symbols, and Specials

332 Unicode Demystified

 U+3008 U+3009 ANGLE BRACKET

 U+300A U+300B DOUBLE ANGLE BRACKET

 U+3010 U+3011 LENTICULAR BRACKET

 U+3014 U+3015 TORTOISE SHELL BRACKJET

 U+3016 U+3017 WHITE LENTICULAR BRACKET

 U+3018 U+3019 WHITE TORTOISE SHELL BRACKET

 U+301A U+301B WHITE SQUARE BRACKET

 U+FD3E U+FD3F ORNATE PARENTHESIS

The two Tibetan pairs of characters function like parentheses. The Ogham feather marks generally
bracket a whole text. The various brackets in the U+3000 block originally come from various CJK
encodings and are intended specifically for use with CJK text. The “ornate parentheses” are intended
for use specifically with Arabic—they’re in the Arabic Presentation Forms A block even though
they’re neither presentation forms nor compatibility characters.

Dot leaders
The em and en dashes and the curly quotation marks and apostrophes are three leading examples of
instances where the way we type something and the way it’s printed in quality typography are
different from one another. Another notable exception is the ellipsis—three periods in a row
generally don’t come out spaced right, so there’s something called a “typographer’s ellipsis,” a single
piece of type with three periods that are spaced correctly. In Unicode this is U+2026 HORIZONTAL
ELLIPSIS. (The “horizontal” distinguishes it from the vertical and diagonal ellipses, which are used
sometimes to abbreviate matrices and are in the Mathematical Operators block.)

You’ll also see other numbers of periods used in a row for various other purposes, such as lines of
dots in tables of contents, and Unicode also includes U+2025 TWO DOT LEADER, which has two
periods, and U+2024 ONE DOT LEADER, which only has one. The one-dot leader looks exactly the
same as the regular period, but when a bunch of them are used in a row, they space optimally.

These three characters all have compatibility mappings to series of regular periods of appropriate
length.

Bullets and dots
Unicode also has a bunch of centered dots for various purposes. Many of these are designed as list
bullets. The canonical bullet is U+2022 BULLET (•), but the General Punctuation block also
includes these specially-shaped bullets…

x� U+2023 TRIANGULAR BULLET ()

x� U+2043 HYPHEN BULLET ()

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 333

x� U+204C BLACK LEFTWARDS BULLET ()

x� U+204D BLACK RIGHTWARDS BULLET ()

…and these language-specific characters which are usually used in their respective languages as list
bullets:

x� U+0E4F THAI CHARACTER FONGMAN (Ð)

x� U+0F09 TIBETAN MARK BSKUR YIG MGO ()

x� U+17D9 KHMER SIGN PHNAEK MUAN ()

In addition, many characters from the Dingbats and Geometric Shapes blocks are often used as
bullets.

There are also a number of other centered-dot characters with distinct semantics but similar
appearances:

x� U+000B7 MIDDLE DOT has multiple semantics, but one of the main ones is as the dot that’s
used in Catalan between a pair of ls to indicate that they should be pronounced distinctly rather
than treated as a single letter and pronounced like “ly”.

x� U+2219 BULLET OPERATOR is a mathematical operator that looks like a bullet. [What’s it
used for?]

x� U+22C5 DOT OPERATOR is a mathematical operator used to indicate multiplcation.

x� U+2027 HYPHENATION POINT is a centered dot used in dictionaries to indicate places within
a word where it may be hyphenated.

Special characters

Not every Unicode code point value represents something most people would actually call a
“character”—some Unicode code point values have no glyph shape at all, but exist solely to
influence the behavior of some process operating on the surrounding text. In addition to the “control
characters” we’re all familiar with from ASCII, Unicode includes “characters” whose purpose is to
influence line breaking, glyph selection, bidirectional text layout, and various other text processes.
We’ll take a look at these characters next.

Line and paragraph separators
Arguably the most important special characters in Unicode are those that are used to mark a line or
paragraph division. Unfortunately, the situation in Unicode with regard to line and paragraph
divisions is rather complicated.

There are two ASCII characters that deal with line breaks: LF, or Line Feed (0x0A), and CR (0x0D),
or Carriage Return. On a teletype machine, an LF would cause it to move the platen roller forward
one line without moving the carriage, and a CR would cause it to return the carriage to the beginning
of the line without advancing the platen roller. Starting a new line of text, as you would on a manual
typewriter by hitting the carriage-return lever and pushing the carriage all the way back, or on an
electric typewriter by hitting the carriage-return key, required two signals, a CR and an LF. You
could use CRs by themselves to perform overprinting effects, such as underlining or adding accents

 Numbers, Punctuation, Symbols, and Specials

334 Unicode Demystified

(as we discussed earlier, BS (Backspace) was also used for these purposes), but LF without CR
wasn’t terribly useful.

The carriage-return/line-feed combination (usually abbreviated as “CRLF”) is still used as the end-
of-line signal in most DOS and Windows applications, but other platforms have diverged. Since LF
doesn’t really do anything interesting without CR, you can interpret is as carrying an implicit CR and
signaling a new line all by itself. Most UNIX and UNIX-derived systems (including the Java
programming language) do this. The Macintosh platform, on the other hand, went the opposite
direction: Noting that the “carriage return” button on a typewriter both returns the carriage and
advances the platen, they give the CR character the same semantic—it effectively carries an implicit
LF and signals the beginning of a line all by itself.

To complicate matters even further, the EBCDIC encoding actually has a specific “new line”
character (NL, either 0x15 or 0x25 depending on system), and the ISO 6429 standard, which defines
the control characters used with many other encoding standards (including the ISO 8859 family),
adopted it into the C1 space as 0x85. There are both EBCDIC and 6429-based systems that use NL
as their new-line signal, although this is rarer than using CR, LF, or CRLF.

As if all this wasn’t bad enough, different applications treat the platform-specific new-line sequences
in different ways, regardless of which specific character codes are involved. Originally, as the name
suggests, the new-line sequences signaled the beginning of a new line of text, analogous to hitting the
carriage-return key on a typewriter. Many applications, especially simple text editors, still use the
new-line sequences in this way. The standard Internet mail protocols also use new-line sequences
between lines of an email message, even though most email programs don’t actually require you to
type a new-line sequence at the end of each line (they wrap the lines automatically and supply the
extra new-line sequences at transmission time).

But with the advent of word-processing software and other programs that wrap lines automatically,
having a special character to signal the beginning of a new line became superfluous. Instead, these
programs generally treated the new-line sequence as a new-paragraph signal.

Then, complicating things even more, you have word-processing programs that allow explicit line
divisions within a paragraph. But since they were already using the regular new-line sequence to
signal a new paragraph, they had to invent a new character to use to signal an explicit line break
within a paragraph. Microsoft Word uses the ASCII VT (Vertical Tab, 0x0B) for this purpose, but
this is even less standardized than the regular new-line sequences.

The problem is that because Unicode includes all the characters from the ASCII and ISO 8859-1
standard in their original relative positions, it includes all the characters that are used to signal line
and paragraph divisions in these encodings, and inherits their ambiguous meanings.

Unicode includes two new characters in the General Punctuation block, U+2028 LINE
SEPARATOR and U+2029 PARAGRAPH SEPARATOR (often abbreviated as LS and PS
respectively), which have unambiguous semantics, as a way of trying to solve this problem.
Unfortunately, most systems that use Unicode still persist in using the old characters to signal line
and paragraph boundaries. The Java programming language, for example, follows the UNIX
convention and uses the LF character (in Unicode, this is U+000A LINE FEED) as its new-line
sequence. This is the character that gets output at the end of the line when you call
System.out.println(), for example, and it’s the character represented by \n. Similarly,
Windows NT and the other Unicode-based versions of Windows still follow the old DOS convention
of using CRLF at the ends of lines or paragraphs.

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 335

This means that software that operates on Unicode text has to be prepared to deal with any new-line
convention. It should always interpret LS as a line separator and PS as a paragraph separator, but
should also treat CR, LF, CRLF, and NL in Unicode text the same as either LS or PS depending on
the application (generally, you’d treat them all the same as PS except in program editors and a few
other specialized applications).

For code that doesn’t know whether the legacy new-line sequences should be treated as LS or PS
(library code, for example), it should make whatever the safest assumption is. The boundary-finding
code in Java, for example, treats CR, LF, and CRLF the same as PS when looking for character or
word boundaries (where they’re really only whitespace) and as LS when looking for sentence
boundaries (where a new-line sequence might be the end of a paragraph or it might just be
whitespace, but where you know that there’ll generally be punctuation at the end of a paragraph
anyway that tips you off you’re at the end of a sentence).

Character encoding conversion is also complicated by the new-line mess. When going to Unicode
from some other encoding, if you know whether the platform new-line sequence is being used in the
source text to represent line breaks or paragraph breaks, you can map the platform new-line sequence
to LS or PS. If you don’t, you can either just map to PS and hope you didn’t get it wrong, or leave the
characters alone and depend on the process that’s actually going to do something with the text to
interpret the new-line sequences correctly.

Converting to another encoding from Unicode is similarly complicated. You can simply leave CR,
LF, and NL alone, which at least doesn’t mess them up any more than they’re already messed up, but
you’re still stuck coming up with something to do with LS and PS. Assuming you know what
platform you’re running on, the simplest course of action, unless you know the ultimate destination of
the text, is to map both PS and LS to the platform new-line sequence, whatever it happens to be. (It
may be a good idea to map any other new-line sequences in the text to the platform sequence as
well.) If you don’t know what platform you’re running on, you’re pretty much stuck. You could play
the odds and convert LS and PS to LF or CRLF, but you may well get it wrong.

This issue is sufficiently complicated that the Unicode Consortium issued a Unicode Standard Annex
(UAX #13) specifically to discuss these issues and nail down some recommendations. I’ve basically
parroted back most of UAX #13 here.

Segment and page separators
Related to the issue of line and paragraph separators are the issues of page and segment separators.
Fortunately, there isn’t the same level of ambiguity here that there is with line and paragraph
separators.

Consider the page separator, for example. The ASCII FF (Form Feed, 0x0C) character originally
signaled the teletype or printer to eject the page and begin a new one. This makes it the natural
choice for a character to signal the beginning of a new page, and in fact it’s pretty much universally
used for this purpose. Since Unicode already has all the ASCII control characters, this character is in
Unicode (as U+000C FORM FEED), and it’s considered the correct character to use for this purpose
even in Unicode. (A page break obviously is also a line break, so while FF shouldn’t be messed with
in conversion, processing code that deals with explicit line breaks should generally treat FF as having
all the semantics of LS, plus the additional semantic of signaling an explicit page break.)

 Numbers, Punctuation, Symbols, and Specials

336 Unicode Demystified

There are also breaks that occur within a single line, usually individual pieces of text that are to be
lined up in columns. In ASCII text, the TAB or HT (Horizontal Tab, 0x09) character is used for this
purpose, analogous to the Tab key on a typewriter. Again, there isn’t any ambiguity here, so the
analogous Unicode character (U+0009 HORIZONTAL TABULATION) means the same thing in
Unicode.

The ASCII standard includes a number of other control characters for use in structured text: for
example the FS, GS, RS, and US (File Separator, Group Separator, Record Separator, and Unit
Separator, respectively) characters were once used to delimit different-sized units of structured text.
These characters are rarely used nowadays, although their analogues do exist in Unicode. Today, in
very simple structured-text documents, TAB is used as a field separator and the platform new-line
sequence is used as a record separator. But more sophisticated structured-text interchange is usually
considered the province of a higher-level protocol, rather than the job of the character encoding.
These days, the higher-level protocol of choice for this kind of thing in XML, which uses markup
tags as field and record delimiters.

Control characters
Unicode adopts all of the control characters from the ISO 6429 standard. These occur in two blocks,
the C0 block, which contains the original ASCII control characters, and the C1 block, an analogous
encoding area in the 0x80-0xFF range containing an extra 32 control codes. Since Unicode is
designed to be freely convertible to ISO 8859-1 (Latin-1, which includes all the ASCII characters
and is based on ISO 6429), Unicode also has all the same control characters. The Unicode standard
doesn’t formally assign any semantics to these characters, but they’re generally agreed to have the
same interpretations as they to in their original source standards. In particular, U+0009
HORIZONTAL TABULATION and U+000C FORM FEED are the tab and page-break characters of
choice in Unicode—Unicode’s designers didn’t see a reason to encode “official” Unicode characters
with these semantics.

In addition to U+0009 and U+000C, mentioned above, you’ll also frequently see U+000A LINE
FEED, U+000D CARRIAGE RETURN, and U+000B VERTICAL TABULATION in Unicode text,
even though U+2028 LINE SEPARATOR and U+2029 PARAGRAPH SEPARATOR are the
officially-sanctioned characters to representing line and paragraph breaks. See the section on line and
paragraph separators above for more information on this.

Characters that control word wrapping
It’s a little misleading to call this section “Characters that control word wrapping” because almost
every character in Unicode has an effect on word wrapping. For example, the line and paragraph
separators always cause a line break, and the various spaces, hyphens, and dashes always produce a
place in the text where a line break can happen. Other characters affect word wrapping in more
complicated, language-defined ways. We’ll come back and examine this subject in greater depth in
Chapter 16.

But there are a couple of special characters whose purpose is solely to affect word wrapping. We
looked at them earlier in the section on spaces, but it’s worth look at them briefly again.

U+200B ZERO WIDTH SPACE (of “ZWSP” for short) isn’t really a space at all, but an invisible
formatting character that indicates to a word-wrapping process that it’s okay to break a line between
the two characters on either side of it. For example, let’s say you have the following sentence:

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 337

I work at
SuperMegaGiantCorp.

The margins are just a little too tight for “SuperMegaGiantCorp.” to fit on the same line as the rest of
the sentence, leaving a big white gap at the beginning of the first line. Maybe it’d be okay, however,
to split “SuperMegaGiantCorp.” where the capital letters are. You could do this by inserting ZWSP
before each of the capital letters. Then you’d get this…

I work at SuperMegaGiant
Corp.

…with a reasonable amount of text on the first line. Now if the text changed or the margins were
widened, you’d get this:

I work at SuperMegaGiantCorp.

When it all fit on one line, you’d still see “SuperMegaGiantCorp.” without any spaces.

Of course, you wouldn’t see this kind of thing in English very much, but in other languages this
happens frequently. In Thai, for example, spaces aren’t used between words, but word wrapping is
still supposed to honor word boundaries. Most Thai word processors employ sophisticated language-
sensitive word-wrapping processes to figure out where the word boundaries are, but they sometimes
guess wrong. You can use the ZWSP character as a hint to the word wrapping process as to where the
word boundaries are.

In English, such as in our SuperMegaGiantCorp. example, what you’d probably actually want is for
“SuperMegaGiantCorp.” to be hyphenated. Related to the ZWSP is U+00AD SOFT HYPHEN (or
“SHY” for short). Like the ZWSP, it normally functions as an invisible formatting character that
indicates to the word-wrapping routine a place where it’s okay to put a line break. The difference is
that it tells the word-wrapping routine that if it actually puts a line break at that position, it should
precede it with a hyphen. In other words, it’s an invisible formatting character that indicates places
where it’s okay to hyphenate a word. Like ZWSP in Thai, you might be working with a word
processor that hyphenates words automatically. But if the hyphenation process hyphenates some
word wrong (for example, a proper name that’s not in its dictionary, such as
“SuperMegaGiantCorp.”, you can use the SHY as a hint to tell it where the right places are. In our
example, if the margins are wide enough, you see the sentence the way it looks in the previous
example. But if the margins are smaller, you get this:

 Numbers, Punctuation, Symbols, and Specials

338 Unicode Demystified

I work at SuperMegaGiant-
Corp.

There’s also U+1806 MONGOLIAN TODO SOFT HYPHEN, which works the same way with
Mongolian text. (See the previous section on dashes and hyphens.)

You may also want the reverse behavior. Unicode generally says that spaces and dashes indicate
legal places to break a line, but there are times when you don’t want that. In French, for example,
spaces are used to separate powers of 1,000 in large numbers. So let’s say you have the following
sentence:

You owe me 100 000 000 F.

(We’ll pretend it’s in French.) If the margins were tighter, you might get this instead:

You owe me 100 000
000 F.

But of course you don’t want the number to be split across two lines like this. In fact, you probably
want the currency symbol to appear on the same line as the number as well. U+2060 WORD
JOINER (or “WJ” for short), like its cousin ZWSP, isn’t really a space, but an invisible formatting
character that tells word-wrapping routines that it’s not okay to put a line break between the two
characters on either side. It’s often called the “glue” character because it “glues” two characters
together and forces them to appear on the same line. If you were to put a WJ after each real space in
the number above, the same example would wrap like this:

You owe me
100 000 000 F.

The number and the currency symbol that follows it are all kept together on a single line.

In versions of Unicode prior to Unicode 3.2, the “glue” function was represented with U+FEFF
ZERO WIDTH NO-BREAK SPACE (“ZWNBSP” for short), which also did double duty as the
Unicode byte-order mark. This is one of those “seemed like a good idea at the time” things: The
semantics would seem to be unambiguous: At the beginning of a file, U+FEFF is a BOM, and
anywhere else, it’s a ZWNBSP. But you can then have a particular U+FEFF shift meanings when

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 339

you concatenate two files together or extract characters from the middle of a file. Unicode 3.2
deprecated the ZWNBSP meaning of U+FEFF, making it just a byte order mark again.

Most of the time, word-wrapping routines treat spaces and hyphens as marking legal break positions,
and this is the behavior you’re trying to suppress by using WJ. Because of this, Unicode also includes
special space and hyphen characters that also have non-breaking semantics. U+00A0 NO-BREAK
SPACE (or “NBSP” for short) and U+2011 NON-BREAKING HYPHEN look and act exactly the
same as their regular counterparts U+0020 SPACE and U+2010 HYPHEN, but they also suppress
line breaks both before and after themselves. That is, using NBSP produces the same effect as putting
a WJ on either side of a regular space—it glues together the space and the characters before and after
it.

In addition to the regular no-break space, U+202F NARROW NO-BREAK SPACE and U+2077
FIGURE SPACE have non-breaking semantics, as does U+0F0C TIBETAN MARK DELIMITER
TSHEG BSTAR, a non-breaking version of the Tibetan tsheg mark, which is used between words
and normally indicates a legal line-break position.

Characters that control glyph selection
Unicode also includes invisible formatting characters that control glyph selection and character
shaping.

The joiner and non-joiner. The two most important of these characters are U+200C ZERO
WIDTH NON-JOINER (“ZWNJ” for short) and U+200D ZERO WIDTH JOINER (“ZWJ” for
short).

The purpose of the non-joiner is to break a connection between two characters that would otherwise
be connected. To take a trivial example:

U+0066 LATIN SMALL LETTER F

U+0069 LATIN SMALL LETTER I

…would normally be rendered like this…

¿�
…but if you insert ZWNJ…

U+0066 LATIN SMALL LETTER F

U+200C ZERO WIDTH NON-JOINER

U+0069 LATIN SMALL LETTER I

…you get this instead:

fi
ZWNJ breaks up both cursive connections and ligatures. For example, in Arabic this example…

 Numbers, Punctuation, Symbols, and Specials

340 Unicode Demystified

U+0644 ARABIC LETTER LAM

U+0647 ARABIC LETTER HEH

U+062C ARABIC LETTER JEEM

…normally looks like this…

�

…but if you add in the non-joiner…

U+0644 ARABIC LETTER LAM

U+200C ZERO WIDTH NON-JOINER

U+0647 ARABIC LETTER HEH

U+200C ZERO WIDTH NON-JOINER

U+062C ARABIC LETTER JEEM

…the letters break apart, giving you this:

In the Indic scripts, the ZWNJ can be used to break up conjunct consonants, forcing the explicit
virama form. For example, this sequence…

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+0937 DEVANAGARI LETTER SSA

…is normally rendered as a conjunct consonant:

�

But if you stick the ZWNJ into the sequence…

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+200C ZERO WIDTH NON-JOINER

U+0937 DEVANAGARI LETTER SSA

…the conjunct is broken, and the virama becomes visible:

� [these glyphs should connect]

The zero-width joiner has the opposite effect: it causes cursive connections where they wouldn’t
otherwise exist. Its behavior, however, is a little more complicated than the ZWNJ. The ZWJ doesn’t
actually work on pairs of characters; it independently affects the characters on either side of it, both
of which may not necessarily change shape based on context. In other words, if you put it between
two characters A and B, it’ll cause the rendering engine (assuming properly-designed fonts and so
forth) to use the right-joining version of A, if there is one, and the left-joining version of B, if there is

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 341

one. If A has a right-joining form and B has a left-joining form, they appear cursively connected, but
if only one of them has the appropriate form, it still takes it on even though there’s no cursive
connection (of course, if neither character connects cursively, ZWJ has no effect).

For example, this character…

U+0647 ARABIC LETTER HEH

…normally looks like this…

…but if you precede it with the ZWJ…

U+200D ZERO WIDTH JOINER

U+0647 ARABIC LETTER HEH

…you get the final form of the character…

…and if you follow it with ZWJ…

U+0647 ARABIC LETTER HEH

U+200D ZERO WIDTH JOINER

…you get the initial form…

…and if you flank it with ZWJs…

U+200D ZERO WIDTH JOINER

U+0647 ARABIC LETTER HEH

U+200D ZERO WIDTH JOINER

…you get the medial form:

This is true no matter what the character on the other side of the joiner is; the characters on either
side of the joiner effectively join to the joiner, not to each other. For example, there’s no left-joining
form of alef, so the sequence…

U+0627 ARABIC LETTER ALEF

U+0647 ARABIC LETTER HEH

…would normally be drawn with both characters’ independent forms:

 Numbers, Punctuation, Symbols, and Specials

342 Unicode Demystified

But if you put ZWJ between them…

U+0627 ARABIC LETTER ALEF

U+200D ZERO WIDTH JOINER

U+0647 ARABIC LETTER HEH

…it’ll force the final (i.e., right-joining) form of heh to be used, even though it can’t actually join to
the alef (which has no left-joining form):

There’s an exception to this normal rule about the ZWJ affecting the characters on either side
independently: If the characters on either side can form a ligature, ZWJ causes the ligature to happen.
If it’s a mandatory ligature, the ZWJ is superfluous, but if it’s an optional ligature, you can use the
ZWJ, rather than out-of-band styling information, to cause it to happen.

For example, many Latin-alphabet fonts (especially italic fonts) include an optional ligature for the
letters c and t. So while this sequence…

U+0063 LATIN SMALL LETTER C

U+0074 LATIN SMALL LETTER T

…would normally be rendered like this…

ct

…if you put a ZWJ between the letters…

U+0063 LATIN SMALL LETTER C

U+200D ZERO WIDTH JOINER

U+0074 LATIN SMALL LETTER T

…you might get this instead:

[ct ligature]

Sometimes there’s an intermediate form between fully joined and fully broken apart that some pairs
of characters can take. For example, two adjacent characters can either form a ligature, join cursively
without forming a ligature, or just be drawn independently. To get the middle form (joining cursively
without forming a ligature), you use both ZWJ and ZWNJ. You use ZWNJ to break up the ligature
and then flank it with ZWJs to cause the cursively-joining versions of the characters to be used.
Consider the Arabic letters lam and alef. Represented in their normal way…

U+0644 ARABIC LETTER LAM

U+0627 ARABIC LETTER ALEF

…they form a ligature…

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 343

…but if you put the ZWNJ between them…

U+0644 ARABIC LETTER LAM

U+200C ZERO WIDTH NON-JOINER

U+0627 ARABIC LETTER ALEF

…the ligature breaks apart and you get the independent forms of both letters:

If you surround the ZWNJ with ZWJs, however…

U+0644 ARABIC LETTER LAM

U+200D ZERO WIDTH JOINER

U+200C ZERO WIDTH NON-JOINER

U+200D ZERO WIDTH JOINER

U+0627 ARABIC LETTER ALEF

…the characters join together without forming the ligature:

Both joiners are required, because each independently affects one of the letters (each joiner
effectively joins its letter to the non-joiner, which keeps them from forming the ligature). If you only
have one joiner…

U+0644 ARABIC LETTER LAM

U+200D ZERO WIDTH JOINER

U+200C ZERO WIDTH NON-JOINER

U+0627 ARABIC LETTER ALEF

…you still get the independent form on one of the letters:

A similar effect can be seen in Devanagari and some other Indic scripts. Two consonants that
normally form a conjunct…

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+0937 DEVANAGARI LETTER SSA

�

…instead get rendered independently with an explicit virama if the ZWNJ is used:

 Numbers, Punctuation, Symbols, and Specials

344 Unicode Demystified

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+200C ZERO WIDTH NON-JOINER

U+0937 DEVANAGARI LETTER SSA

� [these glyphs should connect]

But if you surround the ZWNJ with ZWJs, you actually get the half-form of ka instead of the explicit
virama:

U+0915 DEVANAGARI LETTER KA

U+094D DEVANAGARI SIGN VIRAMA

U+200D ZERO WIDTH JOINER

U+200C ZERO WIDTH NON-JOINER

U+200D ZERO WIDTH JOINER

U+0937 DEVANAGARI LETTER SSA

[again, these glyphs should connect]

As with the other formatting characters we look at in this section, the joiner and non-joiner have no
appearance of their own, and they don’t affect any process on the text except for glyph selection. As
far as other processes on the text (searching, sorting, line breaking, etc.) are concerned, the ZWJ and
ZWNJ are transparent.

Variation selectors. Unicode 3.2 adds sixteen new characters that affect glyph selection, the sixteen
characters in the new Variation Selectors block, which runs from U+FE00 to U+FE0F. For certain
characters, you can follow the character with a variation selector. The variation selector acts as a
“hint” to the rendering processing that you want the preceding character to be drawn with a particular
glyph. The variation selectors never have appearances of their own, and they’re transparent to all
other processes that operate on Unicode text.

The variation selectors exist for things like math symbols, where 90% of the time, two similar glyphs
(for example, the ��VLJQ�ZLWK�HLWKHU�D�KRUL]RQWDO�³HTXDOV´�OLQH�RU�DQ�³HTXDOV´�OLQH�SDUDOOHO�WR�WKH�ORZHU�
half of the >) are just variants of the same character, but where you sometimes encounter writers that
use the two versions to mean different things. In situations where the glyph shape matters, you might
follow ��ZLWK�8�)(���9$5,$7,21�6(/(&725-1 to indicate you want the version with the slanted
line, or with U+FE01 VARIATION SELECTOR-2 to indicate you want to horizontal line. (If you
didn’t use either variation selector, it means you don’t care which glyph is used, and the font or the
rendering process is free to use whichever one it wants.)105

The Unicode Character Database, starting in Unicode 3.2, includes a new file,
StandardizedVariants.html, which lists specifically which combinations of a normal character and a
variation selector are legal, and which glyphs they represent. You’re not free to use unassigned
combinations for your own uses: like unassigned code point values, all unassigned variation-selector
combinations are reserved for future standardization. If a variation selector follows a character that
isn’t listed in StandardizedVariants.html as taking a variation selector, the variation selector simply

105 This isn’t actually the best example: The version of ��ZLWK�WKH�VODQWHG�OLQH�LV�DFWXDOO\�RQH�RI�WKH�
new math symbols in Unicode 3.2.

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 345

has no effect. There are no “private-use” variation selectors, although you could designate some of
the regular private-use characters to work that way if you wanted.

Variation selectors are generally treated by non-rendering processes as combining characters with a
combining class of 0, which gives the right behavior most of the time with no special-casing code.
This does mean, however, that variation selectors can only ever be used with non-combining
characters (you’ll never see a variation selector used to select acute accents with different angles, for
example), non-composite characters.

In addition to the sixteen generic variation selectors, there are three more variation selectors in the
Mongolian block. These work exactly the same way (including having the variants listed in
StandardizedVariants.html), but their use is restricted to Mongolian. (This a historical quirk: the
Mongolian variation selectors were added in Unicode 3.0, before the generic variation selectors.)

The grapheme joiner

Unicode 3.2 adds another interresting character, U+034F COMBINING GRAPHEME JOINER.
Like the variation selectors, it’s treated as a combining character and has no visible presentation. But
(with one important exception) it doesn’t affect the way text is rendered.

The grapheme joiner is more or less analogous to the word joiner, except that instead of suppressing
word breaks, it suppresses a grapheme cluster break, “gluing” the grapheme clusters on either side
together into a single grapheme cluster. This causes the entire sequence to be treated as a unit for
such things as cursor movement, searching, and sorting. In cases where a word-wrapping process has
to wrap on character boundaries rather than word boundaries, it also suppresses a line break.

Enclosing marks are defined in Unicode 3.2 to enclose everything up to the most recent grapheme
cluster boundary, so the grapheme joiner can be used to cause an enclosing mark to surround more
text than it might otherwise. For example, the sequence

U+0031 DIGIT ONE

U+0032 DIGIT TWO

U+20DD COMBINING ENCLOSING CIRCLE

…gets drawn like this:

1 2

The 1 and the 2 are separate grapheme clusters, so the circle only surrounds the 2. But if you put a
grapheme joiner between them…

U+0031 DIGIT ONE

U+034F COMBINING GRAPHEME JOINER

U+0032 DIGIT TWO

U+20DD COMBINING ENCLOSING CIRCLE

…you get this:

 Numbers, Punctuation, Symbols, and Specials

346 Unicode Demystified

12

The grapheme joiner “glues” the 1 and the 2 together into a single grapheme cluster, causing the
circle to surround both of them.

For more information on grapheme clusters and the grapheme joiner, see Chapter 4.

Bidirectional formatting characters
Unicode includes seven characters whose purpose is to control bidirectional reordering:

U+200E LEFT-TO-RIGHT MARK

2+200F RIGHT-TO-LEFT MARK

U+202A LEFT-TO-RIGHT EMBEDDING

U+202B RIGHT-TO-LEFT EMBEDDING

U+202D LEFT-TO-RIGHT OVERRIDE

U+202E RIGHT-TO-LEFT OVERRIDE

U+202C POP DIRECTIONAL FORMATTING

Chapter 8 includes an in-depth treatment of all of these characters, so there’s no point in repeating
the whole thing here, but here’s a brief recap:

x� The left-to-right mark (LRM) and right-to-left mark (RLM) have no visual appearance, but look
to the Unicode bi-di algorithm like strong left-to-right and strong right-to-left characters,
respectively. These characters affect the interpretation of characters with weak or neutral
directionality that appear in ambiguous positions in the text.

x� The left-to-right and right-to-left override characters (LRO and RLO) cause all of the characters
between themselves and the next PDF (or another override or embedding character) to be treated
by the bi-di algorithm as characters with strong directionality in the direction specified, no matter
their natural directionality.

x� The left-to-right and right-to-left embedding characters (LRE and RLE) like LRO and RLO, are
also used with the PDF to delimit a range of text, but they cause the enclosed run of text to be
embedded in the enclosing run of text. For example, if you have a Hebrew quotation in an English
sentence, but the Hebrew quotation includes an English word, you can use LRE to cause the
English word to be treated as part of the Hebrew quotation rather than as part of the enclosing
English sentence (which would cause the Hebrew parts of the quotation to appear out of order).

x� The pop-directional-formatting character (PDF) terminates the effect or a preceding LRO, RLO,
LRE, or RLE.

Again, for a much more in-depth discussion of these characters, complete with examples, see Chapter
8.

As with the other formatting characters in this section, the bi-di formatting characters have no visual
appearance of their own and are transparent to all processes operating on the text except for
bidirectional reordering.

Deprecated characters
The General Punctuation block includes six more invisible formatting characters that were
deprecated in Unicode 3.0. These characters shouldn’t be used anymore, but since characters can’t be

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 347

removed from the Unicode standard, they’re still there. The Unicode Consortium strongly
discourages users from using these characters, and strongly discourages developers implementing the
Unicode standard from supporting them. But for completeness, here’s a quick explanation of what
they were originally intended to do:

x� U+206A INHIBIT SYMMETRIC SWAPPING basically turns off mirroring. Normally,
characters such as the parentheses have a different glyph depending on whether they appear in
left-to-right text or right-to-left text. The starting parenthesis appears as (in left-to-right text but
as) in right-to-left text, maintaining its semantic identity as the starting parenthesis regardless of
text direction.

U+206A turns off this behavior, causing the mirrored characters to take on their left-to-right
glyphs even when they appear in right-to-left text. U+206B ACTIVATE SYMMETRIC
SWAPPING turns mirroring back on, returning things to the default state.

This was included for backward compatibility with older standards that didn’t have the concept of
mirrored characters. When converting from such a standard to Unicode, the conversion process
should be smart enough to understand the bi-di state and exchange the code point values for the
mirroring characters instead of relying on being able to turn mirroring on and off.

x� U+206D ACTIVATE ARABIC FORM SHAPING causes the same glyph-selection process that’s
used for the Arabic letters in the U+0600 block to be used with the characters in the Arabic
Presentation Forms blocks. In other words, all of the different presentation forms of the letter heh
in the presentation-forms blocks get treated the same as the nominal version of heh in the Arabic
block— their glyph shapes are determined by context, rather than always being the glyph shapes
specified in the Unicode standard. U+206C INHIBIT ARABIC FORM SHAPING turns this
behavior off, returning to the default state where the Arabic presentation forms always have their
specified glyph shapes.

These codes came into Unicode in the 10646 merger. They shouldn’t be used; if you want
contextual glyph selection, use the nominal forms of the Arabic letters instead of the presentation
forms.

x� U+206E NATIONAL DIGIT SHAPES causes the Unicode code point values from U+0030 to
U+0039 to take on the glyph shapes for the digits in the script of the surrounding text. For
example, in Arabic text, U+206E causes U+0031, U+0032, U+0033 to appear as , , instead
of as 1, 2, 3. U+2006F NOMINAL DIGIT SHAPES returns things to their default state, where the
digits in the ASCII block are always drawn as European digits.

This was included for compatibility with ISO 8859-6, which had the ASCII digit codes do double
duty, representing both the European digits and the Arabic digits depending on context. Code
converting to Unicode from 8859-6 should be smart enough to map the ASCII digit characters to
the appropriate code points in the Arabic block when they’re supposed to show up as the Arabic
digits.

Interlinear annotation
In Chinese and Japanese text, you’ll periodically see characters adorned with little annotations
between the lines of text. Usually these annotations are there to clarify the pronunciation of
unfamiliar characters. In Japanese, this practice is called furigana or ruby.

Text containing rubies is normally considered to be structured text, in the same way that text
containing sidebars or footnotes would be structured text. Usually Unicode would be used to
represent the characters in the annotations themselves, but some higher-level protocol, such as
HTML or XML, would be used to associate the annotation with the annotated text and specify where
in the document the text of the annotation would go.

 Numbers, Punctuation, Symbols, and Specials

348 Unicode Demystified

But occasionally it’s necessary to include the annotations in otherwise plain, unstructured text, and so
Unicode includes characters for interlinear annotation.

x� U+FFF9 INTERLINEAR ANNOTATION ANCHOR marks the beginning of a piece of text that
has an annotation.

x� U+FFFA INTERLINEAR ANNOTATION SEPARATOR marks the end of a piece of text that
has an annotation and the beginning of the annotation itself. A piece of text might have multiple
annotations, in which case the annotations are separated from one another with additional
U+FFFA characters.

x� U+FFFB INTERLINEAR ANNOTATION TERMINATOR marks the end of the annotation and
the resumption of the main text.

A full treatment of interlinear annotations, complete with examples, is included in Chapter 10.

The object-replacement character
Fully-styled text may often include non-text elements, such as pictures or other embedded elements.
How such elements are included in a document is the province of a higher-level protocol, but
Unicode includes one thing to make it simpler.

In a markup language such as HTML, embedded elements are simply included via appropriate pieces
of markup text (such as the “” tag) in appropriate places in the text. But in many word
processors and similar programs, the non-text information is kept in a separate data structure from the
text itself and associated with it by means of a run-array mechanism, a data structure that associates
ranges of text with records of styling information (for example, it includes records that say, in effect,
“characters 5 through 10 are in boldface”). Embedded elements are usually stored in the style records
in the run array.

But unlike normal styling information, embedded elements aren’t really associated with a character;
they associated with a position between two characters, something a normal run-array mechanism
doesn’t handle very well. Unicode provides U+FFFC OBJECT REPLACEMENT CHARACTER to
help out. In most styled-text situations, this character is invisible and transparent to operations
operating on the text. But it provides a spot in the text to associate embedded elements with. In this
way, an embedded element like a picture can be stored in a style record and the run array has a
character in the text to associate it with.

In purely plain Unicode text, U+FFFC can be used to mark the spot where a picture or other
embedded element had once been or is to be placed.

The general substitution character
U+FFFD REPLACEMENT CHARACTER is used to represent characters that aren’t representable
in Unicode. The idea is that if you’re converting text from some legacy encoding to Unicode and the
text includes characters that there’s no Unicode code point value for, you convert those characters to
U+FFFD. U+FFFD provides a way to indicate in the text that data has been lost in the translation.
There’s no standardized visual representation for this character, and in fact it doesn’t have to have a

visual representation at all, but
 is the glyph shown in the Unicode standard and is frequently
used.

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 349

The ASCII SUB character (U+001A SUBSTITUTE in Unicode) is often used in ASCII-based
encodings for the same purpose. Even though this character also exists in Unicode, it shouldn’t be
used for this purpose in Unicode text.

Since the designers of Unicode used most of the other encoding standards out these as sources for
characters, there won’t be many situations where it’s necessary to convert something to U+FFFD. Up
until Unicode 3.0, you’d mainly see this character used for CJK ideographs that weren’t yet in
Unicode. Unicode 3.0 added more-specialized character codes for representing otherwise-
unrepresentable CJK ideographs. These include the geta mark (U+3013), which functions like
U+FFFD and merely marks the position of an unknown ideograph (but which has a standard visual
representation), the ideographic variation indicator (U+303E), which is used in conjunction with a
character that is representable to say “a character kind of like this one,” and the ideographic
description characters, which provide a whole grammar for describing an otherwise-unencodable
character. For a full treatment of these characters, see Chapter 10.

Tagging characters
One longtime point of controversy in Unicode has been the doubling up of certain blocks of
characters to represent multiple languages where the characters have historical relationships but
distinct glyph shapes. Such pairs include Greek and Coptic; modern and old Cyrillic; Traditional
Chinese, Simplified Chinese, Japanese, and Korean; and (possibly) Arabic and Urdu. To get the right
appearance for the characters in these ranges, you need some additional out-of-band information
either specifying the font to be used or the language the text is in.

Various processes operating on the text might also work differently depending on language. Spell-
checking and hyphenation are obvious examples, but there are many others.

The position of the Unicode Consortium on things like specifying the language of a range of text is
that it’s the proper province of a higher-level protocol, such as HTML or MIME, and such
information doesn’t belong in plain text. But there are rare situations where language tagging might
be useful even in plain text.

Unicode 3.1 introduces a method of putting language tags into Unicode text. The tagging mechanism
is extensible to support other types of tagging, but only language tagging is supported right now.

Many of the members of the Unicode Technical Committee approved this while holding their noses,
and the Unicode tagging characters come with all sorts of warnings and caveats about their use. The
bottom line is that if you can use some other mechanism to add language tags to your text, do it. If
you can get by without language tags at all, do it. Only if you absolutely have to have language tags
in Unicode plain text should you use the Unicode tag characters, and even then you should be
careful.

The tagging characters are in Plane 14, the Supplementary Special-Purpose Plane. There are 95 main
tagging characters, corresponding to the 95 printing characters of ASCII and occupying the same
relative positions in Plane 14 that the ASCII characters occupy in Plane 0, from U+E0020 to
U+E007E. For example, if U+0041 is LATIN CAPITAL LETTER A, U+E0041 is TAG LATIN
CAPITAL LETTER A.

 Numbers, Punctuation, Symbols, and Specials

350 Unicode Demystified

The basic idea is that a tag consists of a string of ASCII text in a syntax defined by some external
protocol and spelled using the tag characters rather than the ASCII characters. A tag is preceded by
an identifier character that indicates what kind of tag it is. Right now, there’s one tag identifier
character: U+E0001 LANGUAGE TAG. There might eventually be others.

The nice thing about this arrangement is that processes that don’t care about the tags can ignore them
with a very simple range check, and that you don’t need a special character code to terminate a tag:
the first non-tag character in the text stream terminates the tag.

For language tags, the syntax is an RFC 3066 language identifier: a two-letter language code as
defined by ISO 639, optionally followed by a hyphen and a two-letter region or country code as
defined by ISO 3166. (You can also have user-defined language tags beginning with “x-”.)

For example, you might precede a section of Japanese text with the following:

U+E0001 LANGUAGE TAG

U+E006A TAG LATIN SMALL LETTER J

U+E0061 TAG LATIN SMALL LETTER A

U+E002D TAG HYPHEN-MINUS

U+E006A TAG LATIN SMALL LETTER J

U+E0070 TAG LATIN SMALL LETTER P

This, of course, is “ja-jp” spelled out with tag characters and preceded with the language-tag
identifier. All of the text following this tag is tagged as being in Japanese (of course, there’s nothing
to guarantee the tag is right: you could easily have Spanish text tagged as French, for example).

A language tag stays in scope until you reach the end of the text (“the end of the text” being an
application-defined concept), see another language tag, or reach U+E007F CANCEL TAG.
U+E007F in isolation cancels all tags in scope at that point. U+E0001 U+E007F cancels just the
language tag in effect (right now, there’s no difference because language tags are the only kinds of
tags there are, but this may change in the future). Language tags don’t nest.

If other tag types are defined in the future, tags of different types will be totally independent. Except
for U+E007F canceling all tagged text in scope (a feature allowed basically to permit concatenation
of files without tags bleeding from one to another), the scope of one kind of tag doesn’t affect the
scope of any other kind of tag that may also be in effect.

It’s completely permissible for a Unicode implementation to ignore any tags in the text it’s working
on, but implementations should try not to mess up the tags themselves by, for example, inserting
regular characters into the middle of a tag. Tag-aware applications should, however, be prepared to
deal with just such a thing in some reasonable way. (Unicode 3.1 prescribes that malformed language
tags should be treated the same as CANCEL TAG by conforming applications—text after a
malformed tag is simply considered untagged.)

Since language tags are stateful, they pose a problem for interpretation. If you care about the
language tag in effect at some point in the text, you might have to scan backward from that point an
indefinite distance to find the appropriate language tag. A good policy is to read the file sequentially
when it’s loaded into your program, strip out all the language tags, and put the information into an
out-of-band data structure such as a style run array.

 Special Characters

 A Practical Programmer’s Guide to the Encoding Standard 351

The Unicode standard specifically doesn’t say that conforming applications that care about the tags
have to do anything special with tagged text other than interpreting the text. In particular, conforming
implementations don’t have to do anything different with text that’s tagged as being in some
language then they’d do with the same text if it were untagged. They’re permitted to treat tagged text
differently, of course, but this isn’t required.

Non-characters
Unicode also includes a number of code point values that are not considered to be legal characters.
These include:

x� U+FFFF. Having this not be a character does two things: It allows you to use an unsigned

short in C++ (or corresponding type in other programming languages) for Unicode characters
and still be able to loop over the entire range with a loop that’ll terminate (if U+FFFF was a legal
character, a naive loop would loop forever unless a larger data type were used for the loop
variable or some extra shenanigans are included in the code to keep track of how many times
you’ve seen a particular value, such as 0). It also provides a non-character value that can be used
for end-of-file or other sentinel values by processes operating on Unicode text without their
having to resort to using a larger-than-otherwise-necessary data type for the characters (in spite of
this, the relevant Java I/O routines return int—go figure).

x� U+FFFE. The byte-swapped version of this is U+FEFF, the Unicode byte-order mark. Having
U+FFFE not be a legal character make it possible to identify UTF-16 or UTF-32 text with the
wrong byte ordering.

x� U+xxFFFE and U+xxFFFF. The counterparts to U+FFFE and U+FFFF in all of the
supplementary planes are also set aside as noncharacters. This is a holdover from the early design
ISO 10646, when it was expected that the individual planes would be used independently of one
another (i.e, the UCS-2 representation could be used for planes other than the BMP when, for
example, the text consisted entirely of Han characters).

x� U+FDD0 to U+FDEF. These additional code points in the BMP were set aside starting in
Unicode 3.1. The idea here was to give implementations a few more non-character values that
they could use for internal purposes (without worrying they’d later be assigned to actual
characters). For example, a regular-expression parser might use code point values in this range to
represent special characters like the * and |.

The noncharacter code points are never supposed to occur in Unicode text for interchange, and it’s
not okay to treat them as characters—they’re not just extensions of the Private Use Area. They’re
expressly reserved for internal application use in situations where you need values you know don’t
represent characters (such as sentinel values).

Symbols used with numbers

Of course, Unicode also has a vast collection of signs and symbols. We’ll examine these in two
separate sections. This section deals with those symbols that are used with numbers or in
mathematical expressions.

Numeric punctuation
Many of the cultures that use Arabic positional notation make use of punctuation marks in numerals.
For example, Americans use the period to separate the integral part of the number from the fractional
part of the number, and in large numbers, we use a comma every three digits to help make the

 Numbers, Punctuation, Symbols, and Specials

352 Unicode Demystified

numeral easier to read. Many other cultures also use punctuation marks for these purposes, but they
use different punctuation marks. In much of Europe, for example, a comma, rather than a period, is
used as the decimal-point character, and various characters from the period (Germany) to the space
(France) to the apostrophe (Switzerland) are used as thousands separators.

The one thing that almost all of these cultures have in common is that they use regular punctuation
marks for these purposes. Unicode follows this and doesn’t separately encode special numeric-
punctuation characters. There’s no “decimal point” character in Unicode, for example; the regular
period or comma code point values are used as decimal points.

The one exception is Arabic, which has special numeric punctuation. When using native Arabic
digits, you also use U+066B ARABIC DECIMAL SEPARATOR and U+066C ARABIC
THOUSANDS SEPARATOR. 1,234.56, thus, looks like this when written with Arabic digits:

Currency symbols
Unicode includes a wide selection of currency symbols. Most of these are in the Currency Symbols
block, which runs from U+20A0 to U+20CF. Notably, the Euro sign (¼) is in this block, at U+20AC
(U+20A0 EURO-CURRENCY SIGN is a historical character that’s different from the modern Euro
sign; be careful not to confuse them!).

But there are also a number of currency symbols, including many of the most common, that aren’t in
the Currency Symbols block for one reason or another. They include the following:

Character Code point value Units

$ U+0024 Dollars (many countries), plus some other units

¢ U+00A2 Cents (U.S.)

£ U+00A3 British pounds

¤ U+00A4 (see note below)

¥ U+00A5 Japanese yen

ƒ U+0192 Dutch guilder

 U+09F2 Bengali rupee decimal separator

 U+09F3 Bengali rupees

À U+0E3F Thai baht

 U+17DB Khmer riels

U+00A4 CURRENCY SIGN is a holdover from the international version of the ISO 646 standard.
Rather than enshrine the dollar sign (or any other country’s currency symbol) at 0x24 (where ASCII
put the dollar sign), ISO 646 declared this to be a national-use character and put this character, which
isn’t actually used anywhere as a currency symbol, in that position as the default. The later
International Reference Version of ISO 646 restored the dollar sign as the default character for 0x24,
and ISO 8859-1 set aside another code point value, 0xA4, for the generic currency symbol. It comes
into Unicode by way of ISO 8859-1. It still isn’t used as an official currency symbol anywhere, but

 Symbols used with numbers

 A Practical Programmer’s Guide to the Encoding Standard 353

is occasionally used as a “generic” currency symbol (the Java currency formatting APIs, for example,
use it to mark the position of a currency symbol in a formatted number).

Unit markers
A lot of characters are used with numerals to specify a measurement unit. A lot of the time, the unit is
simply an abbreviation in letters (such as “mm”), but there are a lot of special unit symbols as well.
Among them are the following:

In the ASCII block: # [pounds, number] (U+0023), % [percent] (U+0025)

In the Latin-1 block: ° [degrees] (U+00B0)

In the Arabic block: �[Arabic percent sign; used with native Arabic digits] (U+066A)

In the General Punctuation block: ‰ [per thousand] (U+2030), �[per ten thousand] (U+2031),

[minutes, feet] (U+2032), [seconds, inches] (U+2033)

The Letterlike Symbols block (U+2100 to U+214F) also includes many characters that are symbols
for various units and mathematical constants. Most of the characters in this block are regular letters
with various stylistic variants applied to them. In a few cases, they’re clones of regular letters, but
they’re categorized as symbols (in the case of the few clones of Hebrew letters encoded in this block,
the symbols are also strong left-to-right characters).

The CJK Compatibility block (U+3300 to U+33FF) consists almost entirely of various unit
symbols used in East Asian typography. These all consist of several Latin letters or digits, Katakana
or Kanji characters, or combinations thereof arranged to fit in a standard East Asian character cell.
For example, both of the of the following characters are used in vertical Japanese typography as a
“kilometer” symbol (the one on the left is the word “kilometer” written in Katakana):

Math symbols
There’s also a whole mess of mathematical symbols in Unicode. Again, the greatest concentration of
them is in the Mathematical Operators block, which runs from U+2200 to U+22FF. Many math
symbols are also unified into the Arrows and Geometric Shapes blocks. There’s also a fair amount of
unification that has taken place within the Mathematical Operators block itself: when a particular
glyph shape has multiple meanings, they’re all unified as a single Unicode character, and when a
symbol with a single semantic has several variant (but similar) glyph shapes (such as � with a
horizontal line versus the same thing with the line parallel to the lower half of the >), they’re unified
into a single code point value.

Further increasing the number of possible math symbols, there’s the Combining Diacritical Marks for
Symbols block, running from U+20D0 to U+20FF, which, as its name suggests, contains a bunch of
combining marks that are used specifically with various symbols to change their meaning (some of

 Numbers, Punctuation, Symbols, and Specials

354 Unicode Demystified

the characters in the regular Combining Diacritical Marks block, such as U+0338 COMBINING
LONG SOLIDUS OVERLAY, are also frequently used with symbols).

There are also a few math symbols in the Letterlike Symbols block.

In addition to the math symbols in these blocks, there are a number of math symbols in other Unicode
blocks. Among them:

In the ASCII block: + (U+002B), < (U+003C), = (U+003D), > (U+003E), | [absolute value]
(U+007C) [the hyphen/minus, slash, and tilde characters are often used as math operators, but these
have counterparts in the Mathematical Operators block that are specifically intended for
mathematical use]

In the Latin-1 block: ¬ [not sign] (U+00AC), ± (U+00B1), ÷ (U+00F7) [the centered dot character
at U+00D7 is also often used as a math operator, but also has a more appropriate counterpart in the
Mathematical Operators block]

In the General Punctuation block: (U+2016) [norm of a matrix], plus the various prime marks

from U+2032 to U+2037.

In the Miscellaneous Technical block: (U+2308 to U+230B)

On top of all this, Unicode 3.2 adds a whopping 591 new math symbols, one product of something
called the STIX project (Scientific and Technical Information Exchange), an effort by a consortium
of experts from the American Mathematical Society, the American Physical Society, and a number of
mathcmatical textbook publishers.106 This resulted in five new blocks being created in the Unicode
encoding space:

The Miscellaneous Mathematical Symbols–A (U+27C0 to U+27EF) and Miscellaneous
Mathematical Symbols–B (U+2980 to U+29FF) blocks contain a wide variety of operators,
symbols, and delimiters. Of particular note in these blocks are a number of brackets that are
disunified from similar-looking counterparts in the CJK Miscellaneous Area. The CJK brackets are
supposed to be used as punctuation in East Asian text and have the “wide” East-Asian-width
property, which may make them space funny in mathematical text, so new brackets specifically for
mathematical use have been added.

The Supplemental Arrows–A (U+27F0 to U+27FF) and Supplemental Arrows–B (U+2900 to
U+297F) blocks contain a variety of new arrows and arrowlike symbols used as math operators. Of
note here are a few arrows that are longer versions of arrows in the regular Arrows block. The longer
arrows actually have different semantics from their shorter counterparts and can appear in the same
expressions.

The Supplemental Mathematical Operators block (U+2A00 to U+2AFF) contains more
mathematical operators.

106 As always with comments about Unicode 3.2, which is still in beta as I write this, the details may have

shifted a bit by the time you read this.

 Symbols used with numbers

 A Practical Programmer’s Guide to the Encoding Standard 355

Together, these five blocks, along with the math symbols already in Unicode 3.1, cover pretty much
everything that’s in reasonably common use as a math symbol in a wide variety of publications. Of
course, math symbols are like Chinese characters: new ones are always being coined. Of course, if
one researcher invents a symbol just for his own use, that’s generally not grounds to encode it (it’s a
“nonce form” and can be handled with Private Use Area code points), but if it catches on in the
mathematical community, it becomes a candidate for future encoding.

Unicode 3.2 also adds a bunch of “Symbol pieces” to the Miscellaneous Technical block (adding to
a couple that were already there). These are things like the upper and lower halves of brackets,
braces, parentheses, integral signs, summation and product signs, and so forth, as well as extenders
that can be used to lengthen them. You see these used to put together extra-large (or at least extra-
tall) versions of the characters they make up, such as brackets to enclose arrays and vectors that are
several lines long. Sometimes they also get pressed into service as independent symbols in their own
right. As a general rule, the symbol pieces shouldn’t appear in interchange text, but they’re useful as
internal implementation details for drawing extra-large math symbols.

Finally, the General Punctuation block includes several special characters for mathematical use:

U+2044 FRACTION SLASH can be used with regular digit characters to form typographically-
correct fractions: This sequence, for example…

U+0035 DIGIT FIVE

U+2044 FRACTION SLASH

U+0038 DIGIT EIGHT

…should be rendered like this:

The basic behavior is that any unbroken string of digits before the fraction slash gets treated as the
numerator and any unbroken string of digits after it gets treated as the denominator. If you want to
have an integer before the fraction, you can use the zero-width space:

U+0031 DIGIT ONE

U+200B ZERO WIDTH SPACE

U+0031 DIGIT ONE

U+2044 FRACTION SLASH

U+0034 DIGIT FOUR

…should be rendered as…

1¼

Unicode 3.2 adds a couple new “invisible operators” to the General Punctuation block. These
include U+2061 INVISIBLE TIMES, U+2062 FUNCTION APPLICATION, and U+2063
INVISIBLE SEPARATOR. None of these characters has a visible presentation; they exist to make
life easier for code that’s parsing a mathematical expression represented in Unicode. Consider this
expression:

 Numbers, Punctuation, Symbols, and Specials

356 Unicode Demystified

Aij

This could either be the jth element in the ith row of A, a two-dimensional matrix, or the i-times-jth
element of A, a one-dimensional vector. You could put U+2063 INVISIBLE SEPARATOR between
i and j to let the parser know you mean the first meaning, and U+2061 INVISIBLE TIMES between
them to indicate you mean the second meaning. Similarly, if you have…

f (x + y)

…this could either be the application of function f to the sum of x and y, or the variable f times the
sum of x and y. Again, you could use U+2062 FUNCTION APPLICATION to indicate the first and
U+2061 INVISIBLE TIMES to indicate the second.

Iin all of these cases, the invisible operator doesn’t specifically show up in the rendered expression,
although it might cause a sufficiently-sophisticated math renderer to space things a little differently.

All of these issues and more are covered in Proposed Draft Unicode Technical Report #25, “Unicode
Support for Mathematics,” which will probably be a real Technical Report by the time you read this.
It goes into great detail on the various math symbols in Unicode, proper design of fonts for
mathematical use, and tips for the design of Unicode-based mathematical-typesetting software.

Among the more interesting parts of PDUTR #25 are a list of proposed new character properties to
help mathematical typesetters parse Unicode text (these might get adopted into future versions of the
standard) and an interesting and detailed proposal for using plain Unicode text for expressing
structured mathematical expressions, a method that is potentially both more concise and more
readable than either MathML or TeX.

Mathematical alphanueric symbols

Finally, Unicode 3.1 added the Mathematical Alphanumeric Symbols block (U+1D400 to
U+1D7FF in the SMP), which, like the Letterlike Symbols block, contains clones of various letters
and digits with various stylistic variations added. Unlike the Letterlike Symbols block, this block
systematically encodes every combination of a prescribed set of characters and a prescribed set of
stylistic variations (except those that are already encoded in the Letterlike Symbols block, for which
corresponding holes have been left in the Mathematical Alphanumeric Symbols block). Also unlike
the characters in the Letterlike Symbols block, the characters in the Mathematical Alphanumeric
Symbols block don’t generally have well-established semantics.

The idea behind this block is that all of these characters can appear as symbols in mathematical
equations and that the different styles of the same letter are actually different symbols meaning
different things and can appear in the same equation. Using normal styled-text markup for this kind
of thing can be both clumsy and heavy-weight, and the letters in the equation might get treated as real
letters by some text-processing operations. The characters in this block are unambiguously to be
treated as symbols, and because they all have different code point values, a search for, say, a bold h
won’t accidentally find an italic h. You also don’t want a case-mapping routine to accidentally
convert the symbols from one case to another (which would effectively turn them into completely
different symbols). If you transmit the equation as plain text, you wouldn’t want an equation

 Symbols used with numbers

 A Practical Programmer’s Guide to the Encoding Standard 357

containing both h and h, obviously meaning different things, to have both turn into a regular h, which
might mean yet a third thing in addition to blurring the original distinction between h and h.

A classic example of this would be the Hamiltonian formula107:

H = �G � E2��� H2)

If you convert this to plain text and lose the distinction between the Hs, you get a simple integral
equation over the variable H:

H = �G � (2��� +2)

It’s important to note that it’s not okay to use the characters in the Mathematical Alphanumeric
Symbols block to fake styled text in a plain-text environment. That’s not what these characters are
designed for, and that’s part of the reason why they’re classified as symbols rather than letters.

107 This example is lifted straight from the text of UAX #27.

Other symbols and miscellaneous characters

Finally (puff puff puff), Unicode encodes a whole host of characters that don’t readily fit into any
of the other categories. These include both various non-mathematical symbols and various other
types of characters.

Musical notation
Unicode 3.1 adds the new Byzantine Musical Symbols block (U+1D000 to U+1D0FF) and
Musical Symbols block (U+1D100 to U+1D1FF), which include various musical symbols. Full-
blown Western musical notation is often considered to be the most comprehensive and complex
written language even devised, and Unicode doesn’t attempt to provide the means to fully specify a
musical score. In particular, the specification of pitch is left to a higher-level protocol, as are most
of the more complex layout issues that you get into when laying out music.

What Unicode does provide is a complete set of symbols that can be used by a higher-level
protocol for representing musical notation. In plain text, these symbols can be used just as simple
symbols and are useful for writing about music.

Some characters in the Musical Symbols block require special treatment even in plain text. In
order to allow flexibility in things like the selection of noteheads, notes are actually built out of
pieces that get treated as combining character sequences. Precomposed characters are also
provided for the most common cases. For example, a simple eighth note…

 Numbers, Punctuation, Symbols, and Specials

358 Unicode Demystified

j
œ

…can be represented as a single character…

U+1D160 MUSICAL SYMBOL EIGHTH NOTE

…but this actually has a canonical decomposition down to…

U+1D158 MUSICAL SYMBOL NOTEHEAD BLACK

U+1D165 MUSICAL SYMBOL COMBINING STEM

U+1D16E MUSICAL SYMBOL COMBINING FLAG-1

There’s also a set of combining marks for the common articulation marks and for augmentation
dots. So we can make our eighth note into a dotted eighth note and add an accent to it…

.
j
œ>

…by adding the appropriate characters to the combining character sequence:

U+1D160 MUSICAL SYMBOL EIGHTH NOTE

U+1D16D MUSICAL SYMBOL COMBINING AUGMENTATION DOT

U+1D17B MUSICAL SYMBOL COMBINING ACCENT

The Musical Symbols block also includes several invisible formatting characters that, in
combination with the musical symbols, signal the beginning and endings of beamed groups of
notes, slurs, ties, and phrase marks. For example, the following sequence…

U+1D173 MUSICAL SYMBOL BEGIN BEAM

U+1D160 MUSICAL SYMBOL EIGHTH NOTE

U+1D161 MUSICAL SYMBOL SIXTEENTH NOTE

U+1D175 MUSICAL SYMBOL BEGIN TIE

U+1D161 MUSICAL SYMBOL SIXTEENTH NOTE

U+1D174 MUSICAL SYMBOL END BEAM

U+1D173 MUSICAL SYMBOL BEGIN BEAM

U+1D161 MUSICAL SYMBOL SIXTEENTH NOTE

U+1D176 MUSICAL SYMBOL END TIE

U+1D161 MUSICAL SYMBOL SIXTEENTH NOTE

U+1D160 MUSICAL SYMBOL EIGHTH NOTE

U+1D174 MUSICAL SYMBOL END BEAM

…would be rendered like this by a sufficiently-sophisticated rendering engine:

 Other symbols and miscellaneous characters

 A Practical Programmer’s Guide to the Encoding Standard 359

œ œ œ œ œ œ

The Byzantine Musical Symbols block encodes the symbols used by the Eastern Orthodox Church
(especially the Greek Orthodox Church) for writing hymns and other liturgical music. In plain text,
all of these symbols can just be treated as regular spacing symbols, but music-notation software
can use them as primitives for building up real Byzantine musical notation.

Braille
Unicode 3.0 added the Braille Patterns block (U+2800 to U+28FF), which encoded the 256
possible eight-dot Braille patterns. Generally speaking, Braille can be thought of as a font variant
of a regular script in Unicode, and text in Braille can be represented in Unicode using the regular
code point values for the characters being represented in Braille. But there are many different
standards for representing writing in Braille and they’re all different. The purpose of this block is
to allow an abstract representation of the dot patterns themselves, without worrying about what
actual characters they represent. In certain situations, the ability to represent the abstract dot
patterns saves systems from having to do extra round-trip conversions back to standards that assign
actual meaning to the dot patterns. Most of the time, this is an internal representation; users would
usually deal with text represented using the normal Unicode characters and an internal process
would convert the normal Unicode characters to the characters in this block for output on a Braille
printing device (or a Braille input device would generate the abstract characters in this block,
which would then be converted by a separate process into the appropriate regular Unicode
characters for the language the user speaks).

Other symbols
There are various other miscellaneous-symbols blocks in Unicode, including:

x� The Letterlike Symbols block (U+2100 to U+214F) includes a collection of symbols that
either are clones of regular letters with some special stylistic variant applied or are special
combinations of multiple letters. Some of these are mathematical symbols (the Riemann

integral [], the Weierstrass elliptic function []), some represent constants (the Planck

constant [], the first transfinite cardinal []), some represent units of measure (degrees

Fahrenheit [], ohms [], Angstom units []), and some are just abbreviations (care-of [],

trademark [™], versicle []).

x� The Arrows block (U+2190 to U+21FF) includes various arrows. Most of these are
mathematical or technical symbols of one kind of another, but all arrowlike symbols have been
collected into this one block. Multiple semantics with the same glyph shape have been unified.

x� The Miscellaneous Technical block (U+2300 to U+23FF) includes a variety of different
symbols that didn’t fit into any of the other blocks. These include various keycap symbols used
in computer manuals, and a complete set of functional symbols from the programming language
APL, as well as various other symbols from various technical disciplines.

x� The Control Pictures block (U+2400 to U+243F), which includes glyphs that provide visible
representations for the various ASCII control characters (plus two different visible
representations for the space).

 Numbers, Punctuation, Symbols, and Specials

360 Unicode Demystified

x� The Optical Character Recognition block (U+2440 to U+245F) includes various symbols
from the OCR-A character set that don’t correspond to regular ASCII characters, as well as the
MICR characters (magnetic-ink character recognition) that are used to delimit the various
numbers on the bottom of a check.

x� The Miscellaneous Symbols block (U+2600 to U+26FF) includes a bunch of nontechnical
symbols that didn’t fit anywhere else. It includes such things as weather symbols, astrological
symbols, chess pieces, playing-card suits, die faces, I-Ching trigrams, recycling symbols, and so
forth.

Presentation forms
Unicode also includes a bunch of blocks consisting of nothing but special presentation forms of
characters whose normal encoding is elsewhere in the standard. These characters generally exist
solely for round-trip compatibility with some legacy encoding standard. Among the blocks are:

x� The Superscripts and Subscripts block (U+2070 to U+209F), which consists of various digits
and mathematical symbols in superscripted or subscripted form (a couple of superscripts and
subscripts are also encoded in the Latin-1 block)

x� The Number Forms block (U+2150 to U+218F), which consists of various precomposed
fractions and Roman numerals.

x� The Enclosed Alphanumerics block (U+2460 to U+24FF), which consists of various letters
and numbers with circles around them, with parentheses around them, or with periods after
them.

x� The Hangul Compatibility Jamo block (U+3130 to U+318F) contains non-conjoining clones
of the characters in the regular Hangul Jamo block.

x� The Enclosed CJK Letters and Months block (U+3200 to U+327F) contains various CJK
characters with circles or parentheses around them, plus precomposed symbols for the twelve
months in Japanese.

x� The CJK Compatibility block (U+3300 to U+33FF) contains a wide variety of abbreviations
arranged so as to fit in single CJK character cells.

x� The CJK Compatibility ideographs block (U+F900 to U+FA5F) contains clones of
characters in the CJK Unified Ideographs block. Most of these characters are from the Korean
KS X 1001 standard and are identical to their counterparts in the CJK Unified Ideographs
block. KS X 1001 had duplicate encodings for a bunch of Han characters that had more than
one Korean pronunciation—each pronunciation got its own code point. A number of other
characters that got double encodings in other East Asian standards for other reasons are also in
this block. The characters in this block are all included here solely for round-trip compatibility
with their original source standards—they would have been unified with their counterparts in
the Unihan block otherwise.

x� The Alphabetic Presentation Forms block (U+FB00 to U+FB4F) contains some common
Latin and Armenian ligatures, as well as precomposed Hebrew-letter-with-point combinations
used in Yiddish.

x� The Arabic Presentation Forms A block (U+FB50 to U+FDFF) contains a whole mess of
precomposed Arabic ligatures which are virtually never used.

x� The Combining Half Marks block (U+FE20 to U+FE2F) contains clones of the double
diacritics (diacritics that appear over two characters) from the Combining Diacritical Marks
block. The clones in the Combining Half Marks block have been split in half: to represent a
double diacritic over two letters using the half marks, you follow the first letter with the first
half of the desired mark and follow the second letter with the second half of the desired mark.
The use of these characters is discouraged.

 Other symbols and miscellaneous characters

 A Practical Programmer’s Guide to the Encoding Standard 361

x� The CJK Compatibility Forms block (U+FE30 to U+FE4F) contains clones of various CJK
punctuation marks rotated sideways. Normally in vertical text you use the regular punctuation
marks and the rendering engine automatically turns them sideways; these characters always
represent the glyphs used in vertical text for those punctuation marks.

x� The Small Form Variants block (U+FE50 to U+FE6F) contains small versions of the ASCII
symbols. These are included for round-trip compatibility with the Taiwanese CNS 11643
standard.

x� The Arabic Presentation Forms B block (U+FE70 to U+FEFF) contains characters
representing the contextual glyphs used for the Arabic letters (e.g., the initial form of heh).
Unlike the regular Arabic letters, these characters represent specific glyph shapes and aren’t
subject to contextual glyph selection. Some rendering engines use these characters for
rendering the regular Arabic letters, and they can also be used to represent specific glyphs in
text that discusses the Arabic letters. The byte-order mark/zero-width no-break space is also
encoded in this block.

x� The Halfwidth and Fullwidth Forms block (U+FF00 to U+FFEF) contains fullwidth variants
of the ASCII characters and halfwidth variables of various CJK characters.

Miscellaneous characters
Finally, Unicode also includes these blocks of miscellaneous characters:

x� The Box Drawing block (U+2500 to U+257F) contains a bunch of characters that can be used
to “draw” lines on a character-oriented display. This block is derived from the box-drawing
characters in the old IBM PC code pages that were used to draw Windows-like user interfaces
in old DOS programs, and from a similar collection of box-drawing characters in the Japanese
JIS standards.

x� The Block Elements block (U+2580 to U+259F) contains a bunch of glyphs that represent
different fractions of a monospaced display cell being colored in. These also come from the old
DOS and terminal code pages.

x� The Geometric Shapes block (U+25A0 to U+25FF) contains a bunch of geometric shapes.
Some of these are used as symbols or bullets of various kinds, and they come from a variety of
sources.

x� The Dingbats block (U+2700 to U+27BF) contains the characters in the Zapf Dingbats
typeface. Since this typeface has been included on so many laser printers, these characters
(various pictures, bullets, arrows, enclosed numbers, etc.) have become something of a de facto
standard, and the Unicode designers decided they deserved unique code points in Unicode.

And that (finally) concludes our guided tour of the Unicode character repertoire! Starting in the
next chapter, we’ll examine how Unicode text is actually handled in software.

S E C T I O N I I I

Unicode in Action
Implementing and Using the

Unicode Standard

 365

CHAPTER 13 Techniques and Data Structures
for Handling Unicode Text

We’ve come a long way. We’ve looked at the general characteristics of Unicode, the Unicode
encoding forms, combining character sequences and normalization forms, and the various properties
in the Unicode Character Database. We’ve taken a long tour through the entire Unicode character
repertoire, looking at the various unique requirements of the various writing systems, including such
things as bidirectional character reordering, Indic consonant clusters, diacritical stacking, and the
various interesting challenges associated with representing the Han characters. Now we’ve finally
gotten to the point where we can talk about actually doing things with Unicode text.

In this section, we’ll delve into the actual mechanics of performing various processes on Unicode
text. We’ll look at how you actually do such things as search and sort Unicode text, perform various
types of transformations on Unicode text (including such things as converting to other character sets,
converting between encoding forms, performing Unicode normalization, mapping between cases,
performing various equivalence transformations, and more generalized transformations), and draw
Unicode text on the screen. We’ll also look at how Unicode is used in databases and on the Internet,
and at the Unicode support provided in various operating systems and programming languages.

Most of the time, you don’t need to know the nitty-gritty details of how to do various operations on
Unicode text; the most common operations have already been coded for you and exist in various
operating systems and third-party libraries. You just need to know the support is there and how to use
it. Chapter 17 summarizes what’s in the various Unicode support libraries and how to use them. If
you’re not actually in the business of implementing pieces of the Unicode standard, you may just
want to read that chapter.

 Techniques and Data Structures for Handling Unicode Text

366 Unicode Demystified

However, you might find you need to do things with Unicode text that aren’t supported by the
libraries you have at your disposal. This chapter will give you the ammunition to deal with your
particular situation, as well as a grounding in the techniques that are used in the commercial libraries
to perform the more common operations on Unicode text.

Useful data structures

In this chapter, we’ll look at a series of useful data structures and techniques for doing various things
with Unicode text. Most operations on Unicode text boil down to one or more of the following:

x� Testing a character for membership in some collection of characters.

x� Mapping from a single character to another single character, or to some other type of value.

x� Mapping from a variable-length sequence of characters to a single character (or, more commonly,
some other single value).

x� Mapping from a single character (or other type of value) to a variable-length sequence of
characters (or other values).

x� Mapping from a variable-length sequence of characters or values to another variable-length
sequence of characters of values.

More simply put, you may need to do one-to-one, one-to-many, many-to-one, or many-to-many
mappings, with the universe of possible Unicode characters being the set on either side (or both
sides) of the relation, and with various mixes of different-length sequences and different repetition
characteristics in the sets. We’ll look at a variety of different data structures designed to solve
different variations on these problems.108

108 Except where otherwise noted, the techniques described in this chapter are either from Mark Davis,

“Bits of Unicode,” Proceedings of the Eighteenth International Unicode Conference, session B11, April 27,

2001, or from my own research.

Testing for membership in a class

A very common operation, and one that can’t always be accounted for in out-of-the-box software, is
testing a character for membership in a particular category of characters. For those categories that are
defined by the Unicode standard, such as lowercase letters or combining diacritical marks, the
standard Unicode libraries almost always provide APIs you can use. In addition, many APIs provide
additional functions to do character-class-membership queries that are specific to their envi-
ronment—for example, the Java class libraries provide methods for testing whether a character is
legal in a Java identifier.

If the test you’re looking for is available in an API library you’re using (such as testing whether a
character is a letter, digit, or whitespace character), you’re usually best off using that library’s
functions. But you may run into situations where the category or categories of characters you’re
interested in is specific to your application and doesn’t match the predefined categories set up by the
designers of the APIs you’re using.

Say, for example…

 Testing for membership in a class

 A Practical Programmer’s Guide to the Encoding Standard 367

x� …you’re interested in whitespace characters, but want to include not just the Unicode space-
separator characters, but the line separator, paragraph separator, and the ASCII horizontal tab,
vertical tab, line feed, form feed, and carriage return characters

x� …you’re interested in letters, but only in certain scripts (say, Latin, Greek, Cyrillic, Arabic, and
Hebrew, but not Armenian, Georgian, Syriac, Thaana, or any of the Indic characters)

x� …you’re interested in Indic vowel signs only

x� …you’re filtering out any character whose use in XML files is discouraged, and you don’t have
access to an API that’ll do this for you

x� …you’re interested in valid filename or identifier characters and your application or system
defines this set in some way other than the Unicode standard (a personal favorite example is the
Dylan programming language, where identifiers may not only consist of letters and digits, but also
a wide variety of special characters, including !, &, *, <, >, |, ̂ , $, %, @, _, -, +, ~, ?, /, and =.)

x� …you’re defining a grammar (e.g., a programming-language grammar) and the categories of
characters that are significant to the grammar don’t line up exactly with the Unicode categories (a
particularly interesting example of this is scanning natural-language text for linguistic boundaries,
something we’ll talk about in depth in Chapter 16)

x� …you’re interested only in the subset of Unicode characters that have equivalents in some other
standard (only the Han characters in the Tongyong Hanzi, only the Hangul syllables in the KS X
1001 standard, only the Unicode characters that aren’t considered “compatibility characters”
according to some appropriate definition, only the Unicode characters that are displayable by
some font you’re using, etc.)

In all of these cases, you need a way to check an arbitrary character to see whether it falls into the set
you’re interested in (or, if you’re interested in multiple sets, which of them it falls into).

There are a number of ways to do this. If the category is relatively close to one of the Unicode
categories (or the union of several), you might use a standard API to check for membership in that
category and then just special-case the exceptions in code. For instance, you could do the whitespace
check above with something like this in Java:

public static boolean isWhitespace(char c) {

 // true for anything in the Zs category

 if (Character.getType(c) == Character.SPACE_SEPARATOR)

 return true;

 // true also for any of the following:

 switch (c) {

 case ’\u2028’: // line separator

 case ’\u2029’: // paragraph separator

 case ’\n’: // line feed

 case ’\t’: // tab

 case ’\f’: // form feed

 case ’\r’: // carriage return

 case ’\u000b’: // vertical tab

 return true;

 // everything else is a non-whitespace character

 default:

 return false;

 }

}

 Techniques and Data Structures for Handling Unicode Text

368 Unicode Demystified

(This, of course, is kind of an unnecessary example, as Character.isWhitespace() does
essentially the same thing, but it’s useful for illustrative purposes.)

For some sets of characters, this kind of thing is sufficient, but it can be kind of clunky and it doesn’t
perform well for complicated categories.

There are other simple alternatives: If the characters all form one or two contiguous ranges, you can,
of course, do a simple range check…

public static boolean isASCIILetter(char c) {

 if (c >= ’A’ && c <= ’Z’)

 return true;

 else if (c >= ’a’ && c <= ’z’)

 return true;

 else

 return false;

}

…but this also doesn’t scale well.

If the characters you’re interested in all fall within, say, the ASCII block, you could use a range
check followed by a simple array or bit-map lookup…

public static boolean isASCIIConsonant(char c) {

 if (c > 0x7f)

 return false;

 else

 return consonantFlags[c];

}

private static boolean[] consonantFlags = {

 false, false, false, false, false, false, false, false,

 false, false, false, false, false, false, false, false,

 false, false, false, false, false, false, false, false,

 false, false, false, false, false, false, false, false,

 false, false, false, false, false, false, false, false,

 false, false, false, false, false, false, false, false,

 false, false, false, false, false, false, false, false,

 false, false, false, false, false, false, false, false,

 false, false, true, true, true, false, true, true,

 true, false, true, true, true, true, true, false,

 true, true, true, true, true, false, true, true,

 true, true, true, false, false, false, false, false,

 false, false, true, true, true, false, true, true,

 true, false, true, true, true, true, true, false,

 true, true, true, true, true, false, true, true,

 true, true, true, false, false, false, false, false

};

…but arrays and bitmaps gets unwieldy very fast if the characters you’re interested in cover more
than a fairly small subset of the Unicode characters.

 Testing for membership in a class

 A Practical Programmer’s Guide to the Encoding Standard 369

The inversion list
A nice, elegant solution for representing any arbitrary set of Unicode characters in the inversion list.
It’s a simple array, but instead of having an entry for each Unicode character, or simply listing all the
Unicode characters that belong to the category, the entries define ranges of Unicode characters.

It works like this: The first entry in the array is the first (that is, the lowest) code point value that’s in
the category. The second entry in the array is the first code point value that’s higher than the first
entry and not in the set. The third entry is the first code point value that’s higher than the second
entry and is in the set, and so on. Each even-numbered entry represents the lowest code point value in
a contiguous range of code point values that are in the set, and each odd-numbered entry represents
the lowest code point value in a contiguous range of code point values that are not in the set.

The set of basic Latin letters would thus be represented like this:

U+0041 (‘A’)

U+005B (‘[’)

U+0061 (‘a’)

U+007B (‘{’)

U+0041 (‘A’)

U+005B (‘[’)

U+0061 (‘a’)

U+007B (‘{’)

The first entry represents the first character in the set (the capital letter A). The set then consists of all
the characters with code point values between that one and the next entry (the opening square
bracket). The second entry (the opening square bracket) is the beginning of a range of characters that
isn’t in the set. That range is terminated by the third entry (the small letter a), which marks the
beginning of the next range, and that range is terminated by the fourth entry (the opening curly
brace), which marks the beginning of a range of code point values that isn’t included in the set. This
range extends to the top of the Unicode range, so the last character before this range (the small letter
z) is the character with the highest code point value that’s included in the set.

Conceptually, you get something like this:

... > ? @ A B C D ... X Y Z [\] ^ _ ‘ a b c d ... x y z { | } ~ ...

0x41 0x5B 0x61 0x7B

The brackets represent the beginnings of ranges (the entries in the table), and the shaded ranges are
the ones that are included in the set.

Testing a character for membership in the set is a simple matter of binary-searching the list for the
character (you code the binary search so that if the character you’re looking for isn’t specifically
mentioned, you end on the highest code point value less than the character). If you end up on an
even-numbered entry, the character’s in the set. If you end up on an odd-numbered entry, the
character’s not in the set.

The code to check membership would look something like this in Java:

public static boolean charInSet(char c, char[] set) {

 Techniques and Data Structures for Handling Unicode Text

370 Unicode Demystified

 int low = 0;

 int high = set.length;

 while (low < high) {

 int mid = (low + high) / 2;

 if (c >= set[mid])

 low = mid + 1;

 else if (c < set[mid])

 high = mid;

 }

 int pos = high - 1;

 return (pos & 1) == 0;

}

Armed with this new routine, we can re-cast our isASCIIConsonant() example using a much
shorter table:

public static boolean isASCIIConsonant(char c) {

 return charInSet(c, asciiConsonants);

}

private static char[] asciiConsonants = {

 ’B’, ’E’, ’F’, ’I’, ’J’, ’O’, ’P’, ’U’, ’V’, ’[’,

 ’b’, ’e’, ’f’, ’i’, ’j’, ’o’, ’p’, ’u’, ’v’, ’{’

};

An empty array represents the null set. An array with a single entry containing U+0000 represents the
set containing all the Unicode characters. A set containing a single character would (generally) be a
two-element array where element 0 is the code point for the character you’re interested in and
element 1 is that code point plus one.

Performing set operations on inversion lists

One neat thing about this representation is that set operations on inversion lists are pretty simple to
perform. A set inversion is especially simple—if the first entry in the array is U+0000, you remove it;
otherwise, you add it:

public static char[] invertSet(char[] set) {

 if (set.length == 0 || set[0] != ’\u0000’) {

 char[] result = new char[set.length + 1];

 result[0] = ’\u0000’;

 System.arraycopy(set, 0, result, 1, set.length);

 return result;

 }

 else {

 char[] result = new char[set.length - 1];

 System.arraycopy(set, 1, result, 0, result.length);

 return result;

 }

}

 Testing for membership in a class

 A Practical Programmer’s Guide to the Encoding Standard 371

Union and intersection are a little more interesting, but still pretty simple. To find the union of two
sets, you basically proceed the same way you would to merge two sorted lists of numbers (as you
would in a merge sort, for example). But instead of writing every entry you visit to the output, you
only write some of them.

The way you decide which entries to write is by keeping a running count. You start the count at 0,
increment it every time you visit an even-numbered entry (i.e., the beginning of a range), and
decrement it every time you visit an odd-numbered entry (i.e., the end of a range). If a particular
value causes you either to increment the running count away from 0 or decrement it to 0, you write it
to the output.

Say, for example, you have two sets, one containing the letters from A to G and M to S and the other
containing the letters from E to J and U to X. The running counts would be calculated as follows:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 1 1 1 2 2 2 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0

The union of the two sets should contain all the letters where the running count is greater than zero.
So when you see A, the running count gets incremented to 1 and you write the A to the result set.
When you see the E, the running count gets incremented to 2 and you don’t write anything. When
you see the H, the running count gets decremented to 1 and you still don’t write anything. When you
see the K, however, the count gets decremented to 0. This causes you to write the K to the result set.
And so on.

There’s an important wrinkle to watch out for here: what to do if the entries from the two lists are
equal. Say, for example, you have two sets, one containing the letters from A to E and another
containing the letters from F to K:

A B C D E F G H I J K L M

1 1 1 1 1 1 1 1 1 1 1 0 0

The letter F occurs in both sets: as the endpoint of the first set (the first character after the range it
contains) and as the starting point of the other set. When you’re merging the two arrays, you’ll thus
come across a situation where you’re looking at two Fs. If both of them are even-numbered entries
or both of them are odd-numbered entries, you can process them in any order: only one of them will
decrement the running count to 0 or increment it away from 0, and it doesn’t matter which one.

But if, as in our example, one of them is an odd-numbered entry and one is an even-numbered entry,
you have a problem. If you process the odd-numbered entry first, you might decrement the count to
zero and then immediately increment the count away from zero again. This would, in our example,
cause F to be written to the result set twice. This gives us a result that consists of two ranges: the
range from A to E and the range from F to K. This’ll still give us the right answer, but it wastes
space. What you really want is a single range, running from A to K. Processing the even-numbered
entry first will correctly coalesce the two ranges into a single range and prevent the Fs from being
written to the result set.

Anyway, here’s what the union function looks like in Java:

 Techniques and Data Structures for Handling Unicode Text

372 Unicode Demystified

public static char[] union(char[] a, char[] b) {

 char[] tempResult = new char[a.length + b.length];

 int pA = 0;

 int pB = 0;

 int pResult = 0;

 int count = 0;

 char c;

 int p;

 // go through the two sets as though you’re merging them

 while (pA < a.length && pB < b.length) {

 // if the lower entry is in the first array, or if the

 // entries are equal and this one’s the start of a range,

 // consider the entry from the first array next

 if (a[pA] < b[pB] || (a[pA] == b[pB] && (pA & 1) == 0)) {

 p = pA;

 c = a[pA++];

 }

 // otherwise, consider the entry from the second array next

 else {

 p = pB;

 c = b[pB++];

 }

 // if the entry we’re considering is the start of a range

 // (i.e., an even-numbered entry), increment the running

 // count. If the count was zero before incrementing,

 // also write the entry to the result set

 if ((p & 1) == 0) {

 if (count == 0)

 tempResult[pResult++] = c;

 ++count;

 }

 // if the entry we’re considering is the end of a range

 // (i.e., an odd-numbered entry), decrement the running

 // count. If this makes the count zero, also write the

 // entry to the result set

 else {

 --count;

 if (count == 0)

 tempResult[pResult++] = c;

 }

 }

 // figure out how big the result should really be

 int length = pResult;

 // if we stopped in the middle of a range, decrement the count

 // before figuring out whether there are extra entries to write

 if ((pA != a.length && (pA & 1) == 1)

 || (pB != b.length && (pB & 1) == 1))

 Testing for membership in a class

 A Practical Programmer’s Guide to the Encoding Standard 373

 --count;

 // if, after the adjustment, the count is 0, then all

 // entries from the set we haven’t exhausted also go into

 // the result

 if (count == 0)

 length += (a.length - pA) + (b.length - pB);

 // copy the results into the actual result array (this may

 // include the excess from the array we hadn’t finished

 // looking at)

 char[] result = new char[length];

 System.arraycopy(tempResult, 0, result, 0, pResult);

 if (count == 0) {

 // only one of these two calls will do anything

 System.arraycopy(a, pA, result, pResult, a.length - pA);

 System.arraycopy(b, pB, result, pResult, b.length - pB);

 }

 return result;

}

The example above contains an optimization: rather than continue through the loop until we’ve
exhausted both input sets, we drop out of the loop as soon as we’ve exhausted one of them. This
avoids a couple extra checks in that first if statement to account for the possibility of one of the
input lists being exhausted and speeds up that loop. If, after dropping out of the loop, our running
count is greater than 0, the result set ends with an even-numbered entry and everything higher than
that is included in the set; we can safely ignore the entries we haven’t looked at yet. If, on the other
hand, the running count is 0, we can just copy all of the entries we haven’t looked at yet directly into
the result.

The code to perform an intersection is exactly like the code for performing the union, except for
these differences:

x� Instead of writing a value to the output when the count is incremented away from 0 or
decremented to 0, you write a value to the output when the count is incremented to 2 or
decremented away from 2.

x� If the entries from the two input sets are equal, process the odd-numbered entry (i.e., decrement
the running count) first.

x� In the optimization at the end, instead of copying the extra entries from the non-exhausted list into
the result when the count is 0, you do so when the count is 2.

Other operations can be built up from the primitives we’ve looked at above. A set difference is
simply an inversion followed by an intersection. To add a single character, first turn it into an
inversion list (to make c into an inversion list, create a two-element array consisting of c followed by
c + 1) and then take the union of the new set and the set you’re adding to. To remove a single
character, turn that character into an inversion list and do a set difference. Optimized
implementations of these operations are certainly possible, but are left as an exercise for the reader.

Inversion lists have a number of desirable characteristics. Chief among them is their compactness.
The entire set of ideographic characters in Unicode (as defined in PropList.txt) can be represented as

{ 0x3006, 0x3008, 0x3021, 0x302A, 0x3038, 0x303B, 0x3400, 0x4DB6, 0x4E00,

 Techniques and Data Structures for Handling Unicode Text

374 Unicode Demystified

0x9FA6, 0xF900, 0xFA2E, 0x20000, 0x2A6D7, 0x2F800, 0x2FA1D }

That’s a pretty compact way to represent a list of 71,503 characters.

Similarly, the entire set of Latin letters (ignoring IPA characters and fullwidth variants) compresses
to

{ 0x0041, 0x005B, 0x0061, 0x007B, 0x00C0, 0x00D7, 0x00D8, 0x00F7, 0x00F8,

0x0220, 0x0222, 0x0234, 0x1E00, 0x1E9C, 0x1EA0, 0x1EFA }

Again, 662 characters compress to 16 entries.

Inversion lists are also relatively fast to search and easy to modify.

Still, they have a couple of drawbacks. One, they’re fairly quick to search unless you’re doing a lot of
searches quickly, as you might in a very tight loop while iterating over a long string. In this case, you
need a data structure that’s truly optimized for fast lookup, and we’ll look as just such a beast below.

Second, because they don’t operate on groups of characters, inversion lists can only operate on the
full Unicode range if they store their code point values as UTF-32 units. This means that a Unicode
3.1-compatible inversion list in Java has to be an array of int, not an array of char, as in the
example code we just looked at, and it also means that you may have to perform conversions from
UTF-16 to UTF-32 before you can do a lookup. (In Java, for example, strings are sequences of UTF-
16 code units; if you encounter a surrogate pair, you have to convert it to a single UTF-32 code unit
before you can look it up in an inversion list. This kind of thing can make inversion lists less ideal
and force the use of an alternative data structure that can handle variable-length sequences of code
units and thus work on UTF-16 in its native form.)

Finally, the benefit of the compression goes away if you have long stretches of code point values that
alternate between being in the set and not being in the set. For example, an inversion list representing
the set of capital letters in the Latin Extended A block would look like this:

{ 0x0100, 0x0101, 0x0102, 0x0103, 0x0104, 0x0105, ... }

If the inversion list is only being used in a transient manner (say, to derive character categories for a
parser), this may be an acceptable limitation. For longer-lived lists of characters, there are alternative
representations that provide better compression.

Mapping single characters to other values

Testing a character for membership in a class is really just a special case of mapping from a single
character to a single value—in essence, you’re mapping from a character (or, more accurately, a code
unit) to a Boolean value.

But most of the time, you want to map to something with more values than a Boolean. For example,
instead of checking to see whether a character is a member of some class, you may want to perform

 Mapping single characters to other values

 A Practical Programmer’s Guide to the Encoding Standard 375

one operation to see which of several mutually-exclusive classes a given character belongs to (as
opposed to checking each category one by one for the character, as you might have to do if the
categories overlapped).

There are plenty of other uses for this kind of thing: mapping characters from upper case to lower
case or to a case-independent representation109, looking up a character’s combining class, bi-di
category, numeric value, or (sometimes) converting from Unicode to some other encoding standard.

Inversion maps
One way of doing this is to use an inversion map. An inversion map is an extension of an inversion
list. With a regular inversion list, the value being mapped to is implicit: even-numbered entries
represent ranges of characters that map to “true,” and odd-numbered entries represent ranges of
characters that map to “false.”

You can extend this by storing a separate parallel array that contains the values you want to map to.
Each entry in the main list contains the first code unit in a range of code units that map to the same
output value. The range extends until the beginning of the next range (i.e., the code unit value in the
next entry), and the value that all the characters map to is stored in the corresponding entry in the
parallel array.

For example, the character categories for the characters in the ASCII range could be represented in
two parallel arrays that look like this:

U+0000 Cc (control character)

U+0020 Zs (space separator)

U+0021 (!) Po (other punctuation)

U+0024 ($) Sc (currency symbol)

U+0025 (%) Po (other punctuation)

U+0028 (() Ps (starting punctuation)

U+0029 ()) Pe (ending punctuation)

U+002A (*) Po (other punctuation)

U+002B (+) Sm (math symbol)

U+002C (,) Po (other punctuation)

U+002D (-) Pd (dash punctuation)

U+002E (.) Po (other punctuation)

U+0030 (0) Nd (decimal-digit number)

U+003A (:) Po (other punctuation)

U+003C (<) Sm (math symbol)

U+003F (?) Po (other punctuation)

U+0041 (A) Lu (uppercase letter)

U+005B ([) Ps (starting punctuation)

U+005C (\) Po (other punctuation)

U+005D (]) Pe (ending punctuation)

U+005E (^) Sk (modifier symbol)

U+005F (_) Pc (connector punctuation)

U+0060 (‘) Sk (modifier symbol)

U+0061 (a) Ll (lowercase letter)

U+007B ({) Ps (starting punctuation)

U+007C (|) Sm (math symbol)

109 Actually, this isn’t always a one-to-one operation, but we’ll ignore that for the time being.

 Techniques and Data Structures for Handling Unicode Text

376 Unicode Demystified

U+007D (}) Pe (ending punctuation)

U+007E (~) Sm (math symbol)

U+007F Cc (control character)

It’s rather ugly because the punctuation marks and symbols in the ASCII range are scattered across a
bunch of Unicode categories, but you still manage to compress a single 128-element array into a pair
of 29-element arrays.

The compact array
The inversion map can work fairly well for a lot of tasks, but if you have to do a lot of lookups in the
table, this isn’t the best way to do it. If the compression leads to a list with only a few entries in it,
lookup is pretty fast, and the speed of lookup degrades more and more gradually as the list gets
longer. Still, there’s no escaping the fact that it’s faster to go straight to the entry you want than to
binary-search the array for it (even if that, in turn, is a lot faster than linear-searching it), and that
constant-time lookup performance is (generally speaking) better than O(log n) performance. If you’re
doing a lot of lookups in a very tight loop, as you will when doing almost anything to a large body of
text (e.g., Unicode normalization, conversion between Unicode and some other encoding, glyph
selection for rendering, bidirectional reordering, searching and sorting, etc.), this difference can
become quite large (just how large, of course, depends on what you’re doing—both the exact number
of lookups the algorithm requires and the exact nature of the table of data you’re doing the lookup in
make a big difference).

Of course, we come back to the problem that a regular array—the reasonable way to do most of these
operations on single-byte non-Unicode text—would be prohibitively huge when you’re operating on
Unicode text. With Unicode 3.0 and earlier, you’d need an array with 65,536 entries (assuming you
don’t have to worry about the private-use code points in Planes 15 and 16). With Unicode 3.1, you’d
need an array with a whopping 1,114,112 entries. Yeah, hardware is getting cheaper and cheaper and
more and more complex, and so memory and storage capacities are getting bigger, but this is
ridiculous, especially if you need more than one lookup table.

Fortunately, there’s a simple and elegant technique for compressing a 65,536- (or 1,114,112-)
element array that still gives you fast constant-time lookup performance. Lookup takes a little more
than twice the time of a straight array lookup, but this is still blazingly fast, and it’s still a constant
time for every item in the array. This basic technique (and various others based on it that we’ll look
at) forms the cornerstone of most of the common algorithms for doing various things on Unicode
text, and it’s well worth understanding. This technique goes by a number of different names, but for
our purposes here, we’ll refer to it by the rather unimaginative name of “compact array.”

To understand how the compact array works, let’s consider an example array:

1 2 3 3 3 3 3 3 3 3 3 3 3 3 1 2 1 2 4 5 2 4 5 6

This array has 24 elements. Obviously, there’s no need to compress a 24-element array, but it makes
is easy to see what’s going on. First, you (conceptually) break the array into a number of equally-
sized blocks. For the purposes of this example, we’ll use four-element blocks, although again real life
this would do you no good at all. Now you have something that looks like this:

 Mapping single characters to other values

 A Practical Programmer’s Guide to the Encoding Standard 377

1 2 3 3 3 3 3 3 3 3 3 3 3 3 1 2 1 2 4 5 2 4 5 6

Here’s the next part: If a block ends with the same set of elements that the next block begins with (or
if the blocks are simply the same), those elements can share the same storage. For example, the first
block ends with “3 3” and the second block begins with “3 3,” so you can stack them on top of each
other, like this:

1 2 3 33 3 3 3 3 3 3 3 3 3 1 2 1 2 4 5 2 4 5 6

The second block and the third block are identical, so you can stack them completely on top of each
other…

1 2 3 33 3 3 33 3 3 3
3 3 1 2 1 2 4 5 2 4 5 6

If you continue in this way, stacking adjacent blocks that have elements in common, you end up with
something that looks like this:

1 2 3 33 3 3 33 3 3 33 3 1 21 2 4 52 4 5 6

So we’ve compressed our original 24-element array down to 11 elements.

Obviously, the only way you can access the elements in the array is through the use of an external
index that tells you where in the compressed array the beginning of each block is, so the
uncompressed data structure really looks like this…

1 2 3 3 3 3 3 3 3 3 3 3 3 3 1 2 1 2 4 5 2 4 5 6

…and the compressed data structure really looks like this:

1 2 3 3 3 3 1 2 4 5 6

So in our example array, you save 13 elements in the data array, but you need a new six-element
index array, for a net savings of seven array elements. With real Unicode-based tables, the
compression is generally much greater.

 Techniques and Data Structures for Handling Unicode Text

378 Unicode Demystified

Looking up a character in a compact array is relatively simple. The most-significant bits of the code
point give you the offset into the index array, and the least-significant bits of the code point give you
the offset into the data block that the index-array entry points you to.

These bits give you the offset
into the index…

…and these bits give you the
offset into the data block.

The code to perform a lookup into a compact array is quite simple:

result = data[index[c >> INDEX_SHIFT] + (c & BLOCK_MASK)];

In this code snippet, c is the character we’re looking up a value for, and index and data are the
index and data arrays. INDEX_SHIFT is the number of bits in the character that constitute the offset
into the data block (and, hence, the number of bits you shift the code point value to the right to get
the offset into the index block). BLOCK_MASK is a mask used to isolate the offset into the data block,
and is always equal to (1 << INDEX_SHIFT) - 1. The whole lookup consists of two array look-
ups, a shift, an AND operation, and an addition. In fact, if you’re willing to have the index array have
four-byte elements (it’s usually only necessary for the index elements to be two bytes), you can store
actual pointers in the index array (at least in C or C++) and eliminate the addition. This lookup
compiles extremely efficiently on almost all programming languages and machine architectures.

(Note that the >> in the above example is a logical (i.e., zero-filling) right shift. In C, this means that
c has to be of an unsigned integral type, or of a type that’s at least a bit wider than necessary to hold
the code point value, so the sign bit is always zero. In Java, this shouldn’t be a problem, since char
is an unsigned type, and int is bigger than necessary to hold a UTF-32 value (which is actually only
21 bits wide—even a full UCS-4 value would only be 31 bits wide). If for some weird reason, you
had the code point value stored in a short, however, you’d have to remember to use the >>>
operator to do the shift.)

There are several important things to note about using compact arrays. First, it works best either on
sparely-populated arrays (i.e., arrays where the vast majority of elements are 0), arrays with long
stretches of identical values or long stretches of identical patterns of repeating values, or other arrays
with high levels of redundancy. Fortunately, virtually all Unicode-related lookup tables either fit
these criteria or can be represented in a way that does (for example, mappings between code-point
values, such as conversions from Unicode to other encodings, or case-mapping tables, don’t tend to
lend themselves to compression unless the tables are sparsely populated, and then the populated
blocks can’t be coalesced. Turning these into tables of numeric offsets that get added to the input
value to produce the output value can often turn long stretches of different values into long stretches
of the same value, allowing compression).

Second, there’s nothing about the design of this data structure that requires that the data blocks
appear in the same order in the compressed data array as they did in the original uncompressed array,
or that blocks that get coalesced together be adjacent in the original array. Most real-life tables get
most of their compression from coalescing identical blocks in the original uncompressed array. The
unpopulated space in a sparse array, for example, turns into a single unpopulated block in the com-
pressed representation, even though not all of the unpopulated blocks in the original array were next
to each other. (Often, part of the unpopulated block can also be doubled up with the unpopulated
space in one or two of the populated blocks.)

 Mapping single characters to other values

 A Practical Programmer’s Guide to the Encoding Standard 379

Third, it’s impossible to make generalizations as to what the optimum value for INDEX_SHIFT
should be. As INDEX_SHIFT gets larger, the individual blocks in the data array get bigger, but the
index gets smaller; as it gets smaller, the individual blocks get smaller (possibly permitting more of
them to be doubled up in the compressed representation), but the index gets longer, offsetting those
gains. If INDEX_SHIFT goes either to zero or to the total number of bits in the character code, you’re
back to doing a simple array lookup, since either the index size or the block size goes to zero.
Generally, for a 16-bit code point value, values of INDEX_SHIFT between 6 and 10 work the best.

Fourth, there are many methods of compressing the data in a compact array, none of which are
particularly fast. They don’t work well for tables of data that change a lot at run time. They work best
when the tables can be built once at run time and then used repeatedly, or, better yet, can be
calculated as part of the development of the software the uses them and simply used at run time (i.e.,
tables that don’t depend on data that’s only available at run time, such as tables of data that’s defined
in the Unicode standard).

Generally the fastest method of compressing a compact array is to just pick an INDEX_SHIFT and
worry about coalescing only identical blocks. More compression can be obtained by coalescing half
blocks or quarter blocks. Or by examining adjacent blocks for identical heads and tails. The only way
to get the absolutely optimal amount of compression for an arbitrary collection of data is to try every
possible ordering of the blocks and examine the adjacent pairs for identical heads and tails (this
would actually also involve trying all of the possible INDEX_SHIFT values as well). Most of the
time, this isn’t worth the trouble and just coalescing identical blocks or half-blocks (and maybe
looking for identical heads and tails in blocks adjacent in the original ordering) gets good results.
Fortunately, the algorithm used to compress the data doesn’t affect the algorithm used to look up
values in the compressed array, nor does it affect the performance.110

Two-level compact arrays
A simple compact array as described above works well with UTF-16 values, but this leaves out all of
the new characters in Unicode 3.1 (and all the private-use characters in Planes 15 and 16). If your
application can ignore these characters, you can use a simple compact array, but if you need to
support the characters in the supplementary planes, a simple compact array doesn’t work so well.
When you’re trying to partition a 21-bit value into two groups, you tend to end up either with very
long data blocks, making compression more difficult, or very long indexes, making compression less
relevant.

One approach to dealing with this problem is to use a two-level compact array. Instead of having a
single index array, you have two. In other words, you apply the same compression techniques to the
index that you apply to the data array. The first index points you to a block of values in the second
index, which in turn points you to a block of values in the data array.

110 Actually, in some processor architectures and programming languages, lookup can be made a little

faster if you use an INDEX_SHIFT of 8, but the improvement is minuscule.

 Techniques and Data Structures for Handling Unicode Text

380 Unicode Demystified

The code point value gets broken into three groups instead of two: The most-significant bits give you
the offset into the first index, the next set of bits gives you the offset into the appropriate block of the
second index, and the least-significant bits give you the offset of the result in the appropriate block of
the data array.

Offset into
index1

Offset into
index2 block

Offset into data
block

Performing the lookup into a two-level compact array is little more complicated and a little slower
then doing it into a regular compact array:

result = data[index2[index1[c >> INDEX1_SHIFT] + (c & INDEX2_MASK) >>

INDEX2_SHIFT] + (c & DATA_MASK)];

Instead of two array lookups, a shift, a mask, and an addition, this takes three array lookups, two
shifts, two masks, and two additions. Nine operations instead of five, but still quite fast and still
constant time.

Mapping single characters to multiple values

Compact arrays are still basically just that—arrays to which compression and indexing has been
applied. Like regular arrays, this means that they’re best suited to store a bunch of values that are all
the same size. They also work best when the values being mapped to are relatively small; a big array
of 32-byte values, for example, gets kind of unwieldy.

But what if you’re looking up a value that is large, or could be of variable length? There are a couple
of techniques that can be used.

If the total universe of values that can be mapped to is relatively small, you can save space without
imposing too huge a performance penalty by offloading the target values into a separate array (or
other data structure). The target values in the compact array would just be indexes into the auxiliary
array containing the values.

For large complex data structures, you could even go so far as to have the entries in the compact
array’s data array be pointers to the target data structures. The big negative here is that means the
data array would have to be of 32-bit values, which could make it pretty big if you couldn’t achieve a

 Mapping single characters to multiple values

 A Practical Programmer’s Guide to the Encoding Standard 381

lot of compression. A frequent alternative is to use an auxiliary array to hold the pointers—the data
elements in the compact array then need only be big enough to hold the indexes into the auxiliary
array: 16 or even eight bits.

If you’re mapping to string values, especially if most of the resultant strings are short, it’s often
useful to store all the target strings in one big array. This cuts down on memory-manager overhead
(on most systems, every independent block of memory has some additional amount of memory,
usually eight or more bytes, allocated to it as a block header, where housekeeping info for the
memory manager is stored). The compact array can then just contain offsets into the big string block,
or if you’re willing to have the compact array map to 32-bit values, actual pointers to the individual
strings in the memory block. This technique works best in C and C++, where pointers can point into
the interiors of memory blocks, where character strings are null-terminated, and where a string is just
a pointer to an arbitrary run of character data in the first place.

Exception tables

A common situation might be one where you’re generally mapping to a fixed-length value, but there
are occasional target values that are longer. The most common version of this is where you’re
mapping to strings and the vast majority of the resulting strings are single characters (you can run
into this, for example, doing language-sensitive case mapping, Unicode normalization, language-
sensitive comparison, or mapping Unicode to a variable-length target encoding). In these cases,
there’s an optimization that’s worth considering.

The basic idea is that you make the data array elements the size of the most common result values.
Then you designate some range of the result values as sentinel values. The non-sentinel values are
used as-is as the results; the sentinel values are parsed in some way to derive the result values.
Usually this means performing some mathematical transformation on them to get an offset into an
auxiliary array containing the large or variable-length results.

Say, for example, you’re mapping single Unicode characters to either characters or strings, with
characters predominating. You’d set up the compact array to store characters, but set aside a range of
character values as sentinel values. An obvious range to use for this purpose is the range from
U+D800 to U+F800, the surrogate space and the private-use area. If you look up a character in the
compact array and it’s outside this range, then it’s your result and you’re done. If it’s inside this
range, you subtract 0xD800 from it to get the offset into an auxiliary data structure holding the
strings, such as the one we just looked at. If any of the single characters in the private-use area is a
result value, you just treat it as a one-character string: it appears in the auxiliary data structure with
all the longer strings, and the entry in the compact array is the properly-munged reference to its
position in the auxiliary structure.

Even if you’re only mapping single characters to single characters, this technique is useful. A
generalized mapping to Unicode characters would have to use a data array with 32-bit elements,
since some of the result characters might be supplementary-plane characters. If, as is usually the case,
BMP characters dominate your result set, you can use a data array with 16-bit elements and store the
supplementary characters in a separate array. You can then store the offsets to the auxiliary array in
the compact array using the munging technique described above.

Another approach sets aside only one value in the compact array’s result set as a sentinel value. If
you get something other than this value from the compact-array lookup, it’s the result and you’re

 Techniques and Data Structures for Handling Unicode Text

382 Unicode Demystified

done. If you get the sentinel value, you repeat the whole lookup in a slower data structure that holds
only the exceptional values.

Consider, for example, the Unicode bi-di categories. There are 19 bi-di categories, but there are six
categories that consist of only one character. If we collapse these down to a single “category,” we get
14 bi-di categories, and we can represent the bi-di category as a four-bit value. This could let us
squish the bi-di categories for two characters into a single byte, potentially halving the size of a table
of bi-di categories. Bi-di reordering code would normally have a section of code that looks up the
category for each character and takes some action depending on the result. If this code looked up the
category and got “single character category,” it could just look at the input character itself to decide
what to do.

In other cases, when you get the “exceptional character” value, you’d refer to an “exception table,” a
slower data structure, such as a hash table or a sorted array of character-result pairs, that contained
the results for the exceptional characters. You pay a performance penalty, but you’d only have to pay
it for a small and relatively infrequent subset of the characters.

We’ll see numerous examples of these techniques in the chapters that follow.

Mapping multiple characters to other values

Then there’s the situation where you want to map a key that may consist of more than one character
to some other value. If, for example, Unicode decomposition is a situation where you’re mapping
single characters to variable-length strings, Unicode composition is a situation where you’re mapping
variable-length strings to single characters. Even in situations where you’re consistently mapping
single characters into single characters (or into some other fixed-length value), a UTF-16-based
system (or a system that wants to save table space) might choose to treat supplementary-plane
characters as pairs of surrogate code units, effectively treating single characters as “strings.”

As with mapping single characters (or other values) into variable-length strings, mapping variable-
length strings into single characters (or other values) is something we’ll run into over and over again
in the coming chapters. It’s important, for example, for canonical composition, language-sensitive
comparison, character encoding conversion, and transliteration (or input-method handling).

Exception tables and key closure
There are a couple of broad methods of approaching this problem. If the vast majority of your keys
are single characters and you have relatively few longer keys, you can use the exception-table
approach we looked at in the previous section. You look up a character in a compact array and either
get back a real result or a sentinel value. In this case, the sentinel value tells you that the character
you looked up is the first character in one or more multiple-character keys. You’ll have to look at
more characters to find out the answer, and you’ll be doing the lookup in a separate exception table
designed for multiple-character keys.

Again, there are many different approaches you can take for the design of the exception table, the
simplest again being a hash table or a sorted list of key-value pairs.

Let’s say for a moment that you use a sorted list of key-value pairs. If you can set aside more than
one sentinel value in your result set, you can use the sentinel value to refer you directly to the zone in

 Single versus multiple tables

 A Practical Programmer’s Guide to the Encoding Standard 383

the exception table that contains the keys that start with the character you already looked up. Each
successive character then moves you forward in the exception table until you get to a sequence that
isn’t in the table at all (i.e., not only does it not exist as a key, it also doesn’t exist as the beginning of
a key). At this point, the last entry you were sitting on gives you your answer, and you start over with
the last character you were examining, looking it up in the main table again.

This would probably be clearer with an example. Let’s say you’re implementing code to allow
someone to input Russian text with a regular Latin keyboard. As you type, characters will be
converted from Latin letters to their Cyrillic equivalents. There are a number of Cyrillic letters that
are normally transliterated into Latin using more than one letter. For example, consider this group of
letters111:

 => s
 => sh
 => shch
 => c
 => ch

,I�,�W\SH�DQ�³V�´�ZH�GRQ¶W�NQRZ�ZKHWKHU�,�PHDQ�IRU� �WR�DSSHDU�RQ�WKH�VFUHHQ��RU�LI�,¶P�JRLQJ�WR�W\SH�
³K´�QH[W�WR�JHW� ��)RU�WKDW�PDWWHU��LI�,�W\SH�³VK�´�,�PLJKW�PHDQ�IRU� �WR�DSSHDU�RQ�WKH�VFUHHQ��RU�,�
might follow LW�ZLWK�³FK´�WR�JHW� �

So if “sh,” “ch,” and “shch” were the only three multiple-keystroke sequences you had to worry
about, you’d wind up with an exception table that looked like this:

c =>

ch =>

s =>

sh =>

shch =>

The main compact array would contain the mappings for all of the other Latin letters, but would
contain pointers into this table for “s” and “c.” This is why you need entries for “s” and “c”
themselves: their mappings can’t appear in the main table; the main table contains the signal that “s”
and “c” are exceptional characters.

So I type “s,” and the main mapping table points you to line 3 of the exception table:

111 This example is ripped off directly from Mark Davis, “Bits of Unicode,” op. cit.

 Techniques and Data Structures for Handling Unicode Text

384 Unicode Demystified

c =>

ch =>

s =>

sh =>

shch =>

You buffer the “s” in preparation for getting more characters. I type “h,” and you add it to the buffer.
The buffer now contains “sh,” and you scan forward in the exception table looking for the first key
that begins with “sh.” It’s the next entry, so now you’re pointing there:

c =>

ch =>

s =>

sh =>

shch =>

Now I type “a.” You add “a” to the buffer (which now contains “sha”) and scan forward for the first
entry that starts with “sha.” The next entry is “shch,” which comes after “sha,” so “sha” isn’t in the
table. You output the result for the last key you were on (“sh”), which gives you ��DQG�WKHQ�\RX�JR�
back and look up “a” in the main lookup table. “a” isn’t an exceptional character, so you get an
immediate result —� �—�DQG�RXWSXW�WKDW��<RX¶YH�QRZ�FRUUHFWO\�PDSSHG�³VKD´�WR�³ ´�

But this algorithm breaks down if I type “shca.” After processing “shc,” you have “shc” in your
buffer and you’re pointing at the entry for “shch,” the first entry that begins with “shc”:

c =>

ch =>

s =>

sh =>

shch =>

If the next letter I type is “a,” you’re already past where it would go in the table, so it’s not in the
table. Your code would do one of two things. If it’s designed to always scan forward, it’ll actually
behave as though I typed “shcha,” outputting the result for the entry we’re sitting on (“´��DQG�WKHQ�
ORRNLQJ�XS�³D´�DJDLQ�WR�JHW�³ ´��RU�LW¶G�NQRZ�ZH�ZHUH�DOUHDG\�SDVW�WKH�HQWU\�ZH�ZHUH�ORRNLQJ�IRU�

 Single versus multiple tables

 A Practical Programmer’s Guide to the Encoding Standard 385

and use the last�HQWU\�WKDW�PDWFKHG��JLYLQJ�XV�³ �´�,I�LW�GRHV�WKH�VHFRQG��LW�QRZ�KDV�WR�EH�VPDUW�
enough to know that there are two input characters that haven’t been accounted for, and to go back
and look up both of them in the main table.

So the code has to be a lot more complicated to account for the cases where you actually have to go
back and re-process more than one character. Either that, or you have to change the table.

Changing the table is the cleaner solution. The principle for changing the table is called key closure.
The principle of key closure dictates that for every key that’s represented in the exception table,
every prefix of that key must also appear in the table. For our example, this means that if “shch” is in
the table, “s,” “sh,” and “shc” must all also occur in the table. So we solve our bug by including
“shc” as a key in the table:

c =>

ch =>

s =>

sh =>

shc =>

shch =>

If I type “shca,” you’ll end up on the entry for “shc” when you realize “shca” isn’t in the table, output
��DQG�JR�EDFN�DQG�ORRN�XS�MXVW�³D´��DGGLQJ� �WR�WKH�RXWSXW��<RX�RXWSXW�WKH�FRUUHFW�DQVZHU�IRU�WKDW�

VHULHV�RI�FKDUDFWHUV��ZKLFK�LV� �

Tries as exception tables
Modeling the exception table as a simple array of pairs of strings is nice and simple, but it’s not
terribly efficient. As you walk through the table, you have to keep track of all the characters you’ve
seen before and do a bunch of string comparisons to get to the right entry. If the keys and the table
are both short, this probably won’t matter much, but for more complicated tables, all these lookups
get to be a pain. You can actually change things so that each key is only one character long. The way
you do this is by recursively applying the exception-table rule. The entry in the main table has a
sentinel character telling you this character may be the first character of a multi-character key and
referring you to an exception table. You look up the next character from the input in the exception
table. This will either produce a real result, or it’ll produce a sentinel value telling you to go to
another exception table and look up the next character from the input in there. The process continues
until you land on a real result. For our Russian example, this gives us a data structure that looks like
this:

 Techniques and Data Structures for Handling Unicode Text

386 Unicode Demystified

Main table:
Exception tables:

a =>

b =>

c =>

…

s =>

…

h =>

� =>

h =>

� =>

c =>

� =>

h =>

� =>

So each entry either contains a result or a reference to an exception table. If you find a reference to a
new exception table, you get the next character and use it to find the entry in the next table. If you
don’t find the character, you end up on the � entry. This tells you the previous character was the last
one in the key and that the character you’re on is the beginning of a new key. The result is the result
for the key, and you go back and start the lookup over in the main table with the character you’re on.

So let’s say the input is “shca.” You’d read the “s” and look up “s” in the main table.

a =>

b =>

c =>

…

s =>

…

h =>

� =>

This would refer you to the “s” table. You’d read the “h” and look it up in the “s” table.

h =>

� =>

c =>

� =>

This would take you to the “sh” table. You’d read the “c” from the input and look it up in the “sh”
table, taking you to the “shc” table.

 Single versus multiple tables

 A Practical Programmer’s Guide to the Encoding Standard 387

c =>

� =>

h =>

� =>

You read “a” from the input. The “shc” table doesn’t have an entry for “a,” so you use the “�” entry.

h =>

� =>

7KLV�WHOOV�\RX�WKDW�³ ´�LV�WKH�RXWSXW�WR�XVH�IRU�³VKF�´�DQG�WKDW�\RX�KDYH�WR�JR�EDFN�WR�WKH�PDLQ�WDEOH�
and look up “a” again there.

a =>

b =>

c =>

…

s =>

…

<RX�ORRN�XS�³D´�LQ�WKH�PDLQ�WDEOH�DQG�JHW�³ ´�DQG�\RX¶UH�GRQH�

You only have to look up a character twice if you hit a � entry. Say, for example, the input was
“cha.” You’d read “c” from the input, look it up in the main table, and find the reference to the “c”
WDEOH��<RX�UHDG�³K´�IURP�WKH�LQSXW��ORRN�LW�XS�LQ�WKH�³F´�WDEOH��DQG�ILQG�³ �´

a =>

b =>

c =>

…

s =>

…

h =>

� =>

 Techniques and Data Structures for Handling Unicode Text

388 Unicode Demystified

This is your output, and you’ve used all the characters you’ve seen so far. You read “a” from the
LQSXW�DQG�ORRN�LW�XS�LQ�WKH�PDLQ�WDEOH��ZKHUH�\RX�ILQG�³ �´�7KLV�LV�\RXU�RXWSXW��<RX¶YH�QRZ�UHDG�DOO�
WKH�FKDUDFWHUV�IURP�WKH�LQSXW�DQG�SURGXFHG�³ ´�DV�\RXU�RXWSXW��ZKLFK�LV�FRUUect, and you didn’t have
to look up anything twice.

You can eliminate the � entries, and the double lookups they cause, by simply having every
exception table have an entry for each possible input character (this also lets you use a simple array
of some kind, rather than an associative data structure—you basically use the same data structure
you’re using for the main table for the exception tables—but this will usually get pretty big).

You also don’t need them if you don’t need key closure. That is, if you never have a key that’s a
substring of another key, you don’t have to do the repeated lookup. For example, if your lookup is
UTF-16 based and you see a high surrogate, it’s meaningless on its own. You have to look at the next
code unit to know what to do. As long as you know you won’t have malformed UTF-16 (i.e.,
unmatched surrogates), you’ll never have to do a repeated lookup and you don’t need the � entry.

If you’re already experienced in text processing, or your remember back to your data structures class,
you’ve already recognized that the data structure we’re talking about here is a trie. A trie is a tree
structure where each node in the tree points directly or indirectly to the results for all keys that share
a common prefix. In a character-based trie, each level of the tree corresponds to a character in the
key, and the number of nodes you traverse to look up the result for a key is equal to the number of
characters in the key (actually, as we saw in the previous example, if you can have keys that are
substrings of other keys, the number of nodes you visit is actually the number of characters in the key
plus one). The word “trie” comes from “information retrieval,” but the word “trie” is usually
pronounced “try” to distinguish it from “tree.”

There are many different ways of representing a trie in memory. In our example, each “exception
table” is a node in the trie, so the nodes are represented by key/value arrays that you have to walk
linearly. These nodes could be split into linked lists; this makes the overall structure a binary tree.
Binary trees work especially well when the data in the trie has to be modified a lot—the array-based
representation shown in the examples works more or less the same way as a binary-tree
representation but is more compact and useful when the data in the trie won’t change. An alternative
that gives you faster lookup time and is still good when the trie is being modified is to split each
individual node into a binary tree instead of a simple linked list. This turns the overall structure into
a ternary tree.

You could also expand each node out into a regular flat array with an entry for each possible
character. This speeds up lookup by quite a bit (at least when each node has a lot of entries in it), but
(generally) at a fairly heavy price in compactness. For a Unicode-based data structure, where each
character could possibly be any of more than a million, this obviously isn’t practical unless you come
up with some kind of compaction scheme for the nodes…

Tries as the main lookup table
…which gets us back to the compact array. You might have noticed that the compact array is
essentially a trie itself. You do a lookup based on part of the key, and that takes you to a spot where
you do another lookup based on another part of the key, and so on until you’ve either used up the
whole key or gotten to the point where the rest of the key doesn’t matter (i.e., where the result will be
the same no matter what the rest of the key is). The two things that make the compact array different
from a more general trie are:

 Single versus multiple tables

 A Practical Programmer’s Guide to the Encoding Standard 389

x� Every branch has the same number of levels, so you always know that the result of the first (or,
for a two-level compact array, the first and second) lookup is a pointer to the next node of the trie,
and that the last lookup returns a real result value.

x� Because of this, the chunks of the key that are considered at each node lookup don’t have to be
the same size. Asymmetrical partitions of the character for lookup in a compact array are actually
more the norm than the exception.

This suggests a number of variations on the basic trie idea that might be useful in different situations:

Pruning branches. In a normal compact array, you always do a lookup in the index array followed
by a looking into the data array. If the value of every entry in a particular block is the same, you can
save space by storing that value directly into the index array and not allocating space for it in the data
array. There are a number of things to keep in mind about this technique:

x� This technique works best for tables that have a lot of blocks that only consist of one value, but
only when those blocks don’t all contain the same value. If every uniform block contains the same
value as the other uniform blocks (i.e., you have a sparsely-populated array where each block is
either all zeros or something interesting), this technique only saves you (at most) one block’s
worth of entries in the data array.

x� This technique also works best only when the long stretches of the same value tend to begin and
end on block boundaries. If, say, a range of the same value begins halfway into one block, spans
three whole blocks, and ends three quarters of the way into another block, pruning the branches
only saves you about a quarter of a block’s worth of space. (You still need the ends of the long
stretch to appear in the data array. You can coalesce them so that you only need as many as are in
the longest segment [in our example, three quarters of a block], but since you can do this anyway
if the homogeneous blocks are included, you only save the difference between the longest stretch
without homogeneous blocks [three quarters of a block] and the longest stretch with them [a
whole block].) The savings could be even less if there are several stretches of the same value that
don’t begin and end on or near block boundaries. You can manage this by fiddling with the block
size, but that can introduce other problems.

x� If the result values and the pointers to blocks of the data array aren’t naturally disjoint, you may
have to munge them in some way to make them disjoint, or make the array elements bigger. This
could trump any savings in the number of elements.

x� The lookup code has to check after each lookup to see whether it’s done. This can impose a
serious performance penalty on you unless most of your lookups are along the pruned branches.

x� Basically, pruning of branches isn’t worth the trouble for a simple one-level compact array, unless
space is at a premium and you know the data you’re trying to compress gets a lot smaller if you
prune. It has more utility the more levels the trie has.

Using the same array for the data and index values. This doesn’t buy you anything in a single-
level compact array. In fact, if the elements in the data array are smaller than the ones in the index, it
hurts. As with pruning of branches, it might help with multi-level lookups. In a sparsely-populated
two-level compact array, for example, you could double up the zeros in the indexes with the zeros in
the data array and save some space. This might be worth it, but generally the win here comes with
tables where you traverse a varying number of nodes depending on the key.

Basing lookup on UTF-8 or UTF-16. If you base your lookup on UTF-16 code unit values, you can
fix it so that you can do two array lookups for most characters and only have to do a third lookup
when you encounter a supplementary-plane character (of course, unless you do branch pruning,
you’ll actually need four lookups when you hit a supplementary-plane character, but since they’re
pretty rare in most text, this might be a good optimization).

 Techniques and Data Structures for Handling Unicode Text

390 Unicode Demystified

If you do the lookup based on the UTF-8 representation, you can get yourself down to a single
lookup when you’re dealing with the ASCII characters and get some very nice compaction with little
additional cost with the other characters (assuming, of course, that you can either guarantee well-
formed UTF-8 or are prepared to get weird results with malformed UTF-8). Because there are a lot
of combinations of bytes that don’t happen in UTF-8 text, most of the nodes in the tree won’t actually
need 256 entries in the array, so you get a fair amount of natural compaction (and, potentially, tree
pruning). The downside here is that you either have to pay attention to which byte of the character
you’re on or the result values and pointer values have to be disjoint and you have to pay the cost of
checking whether you’re done. If the text you’re interested in isn’t already in UTF-8, you’d also have
to waste time converting it (which probably isn’t worth the trouble). If the text is already in UTF-8,
this technique can be pretty helpful with a lot of sets of data, especially if the majority of the text
being processed is in the ASCII range or you can do tree pruning on the branches dealing with Han
and Hangul (i.e., get the answer after looking at only the first byte, letting you skip over the other two
bytes).

Combining the main lookup table with the multi-character exception table. If you’re dealing
with variable-length keys, it might make sense to use a unified trie structure for the entire lookup,
rather than using a compact array for the first character in the key and some other data structure for
the subsequent characters. This can simplify your code and potentially speed it up. But if all of the
nodes after the root node are very sparse (i.e., you don’t have many multi-character keys, or you
don’t have many that start with the same character), this can waste a lot of space. If you can safely
make assumptions about the input text, this might save space and make this feasible. And if most of
the nodes are not sparsely populated, this can be a big win.

Single versus multiple tables

One more point worth addressing is whether, if you need to be able to perform several different
mappings on Unicode characters, you want to use a completely separate table for each mapping or
use one big table for all of them.

It’s obviously tough to generalize here, but there are certainly times when a big unified table will
save you space and time over a bunch of smaller, more specific tables. The most common case is
dealing with the Unicode character properties: Should there be a separate table for each property,
or one big one for all of them? The answer is that you can cram most of the Unicode character
properties into a single table. The majority of the Unicode properties for a single character can be
jammed into a single 32-bit word (the main exception is the canonical and compatibility
decompositions, which need their own tables).

The Unicode general category can fit into five bits. As we saw earlier, the bi-di category can fit
into four bits, with provision for a few exceptional values. Whether the character is mirrored or not
can fit into a single bit. The rest of the bits can be overloaded depending on the character’s general
category: For non-spacing and enclosing marks, the remaining bits can hold the character’s
combining class (the combining class is 0 for characters in the other categories). For characters in
the “number” categories, the remaining bits can be used for the character’s numeric value (some of
the numeric values are fractions, and some are especially large, so a bit or two of the numeric-
value field have to be set aside as flag bits to indicate which format is being used to encode the
actual value into the other bits). And for characters in the cased-letter categories, the other bits can
hold the value you add or subtract from the character’s code-point value to get its equivalent in the
opposite case (or in titlecase). Again, a couple bits may need to be used as flag bits to chose
between a number of alternative representations of the case mapping.

 Single versus multiple tables

 A Practical Programmer’s Guide to the Encoding Standard 391

There are, of course, many other ways of storing the data tables that are used to do various things
to Unicode characters, but the ones we’ve looked at in this chapter are some of the most important
and useful. In the coming chapters, we’ll see how these various techniques are used to perform
actual operations on Unicode characters.

 393

CHAPTER 14 Conversions and
Transformations

Now that we’ve taken a good look at some of the most common and useful data structures and
techniques for doing things with Unicode text, we’ll put them to work to do some useful things with
Unicode text.

In this chapter, we’ll look at performing various types of conversions and transformations on pieces
of Unicode text. We’ll look not only at converting among the various Unicode representations and
between Unicode and other encoding standards, but we’ll also look at two other important types of
transformations on Unicode text: converting cased text between upper case and lower case, and the
more general process known as transliteration, which is the process of converting text from one script
to another and is often used as the basis for accepting Unicode text as input (especially when dealing
with the Han and Hangul-based languages).

One of the things you’ll notice is that most operations on Unicode text can be thought of as
transformations of one kind or another on Unicode text. Searching and sorting, for example, involves
mapping from Unicode to abstract sort-key values. Rendering text on the screen involves, among
other things, mapping Unicode characters to glyph codes. We’ll look at these more specialized
transformations and the other processes that go along with them in the next chapters. In this chapter,
we instead concentrate on Unicode-to-Unicode mappings and Unicode-to-legacy-encoding mapping.

The data structures and techniques we looked at in the last chapter form the basis of what we do here,
and will form the basis of much of what we do in the next chapters. But each of these conversions has
its own special quirks you need to be aware of. Each makes use of the data structures we looked at in
its own unique way or supplements the more general mappings with additional, more specialized
work.

 Conversions and Transformations

394 Unicode Demystified

Converting between Unicode encoding forms

We’ll start by looking at Unicode-to-Unicode transformations. As we’ve seen, the Unicode standard
comprises a single coded character set, but multiple encoding forms:

x� UTF-32 represents each 21-bit code point value using a single 32-bit code unit.

x� UTF-16 represents each 21-bit code point value using either a single 16-bit code unit (for code
points in the BMP) or a pair of 16-bit code units (for code points in the supplementary planes).

x� UTF-8 represents each 21-bit code point value with a single 8-bit code unit (for code points in the
ASCII block), a sequence of two or three 8-bit code units (for code points in the rest of the BMP),
or a sequence of four 8-bit code units (for code points in the supplementary planes).

In this section, we’ll look at how you convert text between these three encoding forms. Unicode also
comprises seven encoding schemes (or serialization formats) which take into account the differing
byte-order properties of different machine architectures. Converting between byte orderings is
trivial, so we won’t cover that here, but we will look at implementing SCSU, a common encoding
scheme that isn’t officially part of the Unicode standard.

Usually, you pick one of the Unicode encoding forms for representing text in your application (or
some API you’ve decided to use effectively makes the choice for you) and stick with it, but
environments that make mixed use of multiple encoding forms are not all that uncommon. It’s not
unusual, for example, to have an application that uses one format for its internal representation
(typically UTF-16, but UTF-32 is becoming more common) and another more compact (or,
sometimes, more portable) UTF (typically UTF-8) in its data-file format. Or you have a client-server
application that uses one format (e.g., UTF-16) on the client side and another (perhaps UTF-32) on
the server side. Of you have a client-server application that uses the same format for internal
processing on both sides (again, usually UTF-16 or UTF-32) but a different, more compact format
(usually UTF-8) in the communication protocol between client and server. Mixed environments like
this abound.

For one concrete example, consider the Java runtime environment. The String and StringBuffer
classes in Java (and the char primitive type) use UTF-16 to store the characters, but the Java
serialization facility (the format that gets written or read when you do writeObject() or
readObject() on an object that implements the Serializable interface) uses UTF-8 for
serializing strings. The conversion to UTF-8 and back when an object is serialized and deserialized
in Java is transparent to the programmer, but it’s still useful to be aware of this. In many other mixed
environments, this conversion isn’t transparent—you have to do it manually.

Pretty much all APIs that support Unicode at all provide the ability to convert a stream of text from
one UTF to another, so this is code you rarely have to write yourself. Most systems just treat one
UTF as the native character format and use their normal character-code-conversion facility to convert
to the others (or to the non-native endian-ness). In Java, for example, the internal character format is
UTF-16 in the native endian-ness of the host processor, and conversion to all other UTFs (or UTF-16
in the opposite endian-ness) is handled through the conversion APIs in the java.io package
(typically accessed through the Reader and Writer classes).112

112 The one exception to this is the aforementioned serialization facility, which bypasses the java.io

code and does the conversion itself for performance.

 Converting between UTFs

 A Practical Programmer’s Guide to the Encoding Standard 395

We talk about conversion to non-Unicode encodings later in the chapter, but even though most
systems use the same API for conversion between UTFs that they use for conversion from Unicode to
something else, the implementations are usually different. This is because while conversion between
Unicode and most non-Unicode encodings has to be table-driven, conversion between UTFs is
entirely algorithmic. You can take advantage of this to eliminate the mapping tables entirely or to cut
them down greatly in size, which can also improve performance by eliminating time spent loading the
table into memory. Table-loading time aside, the actual conversion can usually be made just as fast,
or almost as fast, as a table-driven conversion.

Converting between UTF-16 and UTF-32
Conversion between UTF-16 and UTF-32 is fairly simple, since the vast majority of the characters
you’ll run into in a typical body of text will be BMP characters, which have the same representation
in both formats. Only the supplementary-plane characters, which are generally quite rare, need
special treatment. You can optimize for the BMP characters and save time.

Conversion from UTF-32 to UTF-16 looks something like this in Java (just to treat all formats
equally, I avoid char in all these examples):

public static short[] utf32to16(int[] in) {

 int size = in.length;

 short[] out = new short[size * 2];

 int p = 0;

 for (int i = 0; i < size; i++) {

 if (in[i] > 0xffff) {

 out[p++] = (short)((in[i] >> 10) + 0xD7C0);

 out[p++] = (short)((in[i] & 0x03FF) + 0xDC00);

 }

 else

 out[p++] = (short)in[i];

 }

 short[] result = new short[p];

 System.arraycopy(out, 0, result, 0, p);

 return result;

}

Pretty obvious. You check the code point to see whether it’s in the BMP or not and take the
appropriate action based on the result. If it’s in the BMP, you just truncate it to a short. Otherwise,
the UTF-32 code unit is a supplementary-plane character and we have to turn it into a surrogate pair.
The low surrogate is simple enough: just mask off all but the bottom 10 bits and add 0xDC00. The
high surrogate is a little trickier: You’re actually cramming the top 11 bits from the UTF-32 code unit
into the bottom 10 bits of the high surrogate. Out of these 11 bits, the bottom six come over
unchanged. The top five bits get converted into four by treating them as an integer value and
subtracting 1 (this works because 16 [or 0x10] is the highest value these five bits can have). This
gives you a 10-bit value to which you can add 0xD800 to get the high surrogate. In the example,
we’re doing this by shifting the eleven bits we care about over to the right and adding 0xD7C0. The
0xD7C0 is the combination of knocking 1 off the top five bits (subtract 0x40) and adding 0xD800 to
the result.

Going back the other way is a little bit uglier because you have to check each UTF-16 code point to
make sure it’s not a surrogate. There’s really no good way to do this except by doing two

 Conversions and Transformations

396 Unicode Demystified

comparisons, but if you compare against 0xD800 first, the vast majority of the time this comparison
will be true and you won’t have to do the second comparison. All that’s above 0xDFFF are the
private use and compatibility zones, and characters in these zones are relatively infrequent.

So in Java that gives you this:

public static int[] utf16to32(short[] in) {

 int size = in.length;

 int[] out = new int[size];

 int p = 0;

 int q = 0;

 while (q < size) {

 int temp = in[q++] & 0xffff;

 if (temp < 0xD800 || temp > 0xDFFF)

 out[p++] = temp;

 else {

 out[p] = (temp - 0xD7C0) << 10;

 out[p++] += in[q++] & 0x03FF;

 }

 }

 if (p == size)

 return out;

 else {

 int[] result = new int[p];

 System.arraycopy(out, 0, result, 0, p);

 return result;

 }

}

The actual conversion of the surrogate pair back into the UTF-32 code point value is simply the
reverse of the calculations we did in the previous example. No magic here.

Of course, the above example is oversimplified a bit. If you can guarantee that the conversion routine
will always be handed well-formed UTF-16 (that is, surrogate values only occur in high-low pairs),
or if you’re willing to accept slightly garbled results when you get malformed UTF-16, the above
code will work fine. Otherwise, you have to do a little more work to account for unpaired surrogates.
Traditionally, unpaired surrogates just get converted the same way non-surrogate values do, giving
you something that looks like this:

if (temp >= 0xD800 && temp <= 0xDBFF && q < in.length

 && (in[q] & 0xffff) >= 0xDC00

 && (in[q] & 0xffff) <= 0xDFFF) {

 out[p] = (temp - 0xD7C0) << 10;

 out[p++] += in[q++] & 0x03FF;

}

else

 out[p++] = temp;

With slightly more complicated code, you could instead flag the error by converting unpaired
surrogates into U+FFFD, the REPLACEMENT CHARACER, which by convention is used to
indicate the position of an un-convertible character in the source text; eliminate any trace of the
unpaired surrogates from the output text; or throw an exception.

 Converting between UTFs

 A Practical Programmer’s Guide to the Encoding Standard 397

The extra code to ensure correctness is kind of ugly and takes a little bit more time, but you’re sure
you get the right answer. You have to make a tradeoff here between speed and absolute correctness.

Converting between UTF-8 and UTF-32
Going between UTF-32 and UTF-8 is more complicated because UTF-8 is a more complicated
encoding standard, with anywhere from one to four code units per character.113 Here’s one way of
carrying out that conversion:

public static byte[] utf32to8(int[] in) {

 int size = in.length;

 byte[] out = new byte[size * 4];

 int p = 0;

 for (int i = 0; i < size; i++) {

 int c = in[i];

 if (c <= 0x007F)

 out[p++] = (byte)c;

 else {

 if (c <= 0x07FF) {

 out[p++] = (byte)((c >> 6) + 0xC0);

 out[p++] = (byte)((c & 0x3F) + 0x80);

 }

 else {

 if (c <= 0xFFFF) {

 out[p++] = (byte)((c >> 12) + 0xE0);

 out[p++] = (byte)(((c >> 6) & 0x3F) + 0x80);

 out[p++] = (byte)((c & 0x3F) + 0x80);

 }

 else {

 out[p++] = (byte)((c >> 18) + 0xF0);

 out[p++] = (byte)(((c >> 12) & 0x3F) + 0x80);

 out[p++] = (byte)(((c >> 6) & 0x3F) + 0x80);

 out[p++] = (byte)((c & 0x3F) + 0x80);

 }

 }

 }

 }

 byte[] result = new byte[p];

 System.arraycopy(out, 0, result, 0, p);

 return result;

}

The code’s a little complicated, but you can’t really improve on it much in terms of performance. The
one thing that kind of sucks about this approach is that you do three comparisons for each character
for code point values above U+07FF. This includes the Han and Hangul areas and all the Indic

113 Earlier versions of ISO 10646 specified a version of UTF-8 that used up to six code units per

character, but more recent decisions by the committees maintaining both Unicode and ISO 10646 have

declared the encoding space above U+10FFFF off limits. Five- and six-byte sequences are only necessary to

represent values in the area that’s now off-limits for encoding; therefore, five- and six-byte UTF-8 are now

illegal.

 Conversions and Transformations

398 Unicode Demystified

scripts, as well as a smattering of other scripts and all of the supplementary planes. For many scripts,
including most of the stuff in the supplementary planes, they occur rarely enough not the be a
problem. But it’s a fairly heavy price to pay for, say, whole documents in Chinese, or Japanese, or
Hindi, or Thai.

If you’re willing to take up some space for a translation table, you can turn the series of if
statements into a switch statement, which effectively gives you one comparison for all the code
point ranges. You can do this with a 256-byte lookup table by using the leading byte of the UTF-16
code point value as an index into the table. This approach, for obvious reasons, works much better
when you’re going straight from UTF-16 to UTF-8, but since you have to do some extra work to get
from a UTF-16 surrogate pair to a four-byte UTF-8 sequence, you lose a little speed with the
supplementary-plane characters in exchange for gaining some on the BMP characters.

Going back from UTF-8 to UTF-32 is more interesting. The obvious straightforward approach is
something like this:

public static int[] utf8to32(byte[] in) {

 int size = in.length;

 int[] out = new int[size];

 int p = 0;

 int q = 0;

 while (q < size) {

 int c = in[q++] & 0xff;

 if (c <= 0x7F)

 out[p++] = c;

 else if (c <= 0xDF) {

 out[p] = (int)(c & 0x1F) << 6;

 out[p++] += (int)(in[q++] & 0x3F);

 }

 else if (c <= 0xEF) {

 out[p] = (int)(c & 0x0F) << 12;

 out[p] += (int)(in[q++] & 0x3F) << 6;

 out[p++] += (int)(in[q++] & 0x3F);

 }

 else if (c <= 0xF7) {

 out[p] = (int)(c & 0x07) << 18;

 out[p] += (int)(in[q++] & 0x3F) << 12;

 out[p] += (int)(in[q++] & 0x3F) << 6;

 out[p++] += (int)(in[q++] & 0x3F);

 }

 else

 out[p] = 0xFFFD;

 }

 int[] result = new int[p];

 System.arraycopy(out, 0, result, 0, p);

 return result;

}

 Converting between UTFs

 A Practical Programmer’s Guide to the Encoding Standard 399

Again, this is straightforward and gets the job done and performs reasonably well. Again, it doesn’t
check for malformed UTF-8 sequences (except for byte values from 0xF8 to 0xFF, which can’t occur
in legal UTF-8). In the presence of malformed UTF-8, this algorithm will produce garbled results, so
it’s only acceptable if that’s acceptable, or if you can guarantee that the UTF-8 fed to this algorithm
is well-formed.

Again, if you’re willing to pay a little extra to keep some tables around, you can make the algorithm
faster and more elegant and also have it handle malformed UTF-8 more gracefully. The approach
shown below is based on a 128-byte lookup table.

private static final byte X = (byte)-1; // illegal lead byte

private static final byte Y = (byte)-2; // illegal trail byte

private static final byte[][] states = {

 //00 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78

 // 80 88 90 98 A0 A8 B0 B8 C0 C8 D0 D8 E0 E8 F0 F8

 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 X, X, X, X, X, X, X, X, 1, 1, 1, 1, 2, 2, 3, X },

 { Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y,

 0, 0, 0, 0, 0, 0, 0, 0, Y, Y, Y, Y, Y, Y, Y, Y },

 { Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y,

 1, 1, 1, 1, 1, 1, 1, 1, Y, Y, Y, Y, Y, Y, Y, Y },

 { Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y,

 2, 2, 2, 2, 2, 2, 2, 2, Y, Y, Y, Y, Y, Y, Y, Y }

};

private static final byte[] masks = { 0x7F, 0x1F, 0x0F, 0x07 };

public static int[] utf8to32b(byte[] in) {

 int size = in.length;

 int[] out = new int[size];

 int p = 0;

 int q = 0;

 int state = 0;

 byte mask = 0;

 while (q < size) {

 int c = in[q++] & 0xff;

 state = states[state][c >>> 3];

 switch (state) {

 case 0:

 out[p++] += c & 0x7F;

 mask = 0;

 break;

 case 1:

 case 2:

 case 3:

 if (mask == 0)

 mask = masks[state];

 out[p] += c & mask;

 out[p] <<= 6;

 Conversions and Transformations

400 Unicode Demystified

 mask = (byte)0x3F;

 break;

 case Y:

 --q;

 // fall thru on purpose

 case X:

 out[p++] = 0xFFFD;

 state = 0;

 mask = 0;

 break;

 }

 }

 int[] result = new int[p];

 System.arraycopy(out, 0, result, 0, p);

 return result;

}

We can eliminate the chain of if statements and some of the redundant code in the first example by
using a state table to keep track of where you are in a multi-byte character. The state table also gives
us a convenient way to detect malformed sequences of UTF-8. This example actually distinguishes
between longer-than-normal and short-than-normal sequences. If it sees a leading byte when it’s
expecting a trailing byte, (a shorter-than-normal sequence, represented by Y in the state table) it
throws out the incomplete sequence it’s seen up until then, writes U+FFFD to the output as a
placeholder for the corrupted character, and starts over with the leading byte it encountered
prematurely (i.e., it treats the premature leading byte as good and the truncated sequence that
precedes it as bad). If, on the other hand, it sees a trailing byte where it expects a leading byte (a
longer-than-normal sequence, denoted by X in the state table), or a byte which is illegal in UTF-8, it
treats that byte as an illegal sequence all by itself.

Even here, though, we’re not protecting against non-shortest-form UTF-8. An ASCII character
represented with three bytes will come through just fine with either of these converters. You can
actually guard against these illegal combinations without altering the basic approach by making the
state table a little more complicated. I’ll leave this as an exercise for the reader.

As always, many variations on this basic approach are possible. For example, you can eliminate the
right shift in the state-table lookup by making the table bigger, and you can eliminate some of the
manipulation of the mask variable (and the if statement based on it) by just looking up the mask
every time. This also requires a larger table of masks. You can fetch both the mask value and the
new-state value in a single array lookup by munging the values together mathematically in the table
(for example, we know we only need six state values, and the bottom three bits of every mask value
are 1, so we could use the bottom three bits for the state and the rest of the value for the mask), but
then you need extra code to take the two values apart.114

114 One thing to keep in mind if (God forbid) you try to use my code examples verbatim in your code:

This particular example won’t compile as-is. Integer literals in Java have type int, and can’t be used in an

array literal of type byte[] without casts. I left these casts out to make the table more readable.

 Converting between UTFs

 A Practical Programmer’s Guide to the Encoding Standard 401

Converting between UTF-8 and UTF-16
Conversions between UTF-8 and UTF-16 are left as an exercise for the reader. Conceptually, you
really can’t get from UTF-8 to UTF-16 (or vice versa) without going through UTF-32. You can cut
out some of the work that’d go on if you just, say, called the 8-to-32 function followed by the 32-to-
16 function, but you can’t cut out much of it.

Implementing Unicode compression
The Unicode compression scheme (aka the Standard Compression Scheme for Unicode, or SCSU,
which is documented in Unicode Technical Standard #6), isn’t officially a Unicode Transformation
Format, but sort of informally qualifies, as it’s yet another way of translating a sequence of abstract
Unicode numeric values into patterns of bits. Unlike UTF-16 and UTF-32 (and, to a lesser extent,
UTF-8), it isn’t really suitable as an in-memory representation of Unicode. This is because it’s a
stateful encoding—particular byte values mean different things depending on the bytes that have
come before. This is arguably true of trailing bytes in UTF-8 or low surrogates in UTF-16, as their
exact meanings depend on the preceding lead bytes or high surrogates, but there are two important
differences: 1) In both UTF-8 and UTF-16, leading code units, trailing code units, and single-unit
characters (code units that represent a whole character by themselves) are represented by distinct
numerical ranges—you can tell which category a particular code unit is in just by looking at it. In
UTF-8, the leading bytes of different-length sequences also occupy different numerical ranges—you
can tell how long a UTF-8 sequence is supposed to be just from looking at the leading byte. 2) When
you do see a code unit that represents only part of a character, the number of units forward or
backward you have to scan to get the whole character is strictly limited. (If you happen upon a non-
surrogate code unit in UTF-16 or an ASCII value in UTF-8, the code unit stands on its own; if you
happen upon a surrogate in UTF-16 or a leading byte in UTF-8, you can tell from it exactly how
many code units you have to scan and in which direction to get the rest of the character; if you
happen upon a trailing byte in UTF-8, you have to scan backwards no more than three bytes to find
the beginning of the character, which will then tell you where the end of the character is.)

These two things aren’t true in SCSU: A decompressor for SCSU maintains a “state” which can be
changed by each byte as it’s read: the current state determines the meaning of the next byte you see
(which may, in turn, change the state again). You can’t drop into the middle of an SCSU byte stream
and tell what’s going on (i.e., correctly interpret any arbitrary byte in an SCSU byte stream) without
potentially scanning all the way back to the beginning of the file to figure out what state you’re in.
You don’t always have to scan all the way back to the beginning of the file, and you can often make
an educated guess as to what certain bytes mean, but there’s nothing limiting your maximum look-
back: you may have to scan all the way back to the beginning of the file.

Instead, SCSU is useful as a serialization format: as you read the text into memory (or otherwise
deserialize it), you decompress it, converting it into one of the other representations for use in
memory. You do the opposite when writing the text back out. UTF-8 is often used for this purpose
because it’s backward compatible with ASCII and because the representation is more compact than
UTF-16 for Latin. But UTF-8 actually is less compact than UTF-16 for many scripts, especially the
East Asian scripts. A Japanese document is 50% larger in UTF-8 than it is in UTF-16 (or, generally
speaking, a legacy Japanese encoding). SCSU solve this problem: It’s somewhat more expensive to
convert to and from than UTF-8 and can’t be used as an in-memory representation like UTF-8 can,
but it’s also backward compatible with ASCII and is more compact (or equally as compact as) both
UTF-8 and UTF-16 for all scripts. In most cases, SCSU text is almost as compact as a legacy encod-
ing for a given script. SCSU also lends itself well to further compression with a more-general
compression scheme such as LZW. And on top of this, it’s also backward compatible with Latin-1,
and not just with ASCII.

 Conversions and Transformations

402 Unicode Demystified

The International Components for Unicode library includes conversion utilities for SCSU, but most
other libraries don’t. If you’re not using ICU and want to use Unicode compression, you may well
need to code it yourself. Here we’ll look at how to do that.

SCSU allows for many different ways of encoding the same piece of Unicode text: unlike, say, UTF-
8, it doesn’t prescribe one particular alternative as the “canonical representation” for a particular
piece of text. This means that even though SCSU is always decoded in the same way, there are many
different ways in which Unicode text can be encoded in SCSU. A particular encoder can choose to
optimize for speed or compactness.

The basic idea is this: SCSU has two “modes,” single-byte mode and double-byte mode. In single-
byte mode:

x� The byte values from 0x00 to 0x1F, except for 0x00, 0x09, 0x0A, and 0x0D (the ASCII null, tab,
line-feed, and carriage-return characters, respectively), are “tag” bytes which control the
interpretation of the other byte values.

x� The other byte values from 0x00 to 0x7F are used to represent the bottom seven bits of a Unicode
code point, with the upper fourteen bits being determined by the decoder’s state. There are eight
“static windows,” that is, eight ranges of 128 Unicode code point values that can be represented
by these byte values. Normally they represent the characters in “static window 0,” which is the
Unicode code point values from U+0000 to U+007F, but they can be temporarily shifted to
represent one of the other seven windows.

x� The byte values from 0x80 to 0xFF are also used to represent the bottom seven bits of a Unicode
code point, with the upper fourteen bits being determined by the decoder’s state. There are eight
“dynamic windows,” that is, eight ranges of 128 Unicode code point values that can be
represented at any one time. Unlike the static windows, however, these eight dynamic windows
can be repositioned almost anywhere in the Unicode encoding range.

In double-byte mode, the bytes are interpreted in pairs as big-endian UTF-16, except that the byte
values from 0xE0 to 0xF2, when in the lead-byte position (corresponding to the high-order byte of
code point values in the private-use area), are generally interpreted as tag values.

The tag values do various things:

x� Switch to single-byte or double-byte mode long enough to encode one Unicode code point.

x� Switch to single-byte or double-byte mode indefinitely.

x� Interpret just the next byte (in single-byte mode) according to some particular static or dynamic
window (this changes the interpretation of all byte values in single-byte mode).

x� From now until it’s changed again, interpret the byte values from 0x80 to 0xFF according to some
particular dynamic window (the values from 0x00 to 0x7F still get treated as either tag values or
members of static window 0—you can’t indefinitely switch the values from 0x00 to 0x7F to some
other static window).

x� Reposition a particular dynamic window to refer to a different range of values in the Unicode
encoding space.

The initial positions of the windows mean text containing only characters from the ASCII and Latin-1
blocks has the same representation in SCSU as it does in Latin-1, unless it contains control characters
other than the tab, line feed, and carriage return. (Note that this is different from UTF-8, where all the
control characters come through without change, but the characters in the Latin-1 block turn into
two-byte sequences—like the East Asian scripts, Latin-1 text is actually better-served by SCSU than
by UTF-8.) Text in many other scripts can be represented in SCSU entirely by one-byte values as
well, with a single extra byte at the beginning to shift the values from 0x80 to 0xFF to the appropriate

 Converting between UTFs

 A Practical Programmer’s Guide to the Encoding Standard 403

window. For rarer scripts that fit into a 128-code-point window, you need two or possibly three bytes
at the front of the file, but can otherwise represent everything with a single byte per character.

Scripts that span more than 128 code point values can often still be represented fairly well with
single-byte SCSU, with more tag bytes scattered throughout to shift the windows around. For those
that occupy too wide a span of code point values for the shifting-window technique to work well, you
can simply shift to Unicode mode—the representation is now simply big-endian UTF-16 with an
extra byte on the front to tag it as such.

The code to do all this isn’t too ridiculous, although it’s more complicated than converting out of
UTF-8. Here’s one fairly straightforward interpretation (again, in Java, albeit somewhat abbreviated):

// single-byte-mode tag values:

//=============================

// shift to specified window for one byte

private static final int SQ0 = 0x01;

// SQ1-SQ6 omitted for brevity

private static final int SQ7 = 0x08;

// define a new window using extended semantics and shift to it

private static final int SDX = 0x0B;

// shift to double-byte mode for one pair of bytes

private static final int SQU = 0x0E;

// shift to double-int mode

private static final int SCU = 0x0F;

// shift to specified window

private static final int SC0 = 0x10;

// SC1-SC6 omitted for brevity

private static final int SC7 = 0x17;

// define a new window and shift to it

private static final int SD0 = 0x18;

// SD1-SD6 omitted for brevity

private static final int SD7 = 0x1F;

// double-byte-mode tag values:

//=============================

// shift to single-byte mode using specified window

private static final int UC0 = 0xE0;

// UC1-UC7 omitted for brevity

// define a new window and shift to it (and to single-byte mode)

private static final int UD0 = 0xE8;

// UD1-UD7 omitted for brevity

// quote a single Unicode character (can start with tag byte)

private static final int UQU = 0xF0;

// define a new window using extended semantics and shift to it

 Conversions and Transformations

404 Unicode Demystified

private static final int UDX = 0xF1;

private static final int[] staticWindows = {

 0x00, 0x00, 0x0100, 0x0300, 0x2000, 0x2080, 0x2100, 0x3000 };

private static final int[] initialDynamicWindows = {

 0x80, 0xC0, 0x0400, 0x0600, 0x0900, 0x3040, 0x30A0, 0xFF00 };

private static final int[] dynamicWindowOffsets = {

0x0000, 0x0080, 0x0100, 0x0180, 0x0200, 0x0280, 0x0300, 0x0380,

0x0400, 0x0480, 0x0500, 0x0580, 0x0600, 0x0680, 0x0700, 0x0780,

// ...and so on through...

0x3000, 0x3080, 0x3100, 0x3180, 0x3200, 0x3280, 0x3300, 0x3380,

0xE000, 0xE080, 0xE100, 0xE180, 0xE200, 0xE280, 0xE300, 0xE380,

// ...and so on through...

0xFC00, 0xFC80, 0xFD00, 0xFD80, 0xFE00, 0xFE80, 0xFF00, 0xFF80,

0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,

// ...nine more rows of zeros...

0x0000, 0x00C0, 0x0250, 0x0370, 0x0530, 0x3040, 0x30A0, 0xFF60

};

public static void decompressSCSU(

 InputStream in, OutputStream out)

 throws IOException {

 boolean singleByteMode = true;

 boolean nonLockingShift = false;

 boolean nonLockingUnicodeShift = false;

 int currentWindow = 0;

 int tempWindow = 0;

 int[] dynamicWindows = (int[])initialDynamicWindows.clone();

 int b = in.read();

 while (b != -1) {

 while (b != -1 && singleByteMode

 && !nonLockingUnicodeShift) {

 switch (b) {

 case SQU:

 nonLockingUnicodeShift = true;

 break;

 case SCU:

 singleByteMode = false;

 break;

 case SQ0: case SQ1: case SQ2: case SQ3:

 case SQ4: case SQ5: case SQ6: case SQ7:

 nonLockingShift = true;

 tempWindow = b - SQ0;

 break;

 case SC0: case SC1: case SC2: case SC3:

 case SC4: case SC5: case SC6: case SC7:

 currentWindow = b - SC0;

 break;

 case SD0: case SD1: case SD2: case SD3:

 Converting between UTFs

 A Practical Programmer’s Guide to the Encoding Standard 405

 case SD4: case SD5: case SD6: case SD7:

 currentWindow = b - SD0;

 b = in.read();

 dynamicWindows[currentWindow] =

 dynamicWindowOffsets[b];

 break;

 case SDX:

 int hi = in.read();

 int lo = in.read();

 currentWindow = hi >>> 5;

 dynamicWindows[currentWindow] =

 0xD800DC00 + ((hi & 0x1F) << 21)

 + ((lo & 0xF8) << 16)

 + ((lo & 0x07) << 7);

 break;

 case 0x80: case 0x81: case 0x82: case 0x83:

 // ...plus the other values from 0x80 to 0xff

 if (nonLockingShift) {

 writeChar(out,

 dynamicWindows[tempWindow]

 + (b - 0x80));

 nonLockingShift = false;

 }

 else

 writeChar(out,

 dynamicWindows[currentWindow]

 + (b - 0x80));

 break;

 default:

 if (nonLockingShift) {

 writeChar(out,

 staticWindows[tempWindow] + b);

 nonLockingShift = false;

 }

 else

 writeChar(out, b);

 break;

 }

 b = in.read();

 }

 while (b != -1 && (!singleByteMode

 || nonLockingUnicodeShift)) {

 if (nonLockingUnicodeShift || b < 0xE0 || b > 0xF0) {

 writeChar(out, (b << 8) + in.read());

 nonLockingUnicodeShift = false;

 }

 else {

 switch (b) {

 case UQU:

 Conversions and Transformations

406 Unicode Demystified

 nonLockingUnicodeShift = true;

 break;

 case UC0: case UC1: case UC2: case UC3:

 case UC4: case UC5: case UC6: case UC7:

 singleByteMode = true;

 currentWindow = b - UC0;

 break;

 case UD0: case UD1: case UD2: case UD3:

 case UD4: case UD5: case UD6: case UD7:

 singleByteMode = true;

 currentWindow = b - UD0;

 b = in.read();

 dynamicWindows[currentWindow] =

 dynamicWindowOffsets[b];

 case UDX:

 singleByteMode = true;

 int hi = in.read();

 int lo = in.read();

 currentWindow = hi >>> 5;

 dynamicWindows[currentWindow] =

 0xD800DC00 + ((hi & 0x1F) << 21)

 + ((lo & 0xF8) << 16)

 + ((lo & 0x07) << 7);

 }

 }

 b = in.read();

 }

 }

}

private static void writeChar(OutputStream out, int c)

 throws IOException {

 if (c < 0x10000) {

 out.write(c >> 8);

 out.write(c & 0xff);

 }

 else {

 out.write(c >> 24);

 out.write((c >> 16) & 0xff);

 out.write((c >> 8) & 0xff);

 out.write(c & 0xff);

 }

}

It’s fairly long, but reasonably simple and efficient. This particular version writes UTF-16 to the
output, since this is what you get when you’re in double-byte mode. The window-offset arrays are
arrays of int, but their elements aren’t UTF-32 code points; they’re either single UTF-16 code
points padded out to 32 bits (pretty much the same thing), or they’re UTF-16 surrogate pairs packed
into a single int. The helper function writeChar() takes care of accounting for the second case.
You could easily modify this routine to output UTF-32 instead: the window-offset arrays would then

 Converting between UTFs

 A Practical Programmer’s Guide to the Encoding Standard 407

be UTF-32 values, the code that handles the SDX and UDX characters would have to change, and
the double-byte mode would have to convert UTF-16 surrogate pairs into UTF-32.

The example above also assumes it’s looking at well-formed SCSU and will act funny or throw
exceptions if the text it’s reading isn’t well formed.

There are a bunch of ways of producing SCSU in the first place. A very simple algorithm that
optimizes for Latin-1 text would look like this:

x� If the character is a Latin-1 non-control character (or if it’s tab, CR, or LF) and we’re in single-
byte mode, just truncate it to a byte and write it to the output.

x� If the character is a control character other than the ones listed above, write SQ0 to the output,
followed by the character, truncated to a byte.

x� If the character is not a Latin-1 character, but is a BMP character, and the character after it is a
Latin-1 character, write SQU to the output, followed by the character’s big-endian UTF-16
representation.

x� If the character is not a BMP character, or it’s not a Latin-1 character and neither is the following
character, and we’re still in single-byte mode, write SCU, shift to double-byte mode, and
reprocess that character.

x� If we’re in double-byte mode and the character is a not a Latin-1 character or a private-use
character, write its big-endian UTF-16 representation to the output.

x� If we’re in double-byte mode and the character is a private-use character, write UQU to the
output, followed by the character’s big-endian UTF-16 representation.

x� If we’re in double-byte mode and the character is a Latin-1 character, but the character following
it is not, write its big-endian UTF-16 representation to the output.

x� If we’re in double-byte mode, the character is a Latin-1 character, and so is the following
character, write UC0, shift back to single-byte mode, and reprocess the character.

A more complicated algorithm that tries to take into account all the Unicode characters might look
something like this:

x� Start out in single-byte mode, with the windows set up as they would be in the initial state of the
decoder.

x� If the current character is an ASCII printing character, or is tab, LF, or CR, truncate it to a byte
and write it to the output.

x� Otherwise, if the character fits into the current dynamic window (as defined by the last SCx we
wrote, or the Latin-1 block if we haven’t written any SCx codes), write the bottom seven bits of
the code point value, plus 0x80, to the output.

x� Otherwise, if the character fits into one of the static windows, or one of the currently-defined
dynamic windows, but the next two characters don’t fit into the same window, write the
appropriate SQx code to the output, followed by the appropriate byte value (if the character fit
into a static window, this is the bottom seven bits of the code point value; if it fit into a dynamic
window, it’s the bottom seven bits plus 0x80).

x� If the current character doesn’t fit into any of the currently-defined dynamic or static windows,
and the next two characters don’t fit into the same window, write SQU to the output, followed by
the character’s big-endian UTF-16 representation.

x� If the next three characters in a row fit into the same dynamic window and it’s not the current
dynamic window but is one of the currently-defined dynamic windows, write the appropriate SCx
code to the output, followed by the bottom seven bits of the current character plus 0x80.

 Conversions and Transformations

408 Unicode Demystified

x� If the next three characters in a row fit into the same window but it’s not one of the currently-
defined dynamic windows, emit an appropriate SDx code, followed by the appropriate defining
byte (or, if necessary, SDX, followed by the appropriate defining two bytes) and the bottom 7 bits
of the current character plus 0x80. [It’d be best to use some sort of “least-recently-used”
algorithm to determine which window to redefine—a more sophisticated algorithm would also
ignore ASCII printing characters in determining whether “the next three characters” fit into the
same window.]

x� If the next three characters in a row don’t fit into the same window, write SCU to the output,
switch to double-byte mode, and reprocess the current character.

x� If you’re in double-byte mode, write characters out in their big-endian UTF-16 representation
(preceding private-use characters with UQU) for as long as you don’t encounter a sequence of
three or more characters that either fit into the same window or are ASCII printing characters. If
you see such a sequence, write the appropriate code to switch back to single-byte mode (UCx,
UDx, or UDX, with the necessary defining bytes, determined according to the same criteria as we
used in single-byte mode), switch back to single-byte mode, and process the sequence in single-
byte mode.

Unicode normalization

The other category of Unicode-to-Unicode transformations we need to consider is Unicode
normalization. You may or may not need to care about Unicode normalization as such; often it
happens as a byproduct of some other process. For example, character code conversion is usually
written to produce normalized Unicode text; a legacy encoding usually naturally converts to one
normalized form or the other. (Of course, this may imply that not all converters available on a
particular system produce the same normalized form, unless they’ve all been designed to do this.)
Similarly, keyboard layouts and input methods can be designed to produce normalized text (and
usually do so without any extra work, although again this might mean that different input methods
and keyboard layouts on a given system produce different normalization forms, unless they were
expressly designed to all produce the same one).

If your text is all coming from an outside process, you may be able to depend on the process that
originally produced it to produce it in some normalized form. (For example, the World Wide Web
Consortium’s early-normalization rules require that every process on the Web that produces text
produce it in Normalized Form C, so processes downstream of process that produced the text (XML
parsers, for example) can assume the text is already in Form C.

Finally, your application might not care whether the text is normalized or not. Generally, Unicode
normalization gives you two things: You can compare two strings for equality using a straight bitwise
comparison, and rendering processes don’t have to account for alternative representations of
characters they can display. If you’re already doing language-sensitive comparison rather than
bitwise comparison of your strings, you don’t have to do Unicode normalization, since language-
sensitive comparison has to do normalization anyway (or take the alternate representations of a given
string into account). If the rendering process you’re using can handle the alternative representations
of a given string (or if you don’t care), you also don’t have to do Unicode normalization.

If you actually do have to do Unicode normalization, there’s again a fairly high probability you’ll
have to code it yourself. As with Unicode compression, the International Components for Unicode
provide an API for normalization, but most other Unicode-support APIs don’t.

 Unicode normalization

 A Practical Programmer’s Guide to the Encoding Standard 409

There are four Unicode normalization forms, but only three processes that need to be implemented to
support them:

x� Normalized Form D: Canonical decomposition.

x� Normalized Form C: Canonical decomposition, followed by canonical composition.

x� Normalized Form KD: Compatibility decomposition.

x� Normalized Form KC: Compatibility decomposition, followed by canonical composition.

The original normalized form for Unicode was Normalized Form D, which consists of canonical
decompositions. Normalized Form KD, compatibility decomposition, is there to allow text to be
mapped from characters that are only there for round-trip compatibility with some other standard to
non-compatibility characters (although, since many of the compatibility composites involve some
kind of stylistic transform on the original character, information can be lost going to Form KD).

Normalized Forms C and KC evolved more recently. In real life, a lot of implementations were
preferring composed representations of characters over the decomposed representations because the
composed representations were more compact and because many of the legacy encodings (most of
the ISO 8859 family of encodings, for example) use composed representations.

Converting to Forms C and KC involves both a decomposition and a recomposition mainly because
of issues related to the order of combining marks. Say, for example, you have in your text an “a” with
a macron on top and a dot underneath. There’s no code point assigned to this character, so you have
to represent it with a combining character sequence. There are, however, precomposed characters
for both a-macron and a-underdot, so you could represent a-macron-underdot either with a-macron
and a combining underdot or with a-underdot and a combining macron. As it turns out, the correct
representation in Normalized Form C is a-underdot plus the combining macron (because of the
canonical accent order). If you have text with the other representation (a-macron plus the combining
underdot), you can only get to the correct representation by fully decomposing it, reordering the
accents, and then composing it again.

There isn’t any such thing as “compatibility composition.” Normalized Form KC uses compatibility
decomposition as the basis for canonical composition instead of using canonical decomposition as
the basis for canonical composition.

Canonical decomposition
Canonical decomposition actually consists of two separate processes: canonical decomposition and
canonical reordering. Canonical decomposition is the process of taking any canonical composites in
the input stream and replacing them with their decomposed forms. Canonical reordering is the
process of taking any combining character sequences and sorting them according to their combining
classes. When you decompose a composite character, the decomposed representation will already be
ordered by combining class; canonical reordering is oriented toward getting combining character
sequences already in the input stream, not those produced by decomposing composite characters,
into canonical order.

Canonical decomposition. There are exactly two types of canonical decompositions: those that
consist of two characters and those that consist of only one. A character with a one-character
(“singleton”) decomposition is a character whose use is effectively discouraged—it’s not supposed to
show up in normalized Unicode text, regardless of normalization form. Two-character canonical

 Conversions and Transformations

410 Unicode Demystified

decompositions, on the other hand, represent “real” composite characters that can be represented
with combining character sequences.

There are actually cases where a character should decompose to a three-character (or longer)
combining sequence (for example, �VKRXOG�GHFRPSRVH�WR�VPDOO�X��FRPbining diaeresis, combining
macron). The standard is structured so that characters like this decompose to a combining sequence
that contains another composite character (in this case, to ü, combining macron)—this means you
may actually have to perform several mappings to fully decompose a character. The decompositions
are set up so that the composite character is always the first character in the decomposition—each
iteration of the mapping effectively peels one mark off the end:

 ü + �̄

 u + ¨ + ¯

You can take advantage of the two-character limit in constructing a lookup table to use in
decomposition. Since there are supplementary-plane characters that are canonical composites, you
have to use either a two-level compact array or some kind of more generalized trie structure for your
lookup table. You can have the data array consist of 32-bit values: For the two-character
decompositions, the 32-bit value is the UTF-16 representations of the two characters packed into a
single 32-bit value. For the singleton decompositions, the upper 16 bits are zero and the lower 16 bits
are the UTF-16 representation of the character to map to.

Canonical decomposition on supplementary-plane characters. There’s one hitch in doing
canonical decomposition this way: some of the supplementary-plane characters have decompositions
that include other supplementary-plane characters. In Unicode 3.1, these fall into two main
categories:

x� Musical symbols that decompose to sequences of other musical symbols (for example, the eighth
note decomposes to a black notehead, followed by a combining stem, followed by a combining
flag).

x� Compatibility ideographs that map to non-compatibility ideographs in Plane 2 (there are also
many compatibility ideographs in Plane 2 that map to ideographs in the BMP).

There are a couple different ways you can handle this:

x� You can assume that there are no BMP characters that include supplementary-plane characters in
their decompositions (this assumption holds now and is likely the hold in the future, but might be
invalidated by some future version of Unicode). You could use a single-level compact array with
the packing scheme described above to handle the BMP characters and a separate lookup table for
the non-BMP characters (or a separate table for each plane). For the Plane 1 characters (currently
the musical symbols), you could code things assuming all of the characters in the decomposition
are also in Plane 1 and use the packing scheme above. For the Plane 2 characters, you could
assume the decompositions are all one-character decompositions and store the decompositions
using UTF-32.

x� You could use a different lookup table for non-BMP characters and just have the entries be 64
bits wide, packing together two UTF-32 code units.

x� You could use a unified lookup table for the whole Unicode range using the format described
above, but use a range of sentinel values (say, 32-bit values where the top 16 bits, treated as a
UTF-16 value, would be in the surrogate range) to refer to an exception table containing strings.
This approach makes a lot of sense if you’re storing compatibility decompositions in the same
table (because you have to do this anyway—see below). If you do it this way, you don’t want to
do the recursive lookup, though: just have the exception table contain the full decompositions of

 Unicode normalization

 A Practical Programmer’s Guide to the Encoding Standard 411

all the characters. Since many of the decompositions in the musical-symbols block are suffixes of
other decompositions, you can actually get fairly decent compression.

One thing you really can’t do is ignore the supplementary-plane characters. Unlike most other
processes on Unicode text, where you get to pick which characters you’re going to support, you can’t
really pick and choose with Unicode normalization. That is, you don’t have the option of normalizing
some characters and leaving other characters alone. If you’re producing text that will be (or may be)
read by another process, and it purports to be in some normalization form, you can’t cut corners. You
can only get away with blowing off some of the mappings if you’re normalizing for internal use and it
doesn’t have to be in an official normalized form, if you’re willing to output error characters or throw
an exception if you encounter characters you can’t handle (not really an option if you’re operating on
text from an outside source and purporting not to mess it up other than to normalize it, since this isn’t
legal according to the Unicode standard), or if you can guarantee that certain characters will never
appear in the text you’re trying to normalize. If you can’t guarantee your input character repertoire,
and you’re sending the normalized text on to another process, you have to handle all the characters.

Canonical decomposition on Hangul characters. There’s one important exception to the rule that
canonical decompositions only have one or two characters, and that’s decomposition of Hangul
syllables. Hangul syllables all have a canonical decomposition to the equivalent sequence of
conjoining Hangul jamo characters, and a Hangul syllable can decompose to as many as three jamo.

But the nice thing about Hangul is that you can decompose Hangul syllables algorithmically; you
don’t need a table lookup. This means all you have to store in the decomposition table for Hangul is a
sentinel value indicating the character is a Hangul syllable and needs special treatment, or you check
if the character is a Hangul syllable before doing the table lookup in the first place.

The code to decompose a Hangul syllable looks something like this115:

// beginning of Hangul-syllables block, number of syllables

private static final char SBase = ’\uAC00’;

private static int SCount = 11172;

// beginning of leading consonants, number of leading consonants

private static final char LBase = ’\u1100’;

private static final int LCount = 19;

// beginning of vowels, number of vowels

private static final char VBase = ’\u1161’;

private static final int VCount = 21;

// beginning of trailing consonants, number of trailing consonants

private static final char TBase = ’\u11A7’;

private static final int TCount = 28;

// number of syllables with a given initial consonant

private static final int NCount = VCount * TCount;

public static char[] decomposeHangulSyllable(char syl) {

 int sIndex = syl - SBase;

 int l = LBase + (sIndex / NCount);

115 This example is taken almost verbatim out of the Unicode standard, pp. 54-55.

 Conversions and Transformations

412 Unicode Demystified

 int v = VBase + (sIndex % NCount) / TCount;

 int t = TBase + (sIndex % TCount);

 if (t == TBase)

 return new char[] { (char)l, (char)v };

 else

 return new char[] { (char)l, (char)v, (char)t };

}

Canonical reordering. Converting to Normalized Form D involved two conceptual passes. The first
is to go through the whole string and replace every canonical composite with its canonical
decomposition. You repeat this until the string is made up entirely of non-composite characters.

Once you’ve done that, you make another pass through the string to perform canonical reordering.
You go through the string and locate every sequence of two or more characters in a row that have a
non-zero combining class. (This generally means “every sequence of combining marks,” although
there are some combining marks that have combining class 0 specifically so things won’t reorder
around them—the enclosing marks, for example, inhibit reordering. On the other hand, all characters
that aren’t combining marks do have a combining class of 0.)

For each sequence of combining marks, sort it in ascending order by combining class, being careful
not to disturb the relative order of any characters in the sequence that have the same combining class.
Since you’re only extremely rarely dealing with sequences of more than two or three marks, anything
more than a simple bubble or insertion sort would be overkill.

Of course, this means you have to have a lookup table somewhere that tells you each character’s
combining class. Often, the libraries you’re working with will have an API you can call to get a
character’s combining class. If not, you’ll have to create a lookup table to do this. The compact array
or another trie-based structure lends itself well to this: most characters have a combining class of
zero, there are a number of large blocks of characters have the same (non-zero) combining class, and
the combining class is a byte value. Because of its size (and relative infrequency), the combining
class can easily be doubled up with other Unicode properties in a single lookup table, if you also
need to look up the other properties. See Chapter 13.

Putting it all together. You probably don’t want to just go through the whole string twice to convert
it into Normalized Form D. In fact, you’re very often doing normalization as part of another process
(such as string comparison) where you don’t really want to store the normalized string at all.

Unfortunately, you can’t just consider one character at a time when doing canonical decomposition.
You’ll often have to look at multiple characters in the input to figure out what the next output should
be, and you’ll usually end up generating several output characters at one. This generally means that a
character-by-character interface will require both input and output buffering. Here’s a pseudocode
summary of how an object that returns the canonically-decomposed version of a string one character
at a time (and, in turn, gets the original string to be normalized one character at a time) might go
about it:

x� If there are characters in the output buffer, return the first character in the output buffer, and
delete it from the output buffer.

x� Otherwise, do the following to replenish the output buffer:

x� Read a character from the input. If it’s not a canonical composite, write it to the output buffer.
Otherwise, look up the character’s canonical decomposition. If the first character of the canonical

 Unicode normalization

 A Practical Programmer’s Guide to the Encoding Standard 413

decomposition is also a canonical composite, look that up, and so on until the original character is
fully decomposed. Write the resultant characters to the output buffer. [One way to do this is to use
an intermediate buffer. As you look up each decomposition, write the second character, if there is
one, to the intermediate buffer. If the first character is decomposable as well, look up its
decomposition and write the second character to the intermediate buffer. Repeat this process until
you get a decomposition where the first character does not have a decomposition. When this has
happened, write the first character to the buffer. At this point, you have the decomposition in the
intermediate buffer in reverse order and you can reverse the order as you copy the characters into
the output buffer.

x� Peek at the input. If the next input character has a non-zero combining class, read it from the
input, decompose it following the above rules, and write the decomposed version to the output
buffer. Continue in this way until you reach a character with a combing class of zero. Do not read
this character from the input yet.

x� If the output buffer contains only one character, clear the buffer and return that character.

x� Otherwise, if the output buffer has more than two characters, look for a pair of adjacent characters
(starting with the second and third characters) where the first character in the pair has a higher
combining class than the second. If you find such a pair, exchange the two characters. Compare
the new first character in the pair with the character that now immediately precedes it and
exchange them if their combining classes are out of order. Continue in this way until you’ve found
the appropriate place for what was originally the second character in the pair, and then go back to
looking for out-of-order pairs. (In other words, we do an insertion sort to get the combining marks
in order by combining class without disturbing the relative order of characters with the same
combining class.)

x� Remove the first character from the output buffer and return it to the caller.

Compatibility decomposition
Compatibility decomposition (i.e., conversion to Normalized Form KD) is just like canonical
decomposition. In fact, it’s a superset of canonical decomposition. For every canonical composite in
the string, you replace it with its decomposition. In addition, for every compatibility composite in the
string, replace it with its decomposition (in fact you may have to do both on the same character: there
are characters whose canonical decomposition includes a compatibility composite). Repeat until
there are no characters left in the string that have either a canonical or a compatibility decomposition.
Finish as before, by performing canonical reordering on the whole string.

The only difference is that you decompose compatibility composites. Unlike with canonical
decompositions, a compatibility decomposition may have any number of characters. This is because
with canonical decompositions, you could guarantee that the lead character in each partially-
decomposed version of the character existed in the Unicode standard.

That is, for every character whose full decomposition consisted of more than two characters, you
could guarantee that there would be appropriate characters in Unicode that would allow you to
represent it as the combination of a single combining mark and another composite character. You
don’t have this guarantee with compatibility decompositions.

This means that you need a way to map from a single Unicode character to a variable-length string.
You can use a two-level compact array (or generalized trie) for the main lookup table and have the
results be pointers into an auxiliary data structure containing the result strings.

 Conversions and Transformations

414 Unicode Demystified

There are a couple ways of optimizing this: You could have the compact array map to 16-bit values.
The value would either be a single UTF-16 code unit, or it’d be a pointer into the auxiliary string list
(you’d probably reserve the surrogate and private-use values for use as these pointer values).

You could also have the compact array map to 32-bit values. The value could be a single UTF-16
code unit (zero-padded out to 32 bits), two UTF-16 code units, or the pointer into the auxiliary string
list (again, using 32-bit values where the first 16 bits were surrogate or private-use code units).

If the compact array maps to 32-bit values, another way to do it would be to have the 32-bit value
encode both an offset into the auxiliary string list and a length. The strings in the auxiliary list then
wouldn’t have to be null-terminated and you could be cleverer about how you packed things together
in that list.

For example, consider the Roman numeral characters in the Number Forms block. These all have
compatibility mapping to sequences of normal letters. You could store the compatibility mappings
for the numbers from I to XII (U+2160 to U+216B) with the following string:

IXIIVIII

Twenty-six characters’ worth of compatibility mappings stored using just eight characters’ worth of
string storage. Of course, if you’re storing the one- and two-character mappings directly in the lookup
table, you can lop the “I” off the front of the above example and you’re stored thirteen characters’
worth of compatibility mappings in seven characters’ worth of storage. Still not bad.

Since there are no Unicode characters that have both canonical decompositions and compatibility
decompositions (at the top level—a character can have both kinds of decomposition by virtue of
having a canonical decomposition that contains a compatibility composite), you can also store both
types of decompositions in the same table. This can save room, although it does mean you have to
load all the compatibility mappings into memory even when you’re only doing canonical
decomposition, which could waste time and memory. The big problem with putting both kinds of
mappings in the same table is that you need a way to tell which are the canonical mappings and
which are the compatibility mappings. (Unless, of course, you only ever want to do compatibility
decomposition.)

You could do this through lookup in a different table (perhaps combining it with the lookups
necessary to get a character’s combining class). If, on the other hand, you do it all in one table, you
could do it by having separate auxiliary tables for canonical and compatibility mappings (and
declaring that compatibility mappings always go to the auxiliary table, even if they fit in 32 bits), or
by reserving some part of the table-lookup value as a flag to tell you whether a particular mapping is
canonical or compatibility (this either makes each entry bigger, or it also forces you to go to the
auxiliary table more than you’d otherwise have to).

Canonical composition
Normalized Forms C and KC are more recent normalized Unicode forms than Normalized Forms D
and KD, which have been around as long as Unicode itself. They arose out of a need for a more
compact canonical representation, and from the fact that many legacy encodings favor composite
forms for character-mark combinations instead of favoring combining character sequences. These
forms are specified in Unicode Standard Annex #15 (which also gives Normalized Forms D and KD
their current names), which was officially incorporated into version 3.1 of the Unicode standard.

 Unicode normalization

 A Practical Programmer’s Guide to the Encoding Standard 415

Part of the reason why the older versions of Unicode preferred decomposed forms over composite
forms is that normalizing to the composed forms is inherently a more complicated business than
normalizing to the decomposed forms, as we’ll see.

To get to Normalized Form C or Normalized Form KC, you start by, respectively, converting the text
to Normalized Form D or Normalized Form KD. In other words, you have to start by taking apart all
the composite characters already in the text. Only then can you put them all back together. This is
because of canonical ordering behavior. As we saw earlier in the chapter, there are two alternative
ways of representing a-macron-underdot with precomposed characters: a-macron followed by a
combining underdot and a-underdot followed by a combining macron. A-underdot followed by a
combining macron is the canonical representation in Normalized Form C. If you start with a string
that contains a-macron followed by a combining underdot…

�����

…the only way you can get from that to the preferred representation is to first decompose it…

a + Ø����
…perform canonical reordering on it…

a + . + Ø
…and then recompose what you can, yielding the preferred representation:

���Ø

So you start by doing canonical or compatibility decomposition and then you do canonical
reordering. Only after you’ve done both of these, producing Normalized Form D or KD, do you
perform the new process, canonical composition.

Canonical composition on a single pair of characters. The fun thing here is that instead of going
from a single character to a pair of characters, you’re going from a pair of characters to a single
character. In effect, instead of having a lookup table with 1,114,112 entries, each consisting of either
one or two characters, you need a lookup table with 1,114,112 times 1,114,112 entries. That’s more
than 1.24 trillion entries! It’s a good thing each one of them needs to store only one character instead
of a pair of characters.

Of course, only 13,038 of those entries actually have a character in them. (That’s how many
characters have canonical decompositions in Unicode 3.1—remember, this process never generates
characters that have compatibility decompositions. Normalized Form C will leave such characters
alone if they were in the text to begin with. Normalized Form KC won’t, but neither form will
produce new ones.) Actually, the real number is less than 13,038, for reasons we’ll see shortly.

Because the lookup table is so sparsely populated, it lends itself well to trie-based schemes for
reducing the memory required, although you need a more complicated scheme than a simple compact
array because you’re trying to model a compact array. You’re also helped by the fact that no
supplementary-plane characters participate in canonical composition (we’ll see why in a moment), so
the conceptual table you’re trying to model is actually only 65,536 by 65,536, or 4,294,967,296
entries.

 Conversions and Transformations

416 Unicode Demystified

In fact, the conceptual table is smaller than that, because the character along one axis will always be a
non-combining character and the character along the other axis will always be a combining character.
Of course, this fact isn’t necessarily of much practical significance, since the combining characters
are scattered all over the BMP.

One approach to this problem would be to use a four-level trie. The first two levels are based on bits
from the base character and the second two on bits from the combining character. Since in many
cases you can discover just from looking at the top byte of the base character that it doesn’t
participate in any compositions, you can optimize for speed and space by pruning branches from the
trie.

Also, since there’s only a limited number of Unicode characters that participate in composition, you
could take advantage of this fact and use a two-dimensional array with only the characters that
participate in composition along the axes. This would be a lot smaller than a two-dimensional array
with positions for all the characters. You could then use a simple compact-array lookup (or possibly
even a hash function) to map from real code point values to the coordinates in this array.

Just as a single character can decompose into a sequence of three or more characters when
performing canonical decomposition, so too can a sequence of three or more characters compose into
a single character when performing canonical composition. Again, you do this by repeatedly applying
the composition rules to pairs of characters. The details are a little trickier than for decomposition,
however— we’ll look at that later.

Canonical composition on a sequence of Hangul jamo. Just as it’s possible to decompose a
Hangul syllable algorithmically, it’s also possible to recompose a Hangul syllable algorithmically.
But there are some wrinkles.

When you canonically decompose a Hangul syllable, you end up with a very regular sequence of
characters: exactly one initial consonant, exactly one vowel, and no more than one final consonant.
These are the only sequences that can be recomposed.

It’s legal to have multiple initial consonants or vowels or final consonants in a row in a sequence of
conjoining Hangul jamo, and it’s easy to see how this might happen: For example, the character

U+1115 HANGUL CHOSEONG NIEUN-TIKEUT () could also be represented with two

Unicode characters: U+1102 HANGUL CHOSEONG NIEUN followed by U+1103 HANGUL
CHOSEONG TIKEUT. If you were to break a Hangul syllable down into individual marks this way,
you could theoretically end up representing a single syllable with as many as eight code points (three
initial consonants, two vowels, and three final consonants).

Unicode allows this, but does nothing to encourage it. None of the conjoining jamo characters have
either canonical or compatibility decompositions: the jamo that consists of two or three marks (that
can also be used on their own as jamo) exist on a completely equal footing with their brethren that
only consist of a single mark: There’s nothing in Unicode that will either break down U+1113 into
U+1102 followed by U+1100 or combine U+1102 U+1100 into U+1113. In practice, pathological
sequences consisting of more than one of a particular kind of jamo in a row (or missing an initial
consonant or vowel) don’t really happen: standard Korean keyboard layouts don’t generate them, and
rendering engines generally won’t draw such sequences correctly.

 Unicode normalization

 A Practical Programmer’s Guide to the Encoding Standard 417

(Of course, if you’re actually writing a Korean input method, a Korean character renderer, or other
software designed to operate on Korean text, you very well may care about these “pathological”
sequences and their equivalences to more “well-formed” sequences. The appropriate equivalences
aren’t, however, specified by the Unicode standard and mapping based on them aren’t part of
Unicode normalization. Unicode 1.0 had some of these mappings, but they were removed from later
versions and declared an application-specific mapping.)

So a canonical-composition process operating on Hangul jamo has to start by checking to see
whether it’s looking at a leading-consonant/vowel or leading-consonant/vowel/trailing-consonant
combination. If it isn’t, it leaves the jamo characters alone and keeps searching for one of these
combinations. (For the purposes of canonical composition, U+115F HANGUL CHOSEONG
FILLER doesn’t count as an initial consonant and U+1160 HANGUL JUNGSEONG FILLER
doesn’t count as a vowel.)

If it does see a lead-vowel-trail or lead-vowel sequence, then and only then does it perform the
reverse of the transformation we looked at in the section on canonical decomposition. I’ll leave the
code to do that composition as an exercise for the reader.

One other wrinkle: If, God forbid, you’re looking at a stretch of text that mixes conjoining jamo with
precomposed syllables, you’ll only get the right answer if you decompose the syllables before you
compose the jamo. This is for the same reason as why you have to decompose any composite
characters before composing everything: If you happen upon a sequence that consists of a syllable
that only contains a leading consonant and a vowel, followed by a trailing-consonant jamo, the
trailing consonant can combine with the syllable to form a different syllable. This is what you’ll get if
the original syllable had been spelled with jamo, so you have to make sure that also works if the first
part of the syllable was spelled with an actual precomposed-syllable character.

Composition exclusion. Unicode Standard Annex #15, which defines the normalization forms, also
specifies a list of characters with canonical decompositions that aren’t allowed in Normalized Forms
C and KC. This is called the composition exclusion list. This list can actually get longer over time, so
it’s supplied in the Unicode Character Database as CompositionExclusions.txt.

There are four classes of composite characters in the composition exclusion list:

x� Characters with singleton decompositions. A character with a one-character canonical
decomposition is a character that is either deprecated or discouraged in Unicode text, discouraged
strongly enough so as to be prohibited in normalized Unicode text. These characters shouldn’t
happen in any normalization form, but need to be explicitly prohibited in Forms C and KC, since
Forms C and KC are supposed to prefer canonical composites. (This is also why we know that
canonical composition always works on pairs of characters: singleton decompositions are
explicitly prohibited.)

x� Composite characters with a non-zero combining class. There are a couple of combining
characters that actually break down into pairs of combining characters in Normalization Forms D
and KD. For example, there’s a single code point value that represents both a dialytika (diaeresis)
and a tonos (acute accent) on top of a Greek letter: it decomposes to separate diaeresis and acute-
accent characters. That’s the preferred representation in all normalization forms. Like the
characters with singleton decompositions, composite characters with non-zero combining classes
are effectively discouraged and shouldn’t show up in normalized Unicode text.

x� Script-specific exclusions. There are a few scripts where, for script-specific reasons, some
composite characters are provided for compatibility with something, but their preferred
representation is a combining character sequence. For example, the Alphabetic Presentation

 Conversions and Transformations

418 Unicode Demystified

Forms block includes a few pointed Hebrew letters. These particular letter-point combinations are
fairly common in Yiddish or other non-Hebrew languages that use the Hebrew alphabet, but not
in Hebrew, and not all that commonly in the other languages. If you normalize pointed Hebrew to
Form C, you don’t want this weird situation where 90% of the text uses the characters in the
Hebrew block (with the points being represented with their own code points), but occasional
letter-point combinations being represented with these compatibility composites from the
Alphabetic Presentation Forms block. So these presentation forms are excluded.

x� New characters. If, in version X of Unicode, you have to represent, say, x with a dot underneath
using an x followed by a combining underdot character, but version X+1 of Unicode introduces a
new precomposed x-underdot character, you get into trouble. Now if you take text in version X of
Unicode and normalize it using a normalizer designed for version X+1, you wind up with text
that’s no longer in version X of Unicode and no longer readable by the program that originally
produced it. To prevent this kind of thing, Normalized Forms C and KC were permanently nailed
to version 3.0 of Unicode. Canonical composites added to Unicode after version 3.0 can never be
produced by canonical composition. The canonical representation for these characters in all four
normalized forms will always be the decomposed representation. This is why we know we don’t
have to worry about supplementary-plane characters in our canonical composition tables.116

You generally don’t have to specifically worry about the characters in the composition exclusion list
in your code at runtime: the table that maps base-mark pairs to composite characters just has to be set
up so as not to map anything to characters in the composition exclusion list.

Canonical composition on a whole string. Applying canonical composition to a string of characters
is a little more complicated than applying canonical decomposition to a string of characters. This is
because you have to be careful not to do anything that would mess up the ordering of the combining
marks in a combining character sequence. If you’re starting with a string that’s in Normalized Form
D or KD, the code would look something like this:

public static char[] canonCombine(char[] in) {

 char[] result = new char[in.length];

 int p = 0;

 int p2 = 1;

 // start by comparing the first and second characters in the string

 int i = 0;

 int j = 1;

 while (i < in.length) {

 // if both characters are of combining class 0, we’re done

 // combining things with the first character. Advance

 // past the combining character sequences in both

 // input and output

 if (combClass(in[i]) == 0

 && (j == in.length || combClass(in[j] == 0)) {

 result[p] = in[i];

 p = p2;

116 You actually don’t have a stability problem if the composite character and all the characters in its full

decomposition are introduced in the same Unicode version, as is the case with the musical symbols in

Unicode 3.1. You only have a stability problem if a newly-added composite character has characters in its

full decomposition that were added in earlier version of Unicode. UAX #15 doesn’t make that distinction,

however: all composite characters added after Unicode 3.0 are disallowed in normalized text, even if their

presence wouldn’t cause a stability problem.

 Unicode normalization

 A Practical Programmer’s Guide to the Encoding Standard 419

 ++p2;

 i = j;

 ++j;

 }

 // if the second character is a combining character and it

 // can combine with the first character, combine them,

 // storing the temporary result in the input buffer,

 // and advance past the combining mark without writing it

 // to the output

 else if (combClass(in[i]) == 0 && canCombine(in[i], in[j])) {

 in[i] = combine(in[i], in[j]);

 ++j;

 }

 // if the second character is a combining character and it

 // CAN’T combine with the first, this character (and any

 // others of the same combining class) will remain in the

 // output. Copy them to the output (keeping track of where

 // the base character is) and advance past them

 else if (combClass(in[i]) == 0) {

 int jCombClass = combClass(in[j]);

 while (combClass(in[j]) == jCombClass)

 result[p2++] = in[j++];

 }

 }

}

This example assumes the existence of a function called combClass() that returns a character’s
combining class, a function called canCombine() that says whether a particular pair of characters
can be combined into a single composite character, and a function called combine() that actually
composes two characters into a single composite character. The basic idea is that you try to combine
each base character (character with combining class 0) with as many combining characters after it as
possible, with the exception that any characters that can’t combine with the base character block any
characters of the same combining class that follow them from combining with the base character.

You have to do this because two combining characters with the same combining class interact with
each other typographically—their order tells you which one to draw closer to the base character. If
the inner character can’t combine with base, you can’t combine the outer one with the base character
without changing their visual presentation (i.e., making the outer character show up closer to the base
character than the inner character does).

Putting it all together. Just as you can interleave canonical decomposition with canonical
reordering, so too can you interleave both of these processes with canonical composition. If the string
you’re trying to convert to Normalized Form C is already in Form C, it a big waste of time to convert
it to Form D just so you can convert it back to Form D. You can avoid this by doing something like
this:

x� If the current character is a composite character, but it’s not in the composition exclusion list and
the next character is of combining class zero, leave it alone.

x� If the current character is a composite character, perform canonical decomposition on it and, if
necessary, perform canonical reordering on the result and any subsequent combining characters.

 Conversions and Transformations

420 Unicode Demystified

Then perform canonical composition on the resulting sequence. (If the character that got
decomposed wasn’t of combining class zero, you’ll actually have to back up until you find a
character that is and start both canonical reordering and canonical composition from there.)

x� If the current character is not a composite character and the character that follows it is a
combining character, just perform canonical composition on this character and the combining
character(s) that follow it.

x� Otherwise, leave the current character alone.

Optimizing Unicode normalization
The DerivedNormalizationProperties.txt file in the Unicode Character Database can be useful in
optimizing your Unicode normalization code. For each Unicode character, this file tells you whether
it can occur in each of the Unicode normalized forms. You can use this to do a quick check on each
character to see whether anything at all needs to be done with it. If you’re converting to Normalized
Form C, for example, you don’t actually have to drop into the full normalization logic until you see a
character with the CompEx, NFC_NO, or NFC_MAYBE property. This can save you a lot of work.

The DerivedNormalizationProperties.txt file also includes properties that tell you whether a
particular character will expand to more than one character when converted to a particular
normalized form. You can use this to defer allocation of extra storage space for the result string until
you really need it (or to find out before you start normalizing whether or not you can do it in place).

Testing Unicode normalization
One of the files in the Unicode Character Database is a file called NormalizationTest.txt. You use
this file to determine whether your implementation of Unicode normalization is correct or not.

Each line consists of a set of Unicode code point values written out as hex numerals (each line also
has a comment with the literal characters and their names to make everything more readable). The
lines are divided into five parts, or “columns,” separated with semicolons. The first column is some
arbitrary Unicode string, which may or may not be normalized already. The other four columns
represent that string converted into Normalization Forms C, D, KC, and KD respectively. If your
implementation of normalization is correct, the following statements will be true for each line of the
file:

x� If you convert every sequence on the line into Normalized Form C, columns 2 and 4 shouldn’t
change, columns 1 and 3 should change to be the same as column 2, and column 5 should change
to be the same as column 4.

x� If you convert every sequence on the line into Normalized Form D, columns 3 and 5 shouldn’t
change, columns 1 and 2 should change to be the same as column 3, and column 4 should change
to be the same as column 5.

x� If you convert every sequence on the line into Normalized Form KC, column 4 shouldn’t change,
and the other four columns should change to be the same as it.

x� If you convert every sequence on the line into Normalized Form KD, column 5 shouldn’t change,
and the other four columns should change to be the same as it.

The file is divided into three parts: Part 0 is a spot check for a number of interesting characters. Part
1 is a character-by-character test of every Unicode character that has a decomposition (in addition to
the characters listed here, you should check all the other Unicode characters to make sure they don’t
change when any of the normalizations are applied to them). Part 2 is a fairly elaborate test of
canonical reordering.

 Unicode normalization

 A Practical Programmer’s Guide to the Encoding Standard 421

For more information, see the file itself. But the basic rule is that if your normalization code can’t
satisfy all of the conditions described above for every line in the file, it doesn’t conform to the
standard.

Converting between Unicode and other standards

It’d be nice if all the digitally-encoded text in the world was already in Unicode, but it isn’t, and
never will be. Not only are there innumerable pieces of encoded text and computer programs that
process text out there that predate the introduction of Unicode and will never be updated, but there
are and will always continue to be documents, computer systems, and user communities that don’t
and won’t use Unicode. While one can hope that over time the computing public will move more and
more toward using Unicode exclusively for the encoding of text, the reality is that there will always
be text encoded using non-Unicode encodings, and that Unicode-based systems will frequently have
to contend with text encoded in these encodings.

This means that some sort of conversion facility will be required for almost every system that
exchanges text with the outside world. Of course, pretty much every Unicode-support library out
there includes such a conversion facility—unlike compression and normalization, you’ll rarely find
yourself working with a library that doesn’t include some sort of facility for character encoding
conversion. The important question usually isn’t “Am I working with an API that provides encoding
conversion?” but “Am I working with an API that provides the conversions I need?” or “Am I
working with an API that does conversion in the way I want it done?”

If the answer is yes, or the API you’re using produces a close-enough answer that you can modify
reasonably easily to get the answer you want, use it. There’s no sense in going to the trouble to create
all this yourself when you don’t have to. But if you find you have to implement character conversion
for whatever reason, read on…

Getting conversion information
The first issue is coming up with the information on just how you convert between such-and-such an
encoding and Unicode. For a wide variety of encoding standards, you can find the answer on the
Unicode Web site. The Unicode Consortium maintains an unofficial repository of mapping tables
between Unicode and various other national, international, and vendor encoding standards. The
tables are in a simple textual format where each line consists of a sequence of bytes (shown as two-
digit hex values), a tab character, and a sequence of Unicode code point values (shown as four-or-
more-digit hex values).

Interestingly, Unicode Technical Report #22 proposes a richer XML-based format for describing
how to convert from some encoding to Unicode and back; as of this writing, this format wasn’t being
used for the mapping tables on the Unicode Web site, but certain third-party libraries, notably the
open-source International Components for Unicode, are using it. There’s also a lot of instructive
information in this report on character encoding conversion, and it’s worth reading.117

117 In fact, much of the information in the rest of this section, particularly the information on choosing

converters and handling exceptional conditions, is drawn from UTR #22.

 Conversions and Transformations

422 Unicode Demystified

Converting between Unicode and single-byte encodings
The mechanics of converting from a single-byte encoding to Unicode are trivially simple: Just use an
array of 256 code point values. Converting back the other way isn’t much harder: use some form of
trie structure (if the conversion doesn’t involve any supplementary-plane characters, this can be a
simple one-level compact array). Often, you’ll get better compression if the trie stores numerical
offsets rather than the actual values to map to, but this generally won’t make a difference when
you’re converting to a one-byte encoding.

Converting between Unicode and multi-byte encodings
Converting between Unicode and a multi-byte encoding will generally require a trie structure of some
type for both directions. If the non-Unicode encoding has both one- and two-byte code points, it
often makes sense for the Unicode-to-non-Unicode table to behave as though all of the code points in
the target encoding are two bytes long, representing one-byte code points with an invalid leading byte
value (0x00 will work in most of them) and suppress that when emitting the resulting characters. This
lets you always map to 16-bit values in the table and it also helps if you want to store numeric offsets
in the table instead of actual code point values in the target encoding. With multi-byte encodings,
there are often enough code points in the sequence being mapped to for this to help your compression
in the trie.

Other types of conversion
There are a few interesting cases where you can’t do simple table-based conversion and have to do
something special.

Stateful encodings. A stateful encoding is one where bytes you’re seen earlier in the conversion
process affect the interpretation of bytes you see later in the process. We’re not talking here about
simple multi-byte encodings, where several bytes in a row combine into a single code point, but
situations where whole code point values are overloaded with multiple semantics. Typically, you
have a bank of code point values that each represent two (or more characters). Shift-in and shift-out
codes in the text stream put the converter in a “mode” that specifies which of the two sets of
characters that bank of code points is to represent. That mode persists until the next shift-in/shift-out
character.

SCSU is an example of a stateful encoding. The old Baudot code, which used the same range of code
points for letters and digits and used control codes to shift that bank back and forth, was as well.
There are also a number of modern EBCDIC-based encodings that still use this technique.

For stateful encodings, your converter will have to keep track of its mode. You’ll either need multiple
to-Unicode conversion tables, one for each mode, or your tables will need to be able to store all of
the overloaded values for those code points that are overloaded. The from-Unicode converter will
also have to keep track of mode, with the table including information on which mode to use for the
overloaded code points in the non-Unicode encodings. You’d emit a mode-shift character anytime
you have to emit a code point with a mode you’re not currently in.

ISO 2022. ISO 2022 is a special example of a stateful encoding.The ISO 2022 standard defines a set
of common characteristics for coded character sets, but doesn’t actually define a coded character set.
Instead, it defines a character encoding scheme for representing characters from different coded
character sets in the same text stream by making use of various escape sequences to change the
meanings of characters in different parts of the encoding space. An ISO 2022 converter would

 Converting between Unicode and other standards

 A Practical Programmer’s Guide to the Encoding Standard 423

generally use other converters for the actual character code conversion; all it’d do is interpret (or
emit) the escape sequences to shift coded character sets.

Algorithmic conversions. There are a few encodings where you can do all the work with a simple
mathematical transformation. The classical example is, of course, ISO 8859-1 (Latin-1). You could
convert from 8859-1 to Unicode simply by zero-padding the byte values out to 16 bits. You could
convert from Unicode back to 8859-1 simply by truncating the value back down to 8 bits (although
you probably want to do a little more work to handle exceptional conditions).

There are a number of other encodings where Unicode preserves the relative order of the characters
in the code charts and you can convert to and from Unicode by just adding or subtracting a constant
(or, in the case of some ASCII-based encodings, doing a range check and adding or subtracting one
of two constants depending on the result).

Transformations on other conversions. If you’re implementing a whole bunch of encodings, you
may be able to save space for conversion tables by doubling up. For example, you might have two
encodings, one of which is a superset of the other. You could use the same table for both of them
and postprocess the conversion for the subset encoding. (This might work, for example with ISO
8859-1 and Microsoft code page 1252, which is a subset, although this is really only true if you
ignore the C1 control-code space in ISO 8859-1.) As another example, there are a number of
encoding schemes based on the JIS X 0208 character set, so you might use a table to convert to the
abstract JIS 208 values and then algorithmically convert to the actual encoding scheme in use (for
example, EUC-JP).

Another example is variants on the same conversion. For example, you may want 0x5C in a Japanese
ASCII-based encoding to be treated as the yen sign, or you may want it to be treated as the backslash.
Rather than having two different tables that differ only in their handling of this one character, you
might just have a table for one and postprocess the result when you want the other variant.

Handling exceptional conditions
There are a number of exceptional conditions you need to handle when converting between any two
encodings:

x� The input text is malformed. You encounter a byte or sequence of bytes that isn’t supposed to
occur in that encoding. For example, U+FFFF is illegal in all Unicode transformations, 0xFF
should never happen in UTF-8, a high surrogate is illegal in UTF-16 unless it’s followed by a low
surrogate, and so forth. A lot of encodings, particularly the variable-length ones, have restrictions
like this.

x� A byte or sequence of bytes is legal, but isn’t actually assigned to a character. This may indicate
malformed text, or it might indicate that the text is in a newer version of the encoding than your
converter is designed to handle.

x� A byte or sequence of bytes is legal and actually assigned to a character, but the encoding you’re
mapping to doesn’t have a representation for that character.

You may want to treat all three conditions the same way, or you may want to treat them differently. It
may also depend on the situation (if you’re writing an API library, you may want the calling code to
tell you what to do). You’ve got a number of choices for dealing with exceptional conditions:

 Conversions and Transformations

424 Unicode Demystified

x� Halt the conversion and report an error. Generally, just choking on the input isn’t a good idea, but
if the conversion is restartable, this technique is often used to defer the job of handling the
exception to the caller.

x� Ignore the bytes from the source text stream that caused the exception. This is a pretty common
strategy, but has the disadvantage of masking problems in the source text. The resulting text can
look okay, with the user never realizing there was additional text there that didn’t convert.

x� Write out some kind of error character. If you’re going to Unicode, this usually means writing out
U+FFFD, the replacement character, when you encounter an illegal input sequence or one you
can’t map. (Most encodings have an analogous character—in ASCII, 0x1A, the SUB character,
serves this purpose.) Sometimes, you might want to distinguish between unmappable and illegal
input sequences. You could use U+FFFF in Unicode for the illegal sequences. You have to be
careful with this technique, though, because U+FFFF should never happen in well-formed
Unicode. It’s okay for internal-processing purposes, but you’d have to be careful to convert
U+FFFF to U+FFFD or strip it out before sending the text to some other process.

x� If you encounter an unmappable character when converting to Unicode (that doesn’t happen very
often), you can map it to a code point in the private use space. The beauty of this is that if you
later convert back to the source encoding from Unicode, the characters you couldn’t handle can
be restored. (If you know what you’re converting to private-use code points, you can just treat
them as ordinary characters inside your application as well.)

x� Write out an escape sequence. If the text you’re converting is in a format that supports numeric
escape sequences, you can convert unmappable source code points into escape sequences. For
example, if you’re converting from Unicode to ASCII and you know the destination is a Java
source file, you can convert the unmappable character to a sequence of the form “\u1234”. If
you’re going to an XML file, you can convert to an XML numeric character reference (e.g.,
“Ӓ”).

x� Usa a fallback mapping. If the character you’re mapping can’t be represented in the target
character set, you might convert it to something reasonably similar. For example, you might
convert the curly “” quotation marks to the straight quotation marks when going to ASCII.

You want to be careful when using fallback mappings, since if you convert from Unicode to
something else using fallback mappings, then back to Unicode, you lose data. Sometimes this is
okay, but if you need to preserve round-trip integrity, you can’t use fallback mappings (or you
need some way to flag them as such). In systems, such as HTML and XML, that can properly
handle characters encoded as escape sequences, that’s generally a better way to go.

For the same reason, you generally don’t want multiple characters in one encoding to map to the
same character in another encoding, because this also loses data in a round-trip conversion.
Unless the mappings are truly for alternative representations (say, Unicode characters with
singleton canonical mappings to other characters), you usually want to flag all but one of them as
fallback mappings.

Dealing with differences in encoding philosophy
There are other types of transformations you might have to worry about when converting between
Unicode and something else.

Normalization form. Usually, an encoding naturally converts to Normalized Form C or to
Normalized Form D. Some will actually convert naturally to both (they don’t include any composite
characters and they don’t include any combining characters—our old friend ASCII is an example).
When converting from Unicode to one of these encodings, you generally want to convert to the
appropriate Unicode normalized form first (or as part of the encoding conversion) to make sure you
really catch everything representable in the target encoding.

 Converting between Unicode and other standards

 A Practical Programmer’s Guide to the Encoding Standard 425

If the non-Unicode encoding doesn’t naturally convert to any Unicode normalized form (i.e., there
are sequences in it that would convert to unnormalized Unicode text), it’s generally a good policy to
normalize the result after converting to Unicode.

Combining character sequences. Not all encodings that use combining character sequences encode
them the same way Unicode does. If, say, you’re converting to or from an encoding, such as ISO
6937, that puts the mark before the character it attaches to, you have to switch the base-mark pairs as
part of the conversion.

Character order. Some older vendor encodings for Hebrew and Arabic use visual order instead of
logical order to store the characters. In these cases, you actually have to apply the Unicode bi-di
algorithm (or a reversed version of the bi-di algorithm) as part of the conversion.

Glyph encodings. There are some encodings (again, generally older vendor encodings) that are
glyph-based. In these encodings, different glyphs for the same character get different code point
values. Converting to an encoding like this actually involves the same kind of contextual glyph
selection logic you need to render the text on the screen.

Choosing a converter
Choosing a converter is generally straightforward, but you can get into interesting situations if the
converter you want doesn’t exist but there’s one there that’s close. In situations like these, you can
sometimes do a “best fit” mapping. You acknowledge you might lose data, but sometimes this is
okay, as long as you know there will be errors and you don’t purport to be doing the correct
conversion.

The one case where things work fine is if the text you’re reading is in encoding X, you have a
converter for some encoding that’s a superset of X, and you’re going from X to Unicode. In this case,
everything just works fine.

If you’re in an environment that supports escape sequences (say, you’re producing an XML file), you
can also do the opposite: You want to output X, you have a converter for a subset of X, and you’re
going from Unicode to X. Some characters that are representable in X aren’t representable in the
subset you’re actually converting to, but since you can convert them to escape sequences, you don’t
lose data.

Line-break conversion
Line-break conventions (i.e., which characters you use to signal the end of a line or paragraph) are
generally specific to a particular platform or application, rather than a particular target encoding (of
course, the target encoding defines which choices you have). If your converters have to be cross-
platform, or used in some other situation where you can’t nail down the line-breaking conventions,
you may need to do line-break conversion in a separate pass, or separate out line-break conversion
from the rest of the conversion logic.

 Conversions and Transformations

426 Unicode Demystified

Case mapping and case folding

English speakers are familiar with the concept of case. Every letter in the Latin alphabet comes in
two “cases”: upper and lower (or capital and small). Like the Latin alphabet, the Greek, Cyrillic, and
Armenian alphabets are also cased, or “bicameral.” (The letters in the Georgian alphabet also come
in two distinct styles, which for a short time in history were treated as upper and lower case, but
generally aren’t anymore.)

This means you will occasionally run into situations where you want to convert one letter (or a whole
string) from one case to the other. Many word processors, for example, let you convert to upper or
lower case with a single command or a character style.

On many systems, you convert everything to upper or lower case not for display, but to erase case
distinctions when searching. In Unicode, this is done with a different process, known as case folding.

Unicode Technical Report #21 provides more information on performing case mappings on Unicode
characters.

Case mapping on a single character
First of all, it’ll come as no surprise that you can’t just convert from one case to another by adding or
subtracting some constant, as you can with ASCII. This is because not all case pairs are the same
distance apart. For example, the case pairs in the ASCII block are 32 code points apart, but those in
the Latin Extended A block are immediately adjacent to each other.

So you have to do a table lookup. The UnicodeData.txt and SpecialCasing.txt files in the Unicode
Character Database include the case mappings for all the Unicode characters. You can use a simple
one-level compact array as your case mapping table. As with code conversion, you get better
compression if the table holds numeric offsets rather than actual code point values.

You do, however, need an exception table for case mappings. There are a number of reasons for this:

x� Titlecase. Unicode includes a number of single code points that actually represent two characters.
If one of these occurs at the beginning of a word, you need a special “titlecase” version that
represents the capital version of the first letter and the lowercase version of the second letter and
can be used at the beginning of a word. For the characters that have titlecase versions, you
actually have to store two mappings: one to titlecase and one to the opposite case. (For all other
characters, the “titlecase” form is the same as the uppercase form.)

x� Expansion. Some characters actually turn into two characters when mapped to uppercase.

x� Context sensitivity. Some characters map to different characters depending on where they occur
in a word.

x� Language sensitivity. Some characters have different mappings depending on the language.

The UnicodeData file includes the titlecase mappings for everything. The other special mappings, for
historical reasons, are in a separate file, SpecialCasing.txt. For a complete treatment of
SpecialCasing.txt, see Chapter 5, but to recap, some of the more important mappings in the
SpecialCasing.txt file are:

 Case mapping and case folding

 A Practical Programmer’s Guide to the Encoding Standard 427

x� Many characters that expand when converted to uppercase. The most important and common
example is the German letter ß, which uppercases to “SS,” but there are many others.

x� The Greek letter sigma, which has two lowercase versions, one that occurs at the end of a word
and another that occurs in the middle of a word (or when the letter sigma appears on its own as a
“word”).

x� Mappings to deal with Lithuanian. In Lithuanian, a lowercase i or j with an accent mark over it
doesn’t lose the dot, like it does in other languages. (In other words, a lowercase i with an acute

accent normally looks like this—í—but in Lithuanian it looks like this:
í

[fix baseline and
spacing]. You can do this with a special font for Lithuanian, but if you want to explicitly rep-
resent it this way in Unicode, you have to use combining character sequences that use an explicit
U+0307 COMBINING DOT ABOVE, and the case mapping code has to be smart enough to add
and remove this character as necessary.

x� Language-sensitive mappings for Turkish and Azeri that deal with the letter Õ��ZKRVH�XSSHUFDVH�
IRUP�LV�,����7KH�XSSHUFDVH�YHUVLRQ�RI�L�EHFRPHV�ø�VR�\RX�FDQ�WHOO�WKHP�DSDUW��

One thing to keep in mind when doing case mappings is that they lose data and aren’t inherently
reversible. If you start with “Lucy McGillicuddy” and convert it into uppercase, you get “LUCY
MCGILLICUDDY.” If you now convert that to lowercase, you get “lucy mcgillicuddy.” Going to
titlecase instead also doesn’t get you back your original string: you get “Lucy Mcgillicuddy.” In a
word-processing program or other situation where you provide a case-mapping facility to the user,
you need to make sure you save off the original string so you can restore it if necessary. (A simple
Undo facility usually takes care of this requirement.)

Case mapping on a string
Mapping a string from one case to another is pretty simple if you’re going to uppercase or lowercase:
Just apply the appropriate transformation to each character one by one. The only thing you need to
keep in mind is that the string may get longer in the process (which may make converting case in
place impossible or force you to fallback on the single-character mappings in UnicodeData.txt, even
though they’re not always correct).

Going to titlecase is a little more complicated: Here, you have to iterate through the string and check
context: If a character is preceded by another cased character (whatever its case), convert it to
lowercase. Otherwise, convert it to titlecase (which, most of the time, will be the same as converting
it to uppercase).

Of course, this doesn’t actually give you what you want all the time. “Ludwig van Beethoven” would
turn into “Ludwig Van Beethoven” under this transformation, again possibly making it necessary to
save off the original string before messing with it. More importantly, applying the transformation to
“THE CATCHER IN THE RYE” gives you “The Catcher In The Rye,” when what you really want is
“The Catcher in the Rye.” In other words, not every word in a real title is capitalized. Getting this
right is language-specific, as the list of words you don’t capitalize varies from language to language.
A simple algorithm won’t worry about this and will just capitalize everything.

Case folding
Now if what you’re really trying to do is erase case distinctions from a pair of strings you’re about to
compare for equality, you don’t want to do it using the case-mapping stuff. Converting to any one

 Conversions and Transformations

428 Unicode Demystified

case will leave in some distinctions that converting the other way will erase, and doing both
conversions is a little costly (and doing it in different orders will also produce different results).

The Unicode Character Database includes another file, CaseFolding.txt, specifically for this use. It
maps all the cased letters to case-independent sequences of characters (generally, but not always, the
mapping is equivalent to mapping first to uppercase, then mapping the result to lowercase).

CaseFolding.txt actually includes two separate sets of mappings: One set has a one-character
mapping for everything. It’ll generally give you the right answer, but will leave in some distinctions
that you’d get rid of if you actually mapped to uppercase and then back to lowercase. The other set
does have expanding mappings. It’ll erase more differences, but is a little more complicated (and
perhaps slower) to implement.

$QG�DJDLQ��WKH�7XUNLVK�OHWWHU�Õ�FDXVHV�WURXEOH��&DVH)ROGLQJ�W[W�LQFOXGHV�WZR�RSWLRQDO�PDSSLQJV�IRU�
dealing with this: If you use them, it erases any case distinction, but also erases the distinction
EHWZHHQ�Õ�DQG�L��,I�\RX�GRQ¶W�XVH�WKHP��LW�GRHVQ¶W�QRUPDOL]H�RXW�WKH�FDVH�GLIIHUHQFHV�IRU�L�DQG�Õ��WKH\�
and their uppercase counterparts will still compare different).

It’s important to keep in mind that you only want to use the CaseFolding.txt mappings when you’re
doing language-independent comparisons, such as for building search trees or other internal uses. If
you want truly language-sensitive behavior, you need a full-blown collation facility. We’ll be looking
at collation in the next chapter.

Transliteration

Finally, there’s transliteration.118 The term generally refers to taking a piece of text written using
some writing system and converting it to another writing system. This isn’t the same thing as
translation, which actually involves converting the text to a different language and changing the
words. When text is transliterated, the words (and the language) stay the same; they’re just written
with different characters.

In computer text-processing circles, on the other hand, the word “transliteration” is used in a
broader sense to refer to a broad range of algorithmic transformations on text. This is because a
facility designed to convert text from one writing system to another will be flexible enough to also
perform a bunch of other transformations as well.

So why is transliteration useful? Say, for example, you’ve got this customer list:119

�� �

�� �

�� �

�� �

�� �

��

118 Most of the material in this section is drawn from Mark Davis and Alan Liu, “Transliteration in
ICU,” Proceedings of the 19th International Unicode Conference, session B14.
119 This example is ripped off directly from the Davis/Liu paper, op. cit.

 Transliteration

 A Practical Programmer’s Guide to the Encoding Standard 429

��
��

��

This will be a lot easier for an English-speaking user to deal with if you see it like this instead,
especially if he doesn’t have Japanese, Korean, or Greek fonts installed on his computer:

Gim, Gugsam
Gim, Myeonghyi
Jeong, Byeongho
Takeda, Masayuki
Masuda, Yoshihiko
Yamamoto, Noboru
Roúts ��Ánna
Kaloúd V��&KUêstos
7KHRG Uátou, Elén

Of course, a Russian-speaking user might be more comfortable with the list transliterated into
Cyrillic letters instead.

In addition to converting text into some target writing system for display, a transliteration facility is
also useful for a number of other types of mappings, including:

x� Accepting keyboard input for a particular script using a keyboard designed for another script
(e.g., entering Russian text using an English keyboard)

x� Accepting keyboard input for Han and Hangul characters, where it takes multiple keystrokes on
a conventional keyboard to enter a single character (building up a whole Hangul syllable out of
several component jamo, for example, or entering Japanese or Chinese characters by entering a
Romanized version of the text on an English keyboard)

x� Converting text in a multi-scriptal language from one script to another (e.g., converting Serbo-
Croatian from Cyrillic letters to Latin letters, Japanese from Hiragana to Katakana, Chinese
from Simplified Chinese characters to Traditional Chinese characters, etc.)120

x� Case conversions

x� Converting typewritten forms of certain characters to their typographically-correct equivalents
(for example, converting -- to —, or converting " or `` to “)

x� Allowing input of arbitrary Unicode characters by typing their hexadecimal code point values
along with some special character

x� Fixing various typing and spelling mistakes on the fly (think Microsoft Word’s AutoCorrect
feature, for example)

x� Unicode normalization

Many of these transformations, especially the script-to-script conversions, are more involved, and
require a more complicated approach, than the other conversions we’ve looked at. Not only do

120 It’s important to note that some of the more complicated conversions, such as from Han characters to any

of the phonetic scripts, or between Simplified Han and Traditional Han, often require more-sophisticated

logic, often involvig inguistic analysis and dictionary lookup, that go beyond what a typical transliteration

package can do. Conceptually, it’s the same type of problem, but practically speaking, it requires different

code.

 Conversions and Transformations

430 Unicode Demystified

you have to deal with the full generality of many-to-many mappings (where source and destination
strings that are longer than a single character are the norm rather than the exception), but you also
have to deal with:

x� Context. A particular character or sequence of characters may only get mappings to some other
sequence of characters when certain sequences of characters appear before or after it. For
instance, " may only get mapped to “ when it’s preceded by a non-letter and followed by a
letter.

x� Wildcard matches. To specify the curly-quote mapping above, you aren’t going to want to
spell out every single pair of surrounding characters that cause the mapping to happen; you’re
going to want to specify character categories and let the engine expand this into actual pairs of
characters.

x� Partial matches. If the text you’re operating on is coming to you in chunks—say, from a
buffered file API or from keyboard input—you may have to deal with situations where you
have to wait to see more characters to know what mapping to perform. For example, if you’re
mapping Latin letters to Cyrillic letters and have a rule that maps “s” to “´�DQG�³VK´�WR�³ ´��LI�
you get an “s” in the input, you have to wait to see the next character (and see whether that
character is an “h”) before you know what to do with the “s” (unless you know that the “s” is
the last character in the input). This may involve either buffering characters you’re not done
with yet or keeping track of which part of the input hasn’t been fully mapped yet.

x� Backup. After you perform a mapping on a piece of text, you’ll generally want to start the next
mapping with the first character you haven’t looked at yet, but you may want to back up into
the result of the mapping you just performed instead. This can sometimes cut down drastically
on the number of rules you need to achieve some effect.

For example, consider the palatalized Katakana combinations. You could just have rules that

say that “kyu” turns into “ ”, “kyo” turns into “ ”, “pyu” turns into “ ”, and so

on, or you could have a rule that says that “ky” turns into “~y” and another rule that turns

“~yu” into “ ”. If there are x different consonants that can start a palatalized syllable and y

different vowels that can end a palatalized syllable, you can reduce the number of mapping
rules you need from x times y to x plus y using this technique. But it only works if you can
back up after the first mapping and consider the “~y” again when determining what to do in the
second mapping.

In essence, doing all this requires something similar to a generalized regular-expression-based
search-and-replace facility. Without going into huge amounts of detail, one solution to the
problem might involve the following data structures:

x� A compact array or trie that maps single characters to character categories. This is important
for keeping the main lookup table small when rules involve wildcard matches.

x� A generalized trie structure that maps arbitrary-length sequences of character categories to
result strings in an auxiliary data structure. You probably want the system to consider rules in
some defined order (ensuring, for example, that you see the rule for “sh” before you see the rule
for “s”), making a ternary-tree representation less than ideal. Most likely you’d base the main
mapping table on a binary tree or a generalized tree of arrays. (That is, the list of matching
rules or partially matching rules could be a simple linked list or an array.)

x� A results data structure, probably a single memory block containing all the result strings. The
strings could either be null-terminated or the main trie could contain pointers and lengths,
possibly leading to better compaction.

The results data structure is interesting, because you have to store not only result strings there, but
also information on which parts of the original matching sequence are context and don’t get

 Transliteration

 A Practical Programmer’s Guide to the Encoding Standard 431

replaced and information on how far to back up into the result before starting the next matching
operation. (Flags indicating which parts of the matching sequence are context could also be put
into the main trie.) These are places where the new non-character code point values in Unicode
3.1 come in handy: you can use the non-character code points as tokens to indicate the backup and
context positions, and then just “mark up” the result string with these tokens.

The algorithm would then look something like this:

1. Look up a category for the character at the starting position.

2. Use that category to look up the character in the main trie.

3. If the character leads you to another node in the trie, advance to the next character in the input
and go back to step 1.

4. If the character leads you to an entry in the result table, replace the non-context part of the
matching text in the input with the result text from the result table. The new starting position
is either after the result text unless the result text specifies a backup position, in which case
that’s the new starting position. Start over at the root level of the main trie and go back to step
1.

5. If you exhaust the input text while you’re pointing at something other than the root level of the
main trie, you either have to pull in more text to figure out what to do, or you’re really done,
in which case you use the “if the next character doesn’t match” rule at the curent level of the
main trie.

Again, this approach may not be the most effective for really complicated mappings that require
more knowledge of the language, such as mapping Simplified Chinese to Traditional Chinese, but
for most generalized mappings it works quite well.

Starting in the next chapter, we’ll look at more-complicated operations on Unicode text, many of
which also involve mappings of the type we’ve looked at in this chapter.

 433

CHAPTER 15 Searching and Sorting

Aside from drawing it on the screen (or some other output device), the most important processes that
are usually performed on text are searching and sorting. And, of course, the main thing these two
operations have in common is string comparison. As with the other processes we’ve looked at, there
are a number of interesting complications involved in performing string comparison on Unicode
strings, many of which stem from the larger repertoire of characters in Unicode. But unlike many of
the other processes we’ve looked at, many of the issues that make good string comparison hard are
not at all unique to Unicode, but are issues when dealing with text in any format.

Unlike many of the other processes on Unicode text that we’ve examined, language-sensitive string
comparison is one of those features that virtually every Unicode support library provides. This means
you’ll rarely have to implement this yourself—you should usually be able to take advantage of some
API that provides language-sensitive comparison. Of course, it might not do exactly what you want,
or support the languages you’re interested in. In this case you might have to write your own
comparison routines, but it’s often more of a matter of learning how to specify your desired results to
the API you’re using. Searching, on the other hand, is something you might well need to code on
your own.

At any rate, it’s still instructive to understand just what goes into doing Unicode-compatible
searching and sorting. We’ll start by looking at the basics of language-sensitive string comparison,
then look at the unique considerations Unicode brings to the party, and finish by discussing some of
the additional things to keep in mind when doing actual searching or sorting.

The basics of language-sensitive string comparison

The first thing to remember is that you can’t simply rely on comparison of the numeric code point
values when you’re comparing two strings. Unless the strings that may be compared conform to a
very tightly restricted grammar, this will always give you the wrong answer. (The one exception to

 Searching and Sorting

434 Unicode Demystified

this is when the ordering and equivalences implied by the comparison routine will have no user-
visible effects, but even then there are wrinkles to worry about—see “Language-insensitive string
comparison” later in this chapter.)

This isn’t just a Unicode thing. Binary comparison will actually give you the wrong answers with
most encodings (in fact, for every encoding standard, it’s probably possible to come up with a pair of
strings that will compare wrong if you just use binary comparison, but it’s a bigger problem with
some encoding standards). The numeric order of the code point (or code unit) values in most
encodings is good enough to give you a reasonably acceptable ordering for many sets of strings (for
example, the letters of the Latin alphabet are encoded contiguously and in alphabetic order in most
encodings), but that’s usually about it.

Consider the following list of English words and names, sorted in ASCII order:

Co-Op of America
CoSelCo
Coates
Cohen
Cooper
Cooperatives United
Cosell
MacIntosh
MacPherson
Machinists Union
Macintosh
Macpherson
Van Damme
van der Waal
van den Hul
Vandenberg

If you squint hard enough, you can kind of convince yourself that this order makes sense, but it’s
definitely not intuitive. The spaces, punctuation, and capital letters gum things up. The order should
probably look more like this:

Coates
Cohen
Cooper
Cooperatives United
Co-Op of America
CoSelCo
Cosell
Machinists Union
MacIntosh
Macintosh
MacPherson
Macpherson
Van Damme
Vandenberg
van den Hul
van der Waal

 The basics of language-sensitive string comparison

 A Practical Programmer’s Guide to the Encoding Standard 435

In other words, you probably just want to consider the letters, with things like capital letters and
spaces being secondary considerations. Sorting by the raw ASCII code point value doesn’t give you
that.

If you consider the Latin-1 encodings, things just get worse. Take the following list, for example:

archaeology
archway
archæology
co-operate
coequal
condescend
cooperate
coziness
coöperate
restore
resume
resurrect
royalty
rugby
résumé

Again, the accent marks gum things up. The alternate spellings of “cooperate” and “archaeology”
wind up widely scattered, and “resume” and “résumé” wind up far apart. In general, the accented
forms of letters end up widely separated from their unaccented counterparts, leading to weird results.
Again, you probably expect the list to be sorted more like this:

archaeology
archæology
archway
coequal
condescend
cooperate
coöperate
co-operate
coziness
restore
resume
résumé
resurrect
royalty
rugby

Latin-1 has an additional problem. This is the fact that it’s used to encode text in a lot of different
languages, and the concept of “alphabetical order” isn’t the same across all of them.

For example, consider the letter ö. In English, this is just the letter o with a diaeresis mark on it. The
diaeresis is used to indicate that the o should be pronounced in a separate syllable from the vowel
that precedes it, rather than forming a diphthong (such as in “coöperate” above), but the letter is still
the letter o and should sort the same as if it didn’t have the diaeresis.

 Searching and Sorting

436 Unicode Demystified

In German, the diaeresis indicates a significant change in pronunciation, but the letter is still basically
an o. Just the same, depending on who’s doing the sorting, ö may sort either as a variant of o or as
equivalent to “oe” (“oe” being an acceptable variant spelling of ö in German).

In Swedish, on the other hand, ö is a whole different letter, not just an o with a mark on it. It sorts
with a number of other letters, such as å, ä and ø, at the end of the Swedish alphabet, after z.

It works the other way, too: In English, v and w are different letters. In Swedish, on the other hand, w
is just a variant of v.

The upshot of this is not only that you can’t trust the binary order of the code points, but that the
actual order you use depends on the language the text is in. If you’re sorting a group of Latin-1
strings, the order they end up in will be different depending on whether they’re in English, Spanish,
French, German, or Swedish (to name just a few). Sorting a list of Swedish names using the German
or French sorting order is just as wrong as using the binary order.

This is important. The encoding isn’t necessarily aligned with the language. Many encodings can be
used to encode multiple languages. Some encodings tend to be used only with certain languages, but
this isn’t guaranteed and shouldn’t be depended upon. In fact, sorting isn’t dependent on the language
the strings themselves are in; it’s dependent on the language of the person reading them. An English-
speaking user will want to see a list of Swedish names (or a mixed list of Swedish and English
names) sorted in English alphabetical order.

All of this doesn’t mean that you have to write a whole new string comparison routine for every
language you might encounter. Instead, the normal approach is to use a rule-driven algorithm, where
you have a generalized sorting routine and you pass it some sort of table of information explaining
how to sort text in a particular language.

In its simplest form, you’d just map each character to an abstract weight value appropriate for the
specified language and sort the strings according to the weights of their characters instead of the code
point values. But the mapping of characters to weights is actually more complicated than this, even in
non-Unicode encodings such as Latin-1.

Multi-level comparisons
For starters, you actually need more than one weight value. Consider this list:

car
CAT
Cat
cAT
cAt
caT
cat
CAVE

You want to sort according to the letters without taking the case differences into account, so that
“car” sorts before all the “cat”s and “cave” sorts after them. But you don’t want the order of the
“cat”s to be determined by the whim of your sorting algorithm. The “cat”s aren’t identical—you want

 The basics of language-sensitive string comparison

 A Practical Programmer’s Guide to the Encoding Standard 437

a defined ordering of some kind. For example, maybe the capital letter should come before its small
counterpart.

Your first thought might be that you can get this effect by interleaving the weight values for the
capital and small letters—for example, you put “C” before “c”, but both of them after “b” and before
“D”. This doesn’t work. If you do that, you get this order:

CAT
CAVE
Cat
car
cat
cAT
cAt
caT

Note how “car” and “cave” wind up in the middle of the “cat”s instead of on either side of them.

What you have to do to get this effect is assign each letter two weight values: a primary weight and a
secondary weight. The primary weights are the same for the capital and small versions of each letter.
For example, both “A” and “a” have a weight of 1, “B” and “b” have a weight of 2, “C” and “c” have
a weight of 3, and so on. The secondary weights, on the other hand, are different for the different
cases. And since you already have the primary weights to differentiate things, you can actually reuse
the same secondary-weight values for each letter. All of the capital letters have a secondary weight of
1, and all of the small letters have a secondary weight of 2.

You use these as follows: You compare two strings using their primary weights only. If they’re
different, you’re done. Only if they’re the same do you go back and compare them again using their
secondary weights. This way, a primary difference later in the string still beats a secondary difference
earlier (e.g., “Cat” comes after “car” even though “c” comes after “C” because “r” comes before “t”
and the difference between “r” and “t” is more important than the difference between “c” and “C”).
This produces the ordering in the first example above.

To cover all languages, you generally need three or more weight values (or “levels”) per character.
For most languages, those characters that are considered “different letters” are given different
primary weights. Versions of the same letter with different accent marks attached to it (or other
variants of the letter, such as “v” and “w” in Swedish) are given different secondary weights.
Versions of the same variant of the same letter with different cases are given different tertiary
weights.

Again, you compare the strings first using their primary weights only. If they compare equal, you
break the tie by comparing them again using their secondary weights. If they’re still equal, you break
the tie again using their tertiary weights. If they’re equal at this level, they really are equal and you
either don’t care about their ordering or you differentiate based on a secondary key.

You don’t actually have to make three complete passes through the strings to compare them this way,
of course. You can compare the weights at all levels in a single pass. It looks something like this:

public static int compare(char[] a, char[] b) {

 int firstSecondaryDifference = EQUAL;

 Searching and Sorting

438 Unicode Demystified

 int firstTertiaryDifference = EQUAL;

 int i = 0;

 while (i < a.length && i < b.length) {

 char cA = a[i];

 chat cB = b[i];

 if (primaryWeight(cA) > primaryWeight(cB)

 return A_GREATER;

 if (primaryWeight(cB) > primaryWeight(cA)

 return B_GREATER;

 if (firstSecondaryDifference == EQUAL) {

 if (secondaryWeight(cA) > secondaryWeight(cB))

 firstSecondaryDifference = A_GREATER;

 else if (secondaryWeight(cB) > seondaryWeight(cA))

 firstSecondaryDifference = B_GREATER;

 else if (firstTertiaryDifference == EQUAL) {

 if (tertiaryWeight(cA) > tertiaryWeight(cB))

 firstTertiaryDifference = A_GREATER;

 else if (tertiaryWeight(cB) > tertiaryWeight(cA))

 firstTertiaryDifference = B_GREATER;

 }

 }

 ++i;

 }

 if (a.length > b.length)

 return A_GREATER;

 if (b.length > a.length)

 return b_GREATER;

 if (firstSecondaryDifference != EQUAL)

 return firstSecondaryDifference;

 return firstTertiaryDifference;

}

Ignorable characters
Defining different levels of difference doesn’t by itself give us the right answer for everything we’ve
looked at so far. Consider the different variant spellings of “cooperate” (with a couple other words
thrown in to clarify things):

concentrate
co-operate
cooperate
coöperate
copper

What weights do we give the hyphen to end up with this order? There’s no primary weight you can
give the hyphen that’ll give you the right answer (short of making the hyphen sort between “n” and
“o,” which will produce goofy results when the hyphen appears in other words). What you want to do
is give the hyphen no primary weight at all: At the primary level, this character should simply be
transparent to the sorting algorithm. In other words, the hyphen should be ignorable at the primary
level.

 The basics of language-sensitive string comparison

 A Practical Programmer’s Guide to the Encoding Standard 439

The hyphen is still there, of course, and still affects the string comparison. It’s just that it doesn’t
become significant until we’re looking for secondary differences. It’s ignorable at the primary level,
but not at the secondary level.

Generally, you deal with this by declaring some weight value as indicating “ignorable.” If you
encounter this in your comparison routine, this signals you to skip the character that gave you this
weight value. This, of course, means you’re no longer comparing characters in the same positions in
the two strings. This makes it a lot harder to do all three levels in a single pass, but it’s still possible.
(Don’t worry: it gets worse.)

Also, it doesn’t make sense to treat a character as, say, ignorable at the secondary level but not at the
primary level. Pretty much all Unicode comparison routines declare that a character that’s ignorable
at any particular level is also ignorable at all more-significant levels (e.g., a character that’s ignorable
at the secondary level is automatically also ignorable at the primary level; it might still be significant
at the tertiary level, however).

French accent sorting
The unspoken assumption in everything we’ve looked at so far is that differences (at the same level)
earlier in the string beat differences later in the string: “bat” comes before “car” because “b” comes
before “c.” The fact that “r” comes before “t” doesn’t count because we found a difference earlier in
the string.

Consider the French words “cote” (meaning “quote” or “quantity”), “coté” (“quoted” or “evaluated”),
“côté” (“side”), and “côte” (“hillside”).121 You’d normally expect them to sort like this:

cote
coté
côte
côté

The accented letters sort after their unaccented counterparts. But this is the English order for these
words. In French, they sort like this instead:

cote
côte
coté
côté

Note the difference: In the first example, the two words with the unaccented “o” sort together, as do
the two words with the accented “o.” In the second example, the two words with the accented “e”
sort together, as do the two words with the unaccented “e.”

That’s because in French, if words differ in spelling only in the placement of accents, accent
differences later in the string are more important than differences earlier in the string—you start the
comparison at the end and work your way back to the beginning.

121 Thanks to Alain LaBonté for suggesting the example.

 Searching and Sorting

440 Unicode Demystified

In text-processing circles, this phenomenon is usually called “French accent sorting” or “French
secondary order” even though it actually happens in a couple of other languages as well (such as
Estonian and Albanian).

Contracting character sequences
In Spanish, the digraphs “ch” and “ll” actually count as separate letters. That is, “ch” isn’t a “c”
followed by an “h”; it’s the letter “che.” “ch” sorts between “c” and “d”, and “ll” sorts between “l”
and “m.” So this list of Spanish words is in alphabetical order:

casa
cero
clave
como
Cuba
chalupa
charro
chili
donde

In this case, you have a single set of weights assigned to a pair of letters rather than a single letter.122

If you’re dealing with an encoding (such as Unicode) that uses combining character sequences, this
would also be how you get an accented letter to be treated as a different letter from its unaccented
counterpart. For example, in Swedish, “a” comes at the beginning of the alphabet and “ä” comes
toward the end of the alphabet. If “ä” is represented as “a” followed by a combining diaeresis, you
have the same phenomenon: two characters get mapped to a single set of weights that cause the com-
bination to be ordered differently from either character individually. This is called a “contracting
character sequence.” Contracting character sequences are also essentially what Unicode 3.2 is
talking about when it talks about “language-specific grapheme clusters.” For the purposes of string
comparison, a contracting character sequence is the same thing as a grapheme cluster: a sequence of
multiple Unicode code points that behaves as a single character for the purposes of string
comparison.

One interesting side effect of this is that the relative order of two strings can change if you append
characters to the end of both of them or take substrings from the beginning. If a concatenation causes
characters at the end of the original string to be involved in a contracting character sequence, or if
taking a substring breaks up a contracting character sequence, order may change.

Expanding characters
The reverse also happens: you can have a single character map to a whole sequence of weight values.
For example, if you want “archaeology” and “archæology” to sort together, then the “æ” needs to be
treated as equivalent to “a” followed by “e.”

122 As an aside, because for a long time computer systems couldn’t handle contracting character

sequences, Spanish speakers have gotten used to seeing “ch” and “ll” sorted the same way they sort in

English. This is now called “modern Spanish sorting” and the version that treats “ch” and “ll” as single

characters is called “traditional Spanish sorting.”

 The basics of language-sensitive string comparison

 A Practical Programmer’s Guide to the Encoding Standard 441

(Note here we say “equivalent” and not “the same.” You still want these strings to be considered
different so that you get a defined ordering between them regardless of sort algorithm. Normally this
is handled by having “æ” map not to “a”’s weights followed by “e”’s weights, but to a set of weights
that has the same primary weight as “a” but a different secondary weight, followed by “e”’s weights
[you don’t have to do anything special with the “e” weights, since you already made things different
with the first set of weights].)

Expanding characters happen a lot in German. “ß” is equivalent to “ss.” You also often see it with the
umlauted vowels: A vowel with an umlaut can also be spelled with the unadorned vowel followed by
an “e,” so “ä,” “ö,” and “ü” sort as though they were “ae,” “oe,” and “ue.”

Context-sensitive weighting
Occasionally you’ll see a character behave differently for comparison purposes depending on the
surrounding characters. The classic example of this is the long mark in Katakana. A vowel followed

by a long mark is equivalent to the vowel twice in a row. For example, is equivalent to

.

In other words, if a contracting character sequence is a many-to-one mapping and an expanding
character is a one-to-many mapping, this is a many-to-many mapping. You treat each sequence

involving the long mark independently: maps to two sets of weights that sort with a secondary

difference from , maps to two sets of weights that sort with a secondary difference

from , and so on.

Putting it all together
So how do you implement all this? The way to think about it is that you do the comparison by
creating a “sort key” from each of the strings being compared. A sort key is simply a sequence of
weight values. To produce it, you go through the string and look up the primary weight for each of
the characters, writing it to the sort key. Ignorable characters don’t result in anything being added to
the sort key, expanding characters result in multiple weights being added to the sort key, and
contracting sequences result in single weights corresponding to multiple characters in the string.

After you’ve derived the primary weights for all the characters, you write a separator value to the sort
key, then you derive all the secondary weights, write another separator, and derive all the tertiary
weights. (If you need to do French secondary sorting, you just write the secondary weights into the
sort key backwards.) After you’ve done this with both strings, you’ve got a pair of sequences of
values that can be compared with traditional bitwise comparison.

The idea behind the separator character is that you pick a value that’s lower than any of the actual
weight values (usually you use zero and make sure your lowest weight value is 1). This way, if you’re
comparing two strings where one is a proper substring of the other, you’ll wind up comparing the
level separator of the shorter string, and not one of the secondary weights, to one of the primary
weights for the longer string

 Searching and Sorting

442 Unicode Demystified

An individual weight value in a sort key is called a “sort element” or “collation element.” In fact, a
“collation element” is usually the concatenation of all the weight values for a particular character or
sequence (i.e., the primary, secondary, and tertiary weight values). Instead of pulling them apart and
arranging them in sequence so you get all the primary differences before the secondary and tertiary
differences, a sort routine might build up a sequence of full collation keys and go through them
multiple times, masking out all but a particular weight on each pass.

Generally, you don’t actually have to create the sort keys (although they can indeed be useful; we’ll
look at that later). You just need to do the work to create them unit by unit until you find a difference.

Other processes and equivalences
There are a number of other things you might need to take into consideration when doing searching
and sorting:

x� When sorting titles, you usually don’t want to consider articles such as “a” or “the” at the
beginning of a string. For instance, “A Farewell to Arms” usually sorts in the Fs, and “The
Catcher in the Rye” usually sorts in the Cs. Of course, which words you disregard when they
appear at the beginning of a string vary with language.

x� Often, strings containing numbers are sorted as though the numbers were spelled out. For
example, “9½ Weeks” would sort in the Ns, and “48 Hours” would sort in the Fs.

x� Another choice with strings that contain numbers is to sort them number parts in numeric order
so, for example, “10th St.” sorts after “1st St.” and “2nd St.” instead of between them.

x� Sometimes you want abbreviations to be expanded so that, for example, “St. Paul” sorts before
“San Diego” (or, for that matter, “Saint Tropez”), as though it had been spelled “Saint Paul.” (Of
course, this can be a little tricky in many cases. In our example, “St.” is also an abbreviation for
“Street,” so you’d need to be able to tell from context how to expand it.)

x� When sorting lists of people’s names, you usually want to sort by the surname (which can be
complicated, as the surname isn’t always the last word in a person’s name—this varies depending
on language and, often, depending on the person).

x� If a list includes words (people’s names, for example) in different scripts, you might want to sort
HYHU\WKLQJ�E\�LWV�VSHOOLQJ�LQ�RQH�VFULSW�LQ�SDUWLFXODU��IRU�H[DPSOH��\RX�PLJKW�ZDQW�³ �

´�WR�VRUW�LQ�WKH�*V��MXVW�DV�LI�LW�KDG�EHHQ�VSHOOHG�³0LNKDLO�*RUEDFKHY�´

x� When searching, you might want to catch variant spellings of the same word, especially the same
word in different scripts (for example, Chinese using either simplified or traditional Han
characters, or possibly even bopomofo or pinyin; Japanese in Hiragana, Katakana, Kanji, or
possibly even Romaji; Korean in either hangul or hanja; Serbo-Croatian in either Latin or
Cyrillic; Yiddish in either Latin or Hebrew letters; Mongolian in either Cyrillic or the traditional
Mongolian script, etc.).

These kinds of things are typically not handled in the base string-comparison routine, but usually are
done with some kind of preprocessing, such as passing strings through transliteration prior to putting
them through the string-comparison process, or storing alternate representations that are used only for
searching or sorting and not for display (a movie-title database might, for example, have an extra title
field in each record that stores “Nine and a Half Weeks” as an alternate representation of “9½
Weeks,” or “Catcher in the Rye” for “The Catcher in the Rye,” and sort on this field instead of the
regular title field).

 Language-sensitive comparison on Unicode text

 A Practical Programmer’s Guide to the Encoding Standard 443

Language-sensitive comparison on Unicode text

To the above considerations, which you have to deal with regardless of which encoding standard
you’re using to encode your characters, Unicode adds a couple of other interesting complications.

Unicode normalization
Unlike most other encoding schemes, many characters and sequences of characters have multiple
legal representations. And one of the requirements of supporting Unicode is that (provided you
support all of the characters involved) all representations of a character get treated the same. So,
whether you represent “ä” with

U+00E4 LATIN SMALL LETTER A WITH DIAERESIS

or with

U+0061 LATIN SMALL LETTER A

U+0308 COMBINING DIAERESIS

it should still look the same and behave the same everywhere. This means that a Unicode sorting
facility must compare U+00E4 and U+0061 U+0308 as equal. It gets better with characters that have
multiple combining marks on them: All five of the following sequences…

U+1ED9 LATIN SMALL LETTER O WITH CIRCUMFLEX AND DOT BELOW

U+1ECD LATIN SMALL LETTER O WITH DOT BELOW

U+0302 COMBINING CIRCUMFLEX ACCENT

U+00F4 LATIN SMALL LETTER O WITH CIRCUMFLEX

U+0323 COMBINING DOT BELOW

U+006F LATIN SMALL LETTER O

U+0302 COMBINING CIRCUMFLEX ACCENT

U+0323 COMBINING DOT BELOW

U+006F LATIN SMALL LETTER O

U+0323 COMBINING DOT BELOW

U+0302 COMBINING CIRCUMFLEX ACCENT

…should compare the same. (All are alternate representations for the Vietnamese letter ���2I�FRXUVH��
the way you do this is to convert both strings being compared into one of the Unicode normalized
forms, meaning all of the above sequences get converted either to the first one in the list (in
Normalized Form C) or to the last one (in Normalized Form D). In practice, form D (fully
decomposed) is the more common way to go, both because you have to go through Form D on your
way to Form C (see the previous chapter) and because it’s usually simpler to treat the accents
independently (usually as characters that are ignorable at the primary level) than as part of their base
letters (which might involve treating more characters as expanding characters).

Unicode normalization is usually done on the fly, a character (or combining character sequence) at a
time, as part of the process of mapping characters to collation elements.

 Searching and Sorting

444 Unicode Demystified

The requirement that equivalent representations be treated as identical applies only to sequences that
are canonically equivalent (i.e., identical when mapped to Normalized Form D). Often, it makes
sense to extend this requirement to compatibility equivalents as well (i.e., sequences that are identical
when mapped to Normalized Form KD but not when mapped to Normalized Form D). Since
mapping a character to its compatibility decomposition may lose data, compatibly-equivalent strings
usually aren’t treated as identical; the difference between a compatibility composite and its
compatibility decomposition is usually considered a tertiary-level difference.

Korean is one interesting exception. Both sets of Hangul characters are arranged in the correct order
such that you can use straight binary comparison to sort a list of strings in Hangul and get the right
answer (of course, this breaks down if any of the strings contain non-Hangul characters). In fact, this
is representation-independent: you get the same answer whether the strings all use the precomposed
syllables or the conjoining jamo. This means you may not have to bother with converting Hangul
syllables to Normalized Form D, which can be a useful performance optimization. Of course, if some
of the strings use precomposed syllables and others use conjoining jamo, or if any of the strings use a
combination of precomposed syllables and conjoining jamo, then you’ll only get the right answer if
you actually do convert everything to Normalized Form D first.

Because two Unicode strings can compare as identical without actually being bit-for-bit identical,
Unicode-oriented comparison algorithms often include a fourth level of comparison. If two strings
are identical all the way down to the tertiary level, their binary representations may be used to impose
an ordering on the strings.

Reordering
The other interesting wrinkle Unicode brings to the party has to do with Unicode’s representation of
Thai and Lao. Most of the Indic scripts in Unicode are stored in logical order. This means that vowel
marks always follow the consonants they attach to, regardless of which side of the consonant they
attach to.

Thai and Lao, on the other hand, are stored in visual order. Top-, bottom-, and right-joining vowels
follow the consonants they attach to in the backing store, but left-joining consonants precede the
consonants. Split vowels with left- and right-joining components are represented with two
components. One, representing the left-joining half, precedes the consonant, and the other,
representing the right-joining half, follows it. The difference in encoding philosophy between Thai
and Lao and the other Indic scripts has to do with the difference in encoding philosophy in the
national standards the different Unicode blocks were based on; changing the encoding philosophy for
Thai and Lao would have made interoperability between Unicode and the national standards more
difficult and would have gone against standard practice, so Unicode has the inconsistency. (This is
one of those situations where optimizing for truth and beauty would have led to fewer people using
the standard.)

What makes this fun is that Thai and Lao still sort as though they were stored in logical order.
(Strictly speaking, this issue isn’t unique to Unicode, as the Thai national encoding standard shares it
as well.) This means that if you encounter a Thai left-joining vowel followed by a Thai consonant,
you have to exchange them before mapping them to collation elements. (The collation element for
the consonant precedes the collation element for the vowel in the resulting sort key.)

[If someone can provide me with an appropriate list of Thai words, an example would
probably be helpful here.]

 Language-sensitive comparison on Unicode text

 A Practical Programmer’s Guide to the Encoding Standard 445

Since your mapping tables need to support many-to-many mappings anyway (this usually comes for
free once you’re supporting one-to-many and many-to-one mappings, both of which are
unavoidable), you could deal with this simply by including all of the pairs of characters that need to
be exchanged as many-to-many mappings in your mapping table. But there are a lot of them and this
would make the table very large, so most systems just handle this algorithmically.

A general implementation strategy
So putting together a good general-purpose string comparison algorithm for Unicode is actually quite
complex. At the core, you need mapping tables capable of one-to-one, one-to-many, many-to-one,
and many-to-many mappings. Usually, the table is optimized for one-to-one mappings. You either
use a generalized trie structure or a simpler compact array augmented with exception tables to do the
mapping. The main trie handles single characters and contracting sequences, and each maps either to
a single collation element or to a spot in an auxiliary table of multiple-collation-element mappings
(used for expanding characters and many-to-many mappings).

Generally speaking, all three weight values for a character can be crammed into 32 bits, so collation
elements are usually 32-bit values. (In most real implementations, a fourth level, corresponding to
the actual binary representation of the string is added, but since the fourth weight value in this case is
the character’s original hex value, it doesn’t need to be stored).

There are two basic strategies for mapping raw Unicode text to collation elements. One is to perform
decomposition and reordering in a separate preprocessing step and have the mapping table just map
from normalized Unicode to collation elements. The other approach is to combine all of these
operations into a single operation and use the mapping table for all of them.

Using a single table for everything can be faster, but results in a really big mapping table (the table
would have to deal with canonical accent reordering, so it’d need to have separate mappings for all
five representations of ��ZKHUHDV�D�WDEOH�WKDW�GHSHQGV�RQ�QRUPDOL]HG�8QLFRGH�PLJKW�RQO\�QHHG�
mappings for the o, the circumflex, and the underdot). Unless you’re only handling a small subset of
the Unicode characters, it typically makes more sense to handle decomposition and reordering in a
separate step or pass.

Once you’ve mapped everything to collation elements, you then need to make another pass through
everything to split apart the different weight values in the collation elements (so all the primary
weights get compared before any of the secondary weights, etc.) and possibly to reverse the order of
the secondary weights (if you have to do French accent sorting). Only then can you actually compare
the sort keys to get an actual result.

So, to recap, language-sensitive comparison on Unicode strings proceeds in four conceptual phases:

x� Decomposition and reordering

x� Mapping normalized, reordered Unicode text to collation elements

x� Splitting the weights in the collation elements and possibly reversing the secondary weights to
produce collation keys

x� Performing binary comparison on the collation keys to generate an actual result

Let’s examine how this works on a pair of sample strings, say “Resume” and “résumé.” The two
strings start out like this:

 Searching and Sorting

446 Unicode Demystified

Resume: 0052 0065 0073 0075 006D 0065
résumé: 0072 00E9 0073 0075 006D 00E9

The first thing you do is map them both to Normalized Form D:

Resume: 0052 0065 0073 0075 006D 0065
résumé: 0072 0065 0301 0073 0075 006D 0065 0301

Then you map to collation elements (the weights are separated by periods, and the values are
illustrative):

Resume: [09CB.0020.0008] [08B1.0020.0002] [09F3.0020.0002] [0A23.0020.0002]
[0977.0020.0002] [08B1.0020.0002]

résumé: [09CB.0020.0002] [08B1.0020.0002] [0000.0032.0002] [09F3.0020.0002]
[0A23.0020.0002] [0977.0020.0002] [08B1.0020.0002] [0000.0032.0002]

Then you split out the weights (dropping the ignorable values) to get the sort keys (we use “0000” as
a level separator):

Resume: 09CB 08B1 09F3 0A23 0977 08B1 0000 0020 0020 0020 0020 0020 0020
0000 0008 0002 0002 0002 0002 0002

résumé: 09CB 08B1 09F3 0A23 0977 08B1 0000 0020 0020 0032 0020 0020 0020
0020 0032 0000 0002 0002 0002 0002 0002 0002 0002 0002

Finally, you compare them:

Resume: 09CB 08B1 09F3 0A23 0977 08B1 0000 0020 0020 0020 0020 0020 0020
0000 0008 0002 0002 0002 0002 0002

résumé: 09CB 08B1 09F3 0A23 0977 08B1 0000 0020 0020 0032 0020 0020 0020
0020 0032 0000 0002 0002 0002 0002 0002 0002 0002 0002

Notice what has happened. The strings are the same at the primary level, and you end up with two
sort keys that start with the same sequence of primary weights (the zero primary weights,
representing the accents, which are ignorable at the primary level, get skipped when creating the sort
keys). The first difference we see is the presence of the accent on the first “é” in “résumé,” which has
a secondary weight of “0032.” This compares higher than the secondary weight of the “s” in
“Resume” (“0020”), and so the strings compare different, with “résumé” coming second. The
difference between the capital “R” in “Resume” and the small “r” in “résumé” winds up later in the
sort key: the capital-ness of the “R” in “Resume” is represented by the “0008” in the first sort key.
Even though this difference comes earlier in the strings, it comes later in the sort keys, since it’s a
lower-priority difference.

Of course, for many strings some of these passes are no-ops, and the four passes can actually be
interleaved so that a primary difference in the first character gets caught early rather than after you’ve
jumped through all these hoops (or at least so that all four operations happen in a single pass with
comparatively little use of temporary storage).

 Language-sensitive comparison on Unicode text

 A Practical Programmer’s Guide to the Encoding Standard 447

One nice thing about all this flexibility is you can base an implementation on UTF-16 (or even UTF-
8) directly rather than having to convert things to UTF-32 before you can work on them. A
supplementary-plane character can be represented with a UTF-16 surrogate pair and still get treated
as a single character: It just gets treated as a contracting character sequence.

Another issue that’s worth keeping in mind is that it usually doesn’t make sense to write a string
comparison routine whose behavior is hard-coded for just one particular language or group of
languages. Typically string comparison is done as a rule-driven library, where you can provide rules
to specify the exact sort order you’re after. The Java Collator object, for example, takes rule
strings of this form:

A , a < B , b < C , c < D , d < ...

The characters are listed in their desired order, with less-than signs used to indicate characters with
primary differences and commas used to indicate tertiary differences. (Semicolons are used for
secondary differences, and the ellipsis at the end is just there to indicate that the example would
normally continue.) Most of the time, ordering rules are specified as deltas to a default ordering. The
ampersand can be used to allow insertion of characters into the middle of the default rules. For exam-
ple, the traditional Spanish sorting rules look like this:

& c < CH , Ch , cH , ch

& l < LL , Ll , lL , ll

& n < Ñ , ñ

The first line indicates that the “ch” digraph (in its different cased variations) sorts after c (and, by
implication, before D, the next thing in the default order). The less-than sign indicates that “ch” has a
primary difference from “c,” which makes the “ch” digraph behave as a completely different letter.
The second line inserts the “ll” digraph between “l” and “M,” and the third like inserts ñ between n
and O.

If you’re doing this kind of generalized comparison routine, you’ve got basically two choices. You
can either take a set of rules in a specialized metalanguage like the one above and build appropriate
mapping tables on the fly, or you can simply choose from a set of pre-built mapping tables. The latter
approach gives you better speed (because you don’t have to take time to build the tables) and
compression (because the developer can compress the tables at his leisure and just serialize out the
result), but diminishes flexibility. Building the tables on the fly from rules in a metalanguage has the
opposite set of tradeoffs. Some systems, such as the International Components for Unicode, actually
allow for both approaches.

The Unicode Collation Algorithm
Anyway, all of this discussion of how you’d handle language-sensitive comparison in Unicode leads
us nicely into our next topic. The Unicode standard actually defines a set of criteria for a Unicode-
compatible string comparison routine. This is called the Unicode Collation Algorithm, or UCA for
short.

I actually misspoke myself slightly in the above paragraph. Strictly speaking, the UCA isn’t part of
the Unicode standard. You can compare strings however you want and (as long as canonically
equivalent strings compare equal) conform to the Unicode standard. The UCA is a companion
standard, or a Unicode Technical Standard, UTS #10, to be exact. (The designation “10” doesn’t
mean there are nine other Unicode Technical Standards, by the way—the numbering of Unicode
Technical Reports, Unicode Technical Standards, and Unicode Standard Annexes is consecutive

 Searching and Sorting

448 Unicode Demystified

across all three types of documents, reflecting the fact that they were all once called Unicode
Technical Reports.)

Actually, in the same way that Unicode is aligned with the ISO 10646 standard, the Unicode
Collation Algorithm is aligned with ISO 14651, an international string-ordering standard. As with
Unicode and 10646, the two standards are not identical, but implementations that conform to one
generally conform to the other (or will with comparatively little work). One important difference:
while Unicode is much more restrictive than 10646, 14651 is actually somewhat more restrictive than
the UCA.

The Unicode Collation Algorithm calls for these features:

x� It requires at least three distinct weighting levels, as described above, but provides for the
possibility of more (most conforming implementations define a fourth level based on the original
binary representations of the strings).

x� It requires support for ignorable characters, contracting character sequences, expanding
characters, and context-sensitive weightings.

x� It strongly encourages, but doesn’t require, French accent sorting. (The UCA calls this
“backwards levels.”)

x� It provides for, but doesn’t require, Thai vowel reordering.

x� It provides for something called “alternate weighting,” which we’ll talk about in a minute.

x� It specifies a default ordering for all Unicode characters. In the absence of tailorings, all UCA-
conformant comparison implementations must sort any given set of strings into the same order.

x� It provides for “tailorings,” alterations to the default order normally used to produce the correct
ordering for a particular language (the default ordering can generally get things right for only one
language per script; this gives you the ability to get it right for other languages or customize the
results for application-specific purposes). All UCA-conformant comparison implementations
must, given the same set of tailorings, also sort any given set of strings into the same order.

The UCA follows the algorithm described in the previous section. You:

x� convert everything to Normalized Form D,

x� exchange Thai and Lao left-joining vowels with the characters that follow them,

x� map everything to collation-element values (this may involve mapping single characters to
multiple collation elements, mapping groups of characters to single collation elements, or
mapping groups of characters to groups of collation elements in different ways than would happen
if the characters were treated individually),

x� create sort keys from the collation elements by reorganizing things so that all the primary weights
come first (with ignorable characters omitted), followed by a separator value and all the
secondary weights, followed by another separator value and all the tertiary weights, etc.,

x� reverse the order of the secondary weights (or possibly some other level) if the tailoring you’re
using calls for it, and finally

x� compare the resulting sort keys using straight binary comparison.

There is, however, one complication: Instead of just converting to Normalized Form D and mapping
things sequentially to collation elements, you have to do one additional thing. You actually start by
looking for the longest substring that has an entry in the mapping table, but before you map it, you
check after it for extra combining marks. If you find any combining marks that:

x� aren’t separated from the substring you’re considering by a non-combining character or a
combining character with a combining class of 0,

 Language-sensitive comparison on Unicode text

 A Practical Programmer’s Guide to the Encoding Standard 449

x� aren’t separated from the substring you’re considering by another combining mark of the same
combining class, and

x� when combined with the substring under consideration form a string that also has an entry in the
mapping table,

you use that string instead and ignore the combining marks you were able to combine with the main
character.

Why the extra work? Let’s say your mapping table has a special mapping for the letter ô and you
encounter the Vietnamese letter �LQ�WKH�VWULQJ��,Q�1RUPDOL]HG�)RUP�'��WKLV�GHFRPSRVHV�WR�R��
followed by the underdot, followed by the circumflex. You end up mapping each character to a
collation element independently. The rule allows you to recognize ô as a sequence with its own map-
ping even with the intervening underdot. Instead of getting three collation elements, one for the o,
one for the underdot, and one for the circumflex, you get two: one for ô, and one for the underdot.

The default UCA sort order
Other than specifying a good algorithm for comparing Unicode strings, the big thing the Unicode
Collation Algorithm brings to the party is a default ordering for all the characters in Unicode. This is
spelled out in a file called allkeys.txt which is available from the Unicode Web site. It’s not part of
the Unicode Character Database, since the UCA isn’t officially part of the Unicode standard, but you
can get to it via a link in UTS #10.

allkeys.txt consists of a list of mappings. Each mapping consists of a Unicode code point value (or, in
some cases, a sequence of Unicode code point values), followed by a semicolon, followed by one or
more collation key values. The Unicode code point value sequences are given (as in all the other
Unicode data files) as space-delimited sequences of four-digit hex values. Each collation element is
shown as a series of four period-delimited four-digit hex values in brackets. The four values represent
the primary-level weight, the secondary-level weight, the tertiary-level weight, and the fourth-level
weight respectively. So if you see an entry like this…

0061 ; [.0861.0020.0002.0061] # LATIN SMALL LETTER A

…it’s telling you that the single Unicode code point value U+0061 (the small letter A, as the
comment at the end of the line makes clear) maps to a single collation element. The primary weight is
0x0861, the secondary weight is 0x20, the tertiary weight is 0x02, and the fourth-level weight is 0x61
(which, not coincidentally, is the original character’s raw code point value).

The contracting and expanding sequences in allkeys.txt are usually there to make sure the same thing
happens with different normalization forms of the text. For example, here are two entries, one of
which is a contracting character sequence:

04D1 ; [.0B05.0020.0002.04D1] # CYRILLIC SMALL LETTER A WITH BREVE

0430 0306 ; [.0B05.0020.0002.04D1] # CYRILLIC SMALL LETTER A WITH BREVE

The two entries make sure that the Cyrillic letter �sorts the same way in both its composed and

decomposed forms (most of the time you can sort accented letters according to their decomposed
forms—that is, you can just treat the letter and the accent mark as separate characters—but this is an
example where the accent mark turns the character into a completely different letter in the languages
that use it).

 Searching and Sorting

450 Unicode Demystified

An expanding character’s entry would look like this:

2474 ; [*0266.0020.0004.2474] [.0858.0020.0004.2474] [*0267.0020.0004.2474]

PARENTHESIZED DIGIT ONE; COMPATSEQ

Here the file is saying that the character U+2474, the parenthesized digit one, sorts as though it were
a regular opening parenthesis, followed by a regular digit one, followed by a regular closing
parenthesis (the weights are the same as for those characters, except for the tertiary-level weight on
the first collation element, which preserves the fact that U+2474 isn’t canonically equivalent to “(1)”
written as three characters).

The entries in allkeys.txt are listed in order by the collation elements, although this isn’t required.
This makes it easy to see the order the characters sort into. The basic ordering boils down to this:

x� Control and formatting characters, which are completely transparent to the sort algorithm (they’re
ignorable at all four levels).

x� Various white-space, punctuation, non-combining diacritic, and math-operator characters, plus a
bunch of other symbols.

x� The combining diacritical marks, followed by a few more non-combining diacritical marks.

x� Currency symbols, followed by a few more miscellaneous symbols.

x� Digits and numbers, in approximate numerical order by digit (i.e., “10” comes between “1” and
“2”).

x� Letters and syllables from the various scripts, in the following order: Latin, Greek, Cyrillic,
Georgian, Armenian, Hebrew, Arabic, Syriac, Thaana, Ethiopic, Devanagari, Bengali, Gurmukhi,
Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar,
Khmer, Mongolian, Cherokee, Canadian aboriginal syllabics, Ogham, and Runic.

x� Hangul (the file lists only the jamo, depending on canonical decomposition to get the
precomposed syllables into the same order).

x� Hiragana and Katakana (interleaved).

x� Bopomofo.

x� The Han ideographs and radicals. (They’re not all listed; the regular Han ideographs have weights
that can be derived algorithmically.)

The whole table can’t be derived algorithmically, but many pieces of it can be, a fact that can be used
to reduce the size of the table used in the implementation:

x� Canonical composites (including the Hangul syllables) sort according to their decompositions.
(There are exceptions to this in situations where it’ll give the “wrong answer” from a linguistic
standpoint. Generally in these cases, you’ll see the decomposed version spelled out in the file as a
contracting character sequence. See the Cyrillic example above.)

x� Compatibility composites sort according to their decompositions, but the resulting collation
elements have a different tertiary weight than the decomposed version would have. The tertiary
weight is algorithmically derivable from the type of the decomposition as listed in the
UnicodeData.txt file (e.g., “”, “<small>”, or “<compat>”). [This extra work imposes a
definite ordering on, say, the different presentation forms for the Arabic letters.]

x� The Han characters have their Unicode hex values as their primary weights, and 0x20 and 0x02 as
their secondary and tertiary weights. The compatibility Han characters and the Han radicals are
listed in the file and sort as equivalent to various regular Han characters.

x� Code point values that shouldn’t appear in the data stream at all, such as unpaired surrogate
values or the value U+FFFF, should either cause an error or be treated as completely ignorable.

 Language-sensitive comparison on Unicode text

 A Practical Programmer’s Guide to the Encoding Standard 451

x� Unassigned and private-use code points are given algorithmically-derived collation element
values that cause them to sort after everything that’s explicitly mentioned in the table (because
there’s no way to get this effect with a single code point value, they’re all treated as expanding
characters—the first collation element uses the first few bits of the Unicode hex value and adds it
to a constant that puts the character at the end of the sequence; the second collation element uses
the rest of the bits in the character’s hex value.

x� The fourth-level weight can be derived algorithmically. For characters with decompositions, the
fourth-level weight is the original character value. For completely ignorable characters, it’s zero.
For Han and unassigned code points, it’s usually 1. Generally speaking, for everything else, it’s
the original code point value.

x� The tertiary weight can also usually be derived algorithmically. For compatibility composites, the
weight is derived from the decomposition type. For characters with the general category “Lu”
(uppercase letter), it’s 0x08. For everything else, it’s 0x02.

It’s important to note that the weight values themselves are not normative; you can use any weight
values you want, so long as they cause things to sort in the same order as the weight values given in
allkeys.txt. The weight values in the table are specifically chosen so that they don’t occupy
overlapping numerical ranges (this allows you to dispense with separator characters in your sort
keys) and so that you don’t actually need sixteen bits for each weight value, as the table appears to
imply. In fact, the secondary and tertiary weights can each be stored in eight bits, and the fourth-level
weight can always be computed, so you can store a complete collation element in 32 bits.

In addition to the actual mapping entries in allkeys.txt, the file also has a heading at the top that
specifies some global characteristics for the sort. This includes:

x� Versioning info.

x� A tag that specifies how to handle characters with alternate weightings (see below).

x� A tag that specifies which levels need to be reversed in the final sort key (to allow French accent
sorting—this is never done in the default sort order, but is here so that you can specify tailorings
using the same file format as is used for the default order).

x� A tag that lists which characters get swapped with the characters that follow them before being
turned into collation elements (this should always be just the left-joining Thai and Lao vowels,
but is included in the file in case future Unicode versions add more characters that need to be
handled this way).

The UCA default order tends to lag a bit behind the actual Unicode version and is keyed to a
particular version of Unicode. As I write this in December of 2001, the current version of the UCA is
keyed to Unicode 3.1 and doesn’t include mappings for the new Unicode 3.2 characters. It’ll still
produce a definite ordering for them, since there’s a specific algorithm for giving weights to
characters that aren’t explicitly mentioned, but this does mean the order for those characters is likely
to change when a future version of the UCA explicitly mentions them. (That will probably have
happened by the time this book goes to press.)

Alternate weighting

You may have noticed that the collation-element values in allkeys.txt actually begin with an extra
character. There’ll be a period or an asterisk before the first weight value. For example, here’s the
entry for the space character:

0020 ; [*0209.0020.0002.0020] # SPACE

 Searching and Sorting

452 Unicode Demystified

The UCA default ordering specifies a group of characters (the ones with the asterisks) that have
“alternate weightings.” These are characters that, depending on the situation, you might want to treat
as ignorable or you might want to treat as significant. Depending on the setting of a flag, a UCA-
compliant comparison routine that implements alternate weighting (it’s an optional feature) can either
use the weight values from the table as-is or perform various transformations on them. There are four
choices for treatment of the characters with alternate weightings:

x� Non-ignorable. The characters have the weights listed in allkeys.txt and have primary differences
with each other and with other characters. Consider the following example:

e–mail
e-mail
effect
email
exercise

Punctuation comes before letters, so the strings that contain the hyphens sort before the strings
that don’t. The variant spellings of “email” are separated. [For the purposes of this example, the
longer dash is intended to represent the ASCII hyphen-minus character U+002D and the shorter
hyphen the Unicode hyphen character U+2010.]

x� Ignorable (or “blanked,” the term used in UTS #10). The character has zero for its primary,
secondary, and tertiary weights and its original code point value as the fourth-level weight. This
effectively makes the character transparent to the comparison algorithm unless it has to refer to
the actual code point values to break a tie. The same set of words as our previous example comes
out like this:

effect
e–mail
email
e-mail
exercise

The three variants of “email” come out together, but the punctuation marks are completely
transparent, and the strings’ binary representations are used to break the tie. Because U+2010 (the
hyphen) is greater than U+006D, the two punctuated versions of “email” come out on either side
of the nonpunctuated version.

x� “Shifted.” This is similar to “ignorable.” Characters with alternate weightings get treated in the
same way as “ignorable,” but all other characters get a fourth-level weight of 0xFFFF. This gives
slightly better-looking results when strings compare equal at the first three levels, basically
ensuring that all otherwise-equal strings with an ignorable character in some position group
together in the sorted order, rather than being interspersed with strings that don’t have an ignor-
able character in that position.

effect
e–mail
e-mail
email
exercise

The three variants of “email” come out together, again. Again, the hyphens are transparent at the
first three levels, but here we have a slightly better algorithmically-derived fourth level to break
the tie. The shifting algorithm make sure the two versions of “email” with the hyphens come out
grouped together.

x� “Shift-trimmed.” This is the same as “shifted,” but the characters that don’t have alternate
mappings have a fourth-level weight of 1 (or no fourth-level weight at all). This has the same
effect as “shifted,” except that the strings with ignorable characters sort after the strings that don’t
have them, instead of before.

 Language-sensitive comparison on Unicode text

 A Practical Programmer’s Guide to the Encoding Standard 453

effect
email
e–mail
e-mail
exercise

The three variants of “email” come out together, but this time the two versions with the hyphen
sort after the version without.

The default sort order is set up in such a way that the primary weights for all the characters that have
alternate mappings come before the primary weights for all the characters that don’t (except, of
course, those that are always ignorable at the primary level, which have a primary weight of 0 and
don’t need to be treated specially). This means that you don’t actually have to take up any extra
storage in your mapping tables to indicate which characters have alternate mappings. You can look
up their primary weights and check the primary weight against a constant.

Optimizations and enhancements
There are a number of possible optimizations and enhancements worth thinking about:123

Computing sort key values. When it’s possible to compute a sort key rather than looking it up in the
table, you don’t have to store it in the table. As we saw, for the default Unicode ordering, you can get
away without storing table entries for the Han characters, the Hangul syllables, unassigned and
private-use code point values, canonical composites, and compatibility composites. In addition, for
the default Unicode ordering, the and fourth-level weights can always be computed and don’t have to
be stored. Except for a few rare exceptional characters, the tertiary weights can, too.124

Computing things rather than storing them in the table sets up a classical performance-versus-
memory tradeoff, but it’s frequently worth making this tradeoff in the direction of saving memory—
there are other ways of improving performance.

Reducing the size of the weight values. The UCA data table actually gives secondary-weight values
that are too large to be stored in eight bits. This is due to the algorithm that was used to generate
these weights. However, there are never anywhere near 256 different secondary-weight values for
any particular primary weight. You can take advantage of this to save space storing the secondary
weights (by reusing values to mean different things depending on the primary weight— remember, if
the primary weights are different, you never compare the secondary weights).

Increasing the repertoire of available weight values. The UCA assumes 16-bit values for all the
weights, but what if you actually need more than 65,536 primary weight values? This can happen, for
example, if you’re specifying an ordering for all of the Han characters in Unicode 3.1, both the ones
in the BMP and the ones in Plane 2. You can accomplish this by treating some of the characters as
expanding characters. You set aside some range of primary-key values as special. Some of the
characters map to two collation elements. The first of these elements has one of the “special” primary
keys (chosen so as to get the right ordering on its own when compared with a “non-special” primary

123 Most of these optimizations come straight out of the “Implementation Notes” section of UTS #10, but some

are taken from Mark Davis, “Collation in ICU 1.8,” Proceedings of the 18th International Unicode

Conference, session B10.
124 This is actually true only of the default UCA sort ordering; language-specific tailorings will often have

tertiary-level weights that can’t be algorithmically derived.

 Searching and Sorting

454 Unicode Demystified

key), and the second is used for disambiguation. Each “special” value thus gives you an extra 65,536
primary key values. The only trick here is making sure that all characters that have a particular
“special” value for the first primary key sort the same way relative to all of the characters that have
“non-special” primary keys, or different “special” primary keys.

That was a little vague. Let’s consider a very simple example. Let’s say you need 100,000 primary
key values. The first 65,535 can be done with single collation elements with primary-key values from
0000 to FFFE. The remaining 34,465 characters map to two collation elements: the first one has a
primary weight of FFFF, and the second one has a value from 0000 to 86A0. The secondary and
tertiary weights for the second collation element can actually be zero—this is one situation where it’s
okay to have a collation element that’s “ignorable” at the second and third levels but not at the first.

Of course, it generally makes sense to use a more sophisticated technique than this one. For example,
you might designate all odd primary-key values to be single-element values and all even values to be
the leading element of a two-element value. You could then fix it so that more common characters
mapped to single collation elements and less-common characters mapped to pairs of elements.

This technique can also be used, of course, to give you more than 256 secondary- or tertiary-key
values without using more than 8 bits as well.

Dealing with tailorings. Much of the time (probably most of the time) you’re going to be dealing
not with the UCA default ordering, but with a language-specific tailoring of the UCA default
ordering. It’s really painful to just have a language-specific mapping table for each language that
includes the parts of the UCA mapping table that didn’t change. If you set up your UCA table to
leave “holes” between all the characters (using the technique described above, most likely), the
tailorings can put things in the “holes.” If you do this, the mapping table for a tailoring doesn’t have
to repeat all the default UCA stuff: you can look up a collation-element mapping in the tailoring’s
mapping table, look it up in the UCA table if you don’t find it in the tailoring table, and generate it
algorithmically according to UCA rules if you don’t find it in the UCA table.

Optimizing the comparison. You actually don’t have to go through all the steps of the UCA right
from the beginning of the string. You can use binary comparison to start with and only drop into the
UCA when you get to a character that’s different between the strings. The thing that makes this hard
is that you may hit the difference in a non-leading code point of a contracting character sequence or a
code point that’s going to be affected by normalization (such as by accent reordering). In these cases,
you have to back up to the beginning of the characters that need to be considered as a unit. For
instance, if the difference happens on a combining character or a low surrogate, you’d back up in
both strings to the first non-combining character or the high surrogate. You also may have to keep
around a table of characters that occur in non-leading positions in contracting character sequences (it
wouldn’t have to include combining characters, since you can deal with these algorithmically) and
back up until you get to a character that isn’t in this table. Only then can you drop into the full UCA
to compare the rest of the strings. Despite the complication, this optimization can actually buy you
quite a bit in performance.

Avoiding normalization. In many cases, you actually don’t have to do any normalization. If both
strings being compared are already normalized (in either Form C or Form D), you can compare them
without any transformation. If you encounter a sequence of characters that isn’t normalized (or a
mixture of the two forms), you can drop in and do normalization then, on just that piece. This
requires an extra table to tell you when you need to do normalization.

 Language-sensitive comparison on Unicode text

 A Practical Programmer’s Guide to the Encoding Standard 455

Inverting cases. Whether capital letters sort before small letters or vice versa is often a matter of
personal preference. The UCA default order sorts small letters before capital letters. You can flip this
algorithmically for the untailored UCA default order easily if you’re generating the tertiary weights
algorithmically. The normal rule is the tertiary weight is 0008 for the characters in the “Lu” category
and 0002 otherwise (if it’s a compatibility composite, you do this check first and the result is one of
your inputs for figuring out the tertiary weight). Just change this so that you get 0008 on “Ll” and
0002 the rest of the time.

For tailored orderings, this is trickier. The simplest approach is to simply map each character to its
opposite-case counterpart when generating the tailoring table (or generate the tailoring table the
normal way and then swap the resulting collation-element mappings of any case pairs after the fact).

Another approach is to leave the tables and collation-element generation alone and flip the cases of
the input characters as part of the normalization/reordering pass.

Reordering scripts. Sometimes you may want the relative order of the characters in a particular
script to stay the same, but change the relative order of the different scripts. You can do this in a
similar manner to how you deal with switching the cases. The simplest method is to pass a “raw”
primary-weight value though an extra lookup table that rearranges the primary weights according to
the desired order of the scripts.

Language-insensitive string comparison

Of course, you don’t always want language-sensitive string comparison. After all, it’s complicated
and no matter how much you optimize it, it’ll never be anywhere near as fast as binary comparison.
Of course, if binary comparison gives you the wrong answer, it doesn’t matter how fast it is. But
there are times when you don’t care about linguistically-correct ordering. You just want some kind of
ordering, and the user will never see the results of that ordering.

There are two classical versions of this. One is where you only care about whether two strings are
equal. If they aren’t, you’re not interested in which one comes before which. “Equal” can also be a
language-sensitive issue, but if you’re dealing with non-natural-language strings (such as
programming-language identifiers or XML tags), that doesn’t matter.

You can use straight binary comparison in this case, but only if you know (or are in a position to
demand) that the input strings are both in the same normalized form. (The W3C character model [see
Chapter 17] requires all text to be in Normalized Form C, for example.) If you can’t depend on that,
you still have to do Unicode normalization on the strings but can blow off all the other work.

The other case is where you’re doing some kind of ordered index to speed up searching. For
example, you’re building a binary tree or you need a sorted list that you can do a binary search on.
The common case, of course, is indexed fields in a database. In these cases, you need a well-defined
order, but the exact properties of the order don’t matter because the user will never see it. Again, you
can use straight binary comparison here, as long as you can guarantee the strings will all be in the
same normalized form (or if your index can have multiple entries for strings that are supposed to be
equal). In the worst case, you’ll again only have to worry about Unicode normalization and can avoid
all the other apparatus.

 Searching and Sorting

456 Unicode Demystified

Of course, if you want the comparisons to be case insensitive but still don’t care about linguistically-
appropriate results (again, program identifiers are the classic example), you have to pass things
through a case-folding table (see Chapter 14) and compare the results rather than doing straight
binary comparison on the strings. (The DerivedNormalizationProperties.txt file in the Unicode
Character Database provides a set of mappings that let you do both case folding and normalization at
once.) But again, you can avoid all the other string-comparison baggage.

There’s one important thing to keep in mind when performing binary comparisons on Unicode
strings. The exact binary format makes a difference. Specifically, if you sort a list of strings encoded
in UTF-8 or UTF-32, you won’t get them in the same order you would have gotten if they had been
in UTF-16. The supplementary-plane characters will sort after the BMP characters in UTF-8 and
UTF-32, but between U+D7FF and U+E000 in UTF-16 (this is because the surrogate mechanism
uses values between 0xD800 and 0xDFFF to encode the supplementary-plane characters). This is
vitally important to keep in mind if you’re depending on binary comparison in a mixed-UTF
environment.

There are two main ways of dealing with this, short of going to using the same UTF throughout your
system. The simplest is probably to modify the comparison routine for one UTF to replicate the
ordering of the other UTF. For one UTF you do normal binary comparison. For the other, you use a
modified algorithm that produces the same results as the other UTF (for example, you use a modified
algorithm on UTF-16 that causes the values from U+D800 to U+DFFF to sort in a block after
U+FFFF). Such a thing is trivially easy to write and can be made almost as fast as regular binary
comparison.

Another way of dealing with the problem that’s become fairly common is to use a modified form of
UTF-8 (this is the “CESU-8” encoding form described in DUTR #26) instead of the regular form of
UTF-8. CESU-8 represents supplementary-plane characters using six-byte sequences instead of the
normal four-byte sequences. The six-byte sequence is effectively the result of mapping from UTF-16
to UTF-8 using a UTF-32-to-UTF-8 converter: each surrogate gets independently converted into a
three-byte UTF-8 sequence, rather than the surrogate pair getting treated as a unit and being
converted to a four-byte UTF-8 sequence. (Encoding supplementary-plane characters this way is
prohibited in real UTF-8: it violates the shortest-sequence rule and can be a security violation.)

This can work, with some loss of storage efficiency, as long as the outside world never sees the
bowdlerized UTF-8 (or at least, it’s not advertised as real UTF-8). The system still needs to be able
to handle real UTF-8 coming from outside the system and to send real UTF-8 to the outside world.
But sending the bowdlerized form to the outside world and advertising it as “real” UTF-8 is a Very
Bad Idea. It’s almost always better to fix the sorting routines.

It’s also worth mentioning compressed Unicode, which can be very helpful for saving space in
database implementations. SCSU is great for this, but because of its stateful nature, binary ordering
based on SCSU will be wildly and unpredictably different from the binary order of uncompressed
Unicode. There’s an interesting alternative compression scheme for Unicode called BOCU that
preserves the binary ordering of the uncompressed text that might be useful for compressing text in
fields that also need to be indexed. (See Chapter 6.)

 Sorting

 A Practical Programmer’s Guide to the Encoding Standard 457

Sorting

There’s not a lot to say about sorting per se, since you can use any sorting algorithm you wish to sort
a list of Unicode strings. There are a number of things worth keeping in mind, however.125

Collation strength and secondary keys
First, it’s worth thinking a little about your sort algorithm and what it does with keys that compare
equal. Sort algorithms such as the bubble and insert sorts are stable: records with identical keys will
remain in the order of their original insertion after sorting the list. Fast sort algorithms such as the
Quicksort and the merge sort are generally unstable: records with identical keys are not preserved in
insertion order during a sort. In effect, the sort algorithms will put records with identical keys in
random order.

It’s important to keep this in mind, since the Unicode Collation Algorithm can wind up treating many
strings that aren’t bit-for-bit identical as equal, and an unstable sort algorithm will arrange them
randomly. Of course, if the whole record is the key, this probably doesn’t matter, since even if the
strings aren’t bit-for-bit identical, they’re the same for all intents and purposes (for example, they’ll
typically look the same when drawn on the screen).

In other cases, though, it’s worth giving this some thought. If you don’t want things scrambling
gratuitously when, for example, you add a new item to the list, you’ll either want to define your
comparison algorithm to treat strings different if it possibly can (this means treating differences at all
levels as significant and possibly doing a bitwise comparison to break the tie if the language-sensitive
comparison says the strings are equal) or fall back on a secondary key.

Usually disambiguating things with a secondary ley makes more sense. In fact, if you’re breaking ties
using a secondary key, you may only want to treat primary-level differences in your primary key as
significant.

Be careful doing this though, because it won’t always get you the results you’re really looking for.
Let’s say that your primary key is someone’s last name and your secondary key is their first name. If
you treat fourth-level differences in the last name as significant before going to the first name, you
might end up with something like this:

van Dusen, Paul
van Dusen, Tom
vanDusen, Paul
vanDusen, Tom
Van Dusen, Paul
Van Dusen, Tom

(Okay, so it’s a contrived example.) The first names wind up interleaved: each variant spelling of
“Van Dusen” gets treated as a group in itself. (The versions with the spaces wind up separated

125 Much of the material in this section also comes from the Davis paper, op. cit, and from UTS #10.

 Searching and Sorting

458 Unicode Demystified

because if the space is ignorable, differences in spaces are a fourth-level difference and the case
differences are a tertiary difference.)

So let’s say you decide to fix this by only treating primary differences in the last name as significant
before going to the first name. Now the first names sort together…

van Dusen, Paul
vanDusen, Paul
Van Dusen, Paul
Van Dusen, Tom
vanDusen, Tom
van Dusen, Tom

…but if you’re using an unstable sort algorithm, the last names come out in random order. You group
by first name, but within each group, the variant spellings of the last name come out scrambled.

To get around this, you actually have to use a composite key. You might store the first and last name
separately, but for sorting purposes, you consider them as a single key, concatenating the first name
onto the end of the last name. Then you treat all your differences as significant. This way, primary
differences in the first name beat lower-level differences in the last name, but you still consider
lower-level differences in both names if both names are equal at the primary level. This gives you a
reasonable result:

van Dusen, Paul
vanDusen, Paul
Van Dusen, Paul
van Dusen, Tom
vanDusen, Tom
Van Dusen, Tom

The “Van Dusens” correctly group by first name, but they sort into the same order within each group.

One interesting thing to watch out for here, though: Be careful about what you use as a field delimiter
when you’re putting together your composite keys. In the default UCA order, the comma, like the
space, has alternate mappings. If you treat characters with alternate mappings as ignorable, as we did
in the preceding example, shorter last names won’t necessarily sort before longer last names they’re a
substring of. You’ll go to the first name prematurely, possibly giving you something like this:

Van, Bill
van Dusen, Paul
Van Dusen, Paul
van Dusen, Tom
Van Dusen, Tom
Van, Steve

Here, Bill Van and Steve Van sort on either side of the Van Dusens, rather then grouping together
before them, because the first letters of their first names are getting compared against the D in “Van
Dusen.” To prevent this, you’ve either got to tailor your sort order or be sure to pick a field delimiter
that’s not ignorable (and sorts before the letters). (Since you’re just using this for internal processing

 Sorting

 A Practical Programmer’s Guide to the Encoding Standard 459

and not displaying it, it doesn’t much matter what you use for the field delimiter for your composite
keys, so long as it produces the right sorting results. The dollar sign fills the bill, for example.)

Exposing sort keys
Up until now, we’ve talked about sort keys mainly as an internal construct you use to get things to
sort in the right order. You calculate them on the fly when you compare two strings.

But it’s also frequently worth it to keep sort keys around rather than just creating them (or, more
often, partially creating them) when you do a comparison. This is because it’s pretty expensive to
create a sort key. If you’re doing a lot of comparisons involving the same strings, it’s a lot cheaper to
put the sort keys together once and then do all the comparisons directly on the sort keys using a
simple binary comparison.

Most of the time when you compare two strings on the fly, there’s a difference in the first few
characters, so you only have to go through all the work for a few characters rather than the whole
string. So unless there’s a lot of similarity in the strings you’re comparing, on-the-fly comparison will
be faster unless you’re doing a lot of comparisons. But if you’re sorting a long list or you do a lot of
searches on a long list, or you have a lot of similar strings in the list, the balance shifts toward
keeping the sort keys around. Most Unicode-aware string comparison APIs do give you a way to
create a sort key from a string in addition to giving you a way to compare two strings on the fly.

There are a few things to keep in mind if you’re going to persist sort keys (i.e., not just create them
long enough to do a long sort, but store them in a database or file). The most important is that it’s
completely meaningless to compare sort keys generated from different sort tables. For example, if
you compare a sort key generated from a Spanish sort order to one generated from a German sort
order, the result is meaningless. This is because the same weight values may very well mean different
things in different sort orders. Say, for example, that a German sort order assigns primary weights of
1, 2, 3, 4, and 5 to A, B, C, D, and E. A Spanish sort order might instead assign these weights to A,
B, C, CH, and D, since “ch” is a separate letter in the Spanish alphabet. You can see how comparing
sort keys using generated from these two sets of weights would produce goofy results.

A system that always uses the same values for the UCA default ordering and puts tailorings in the
“cracks” between will produce less goofy results, but still doesn’t really work. “Ch” will sort
differently depending on whether it’s in a string that had a Spanish sort key or one with a German
sort key.

This sort of falls into the “Doctor, it hurt when I do this!” category (“Then don’t do that!”), but it can
also arise between different versions of the same sort order (for example, going from sort keys based
on the Unicode 2.1.8 version of the UCA default order to sort keys based on the Unicode 3.0 version
of the UCA default order). One way to avoid this is to append a version tag to the beginning of every
sort key. You can use a hash-code generation algorithm to create a hash code based on the actual
contents of the mapping table and use this as the version tag. It’s then simple to detect a version
mismatch. Or if you just compare the sort keys, you’ll at least wind up with a bunch of sublists, one
for each collation table used to create any of the sort keys.

 Searching and Sorting

460 Unicode Demystified

Minimizing sort key length

The other thing that becomes important if you’re persisting sort keys is minimizing their size. There
are a number of strategies for minimizing sort key size:

Eliminating level separators. You don’t have to waste space putting level separators in your sort
keys if you use distinct ranges of numeric values for the primary, secondary, and tertiary weight
values (this doesn’t really work for the fourth-level weights, so you usually still need a separator
here). However, this tends to make some of the other optimizations more difficult.

Shrinking the secondary and tertiary weights. It doesn’t make sense to use a 16-bit value for the
secondary and tertiary weights, since we know we can usually use 8-bit values for both. To make this
work, you still need a level separator after the primary weights, since you may need all the 8-bit
values for the secondary and tertiary weights (you might still be able to blow off the one between the
secondary and tertiary weights, but since this only saves a byte, it’s probably not worth worrying
about). The level separator after the primary weights needs to be two bytes, since the primary weight
values are two-byte values, unless you make sure that you don’t use the separator-byte value as either
byte in a primary weight value.

Avoiding zero. If you using C-style zero-terminated strings to store your sort keys, you have to avoid
using the byte value 0 anywhere in the sort key except at the end. You can use 1 or 0x0101 as a level
separator (this is why the tertiary weights in the UCA table start at 2), and you have to make sure
your primary-weight values don’t include 00 as either byte. (This knocks out 512 possible primary-
weight values.) Avoiding 00 as either byte of a fourth-level key value is tougher—you could add one
to each byte of a fourth-level key value and use two bytes to express the byte values 0xFE and 0xFF.

Run-length encoding. Run-length encoding doesn’t really buy you much at the primary level, where
there doesn’t tend to be much repetition, but it can buy you a lot at the secondary and tertiary levels,
where there’s often lots of repetition. In particular, the “neutral” tertiary weights—the ones that get
used for uncased or unaccented characters—tend to show up a lot in most sort keys.

UTS #10 describes one way of going about this. At each level, you take all the weight values higher
than the one that repeats (all values higher than 0x20 for the secondary weights, and all values higher
than 0x02 for the tertiary weights) and move them to the opposite end of the byte. The highest weight
value becomes 0xFF, the second-highest weight value becomes 0xFE, and so on. This opens up a
“hole” in the middle above the value that repeats. Each value in this “hole” represents some number
of repetitions of the value that repeats. For example, if we’re talking about the tertiary weights, 0x03
represents 02 02, 0x04 represents 02 02 02, and so on.

Actually, it’s a little more complicated than this. The range that represents repeating values actually
gets divided in half. For each number of repetitions of the repeating value, there are actually two
different byte values, a “high” value and a “low” value.

It works like this. Let’s say we’re talking about the tertiary weights. The value that repeats is 0x02,
and the highest tertiary-weight value is 0x1F. The values 0x00 and 0x01 get represented the normal
way (in the standard UCA algorithm, 0x01 would be the level separator and 0x00 wouldn’t happen).
The values 0xE3 to 0xFF represent 0x03 to 0x1F, and the values from 0x03 to 0xE2 represent
varying repetitions of 0x02. 02 02 can be represented by either 0x03 or 0xE2, 02 02 02 by either
0x04 or 0xE1, 02 02 02 02 by either 0x04 or 0xE1, and so on. Whether you use 0x04 or 0xE1 to

 Sorting

 A Practical Programmer’s Guide to the Encoding Standard 461

represent 02 02 02 02 depends on the value that comes next. If it’s higher than 0x02, you use 0xE1.
If it’s lower than 0x02, you use 0x04.

Of course, it’s possible to have more repetitions of the repeating value in a row than can be
represented with a single byte. You handle this in the obvious way: Use as many of the value
representing the maximum number of repetitions as you need, followed by one more for the
remainder. For example, if 0x80 is the highest “low” value, representing 127 repetitions of 0x02 (you
can put the partition between “high” and “low” values wherever you want), you’d represent 300
repetitions (when followed by a value lower than 0x02) of 0x02 with 0x80 0x80 0x2D.

This technique will never give you longer sort keys than the uncompressed format, and can often
result in tremendous amounts of compression. (And, of course, they sort the same way as the
uncompressed versions, as long as everything follows the compressed format.)

Searching

The other main thing that string comparison is used for is searching.126 By now, it should be apparent
that there are many situations where sequences of Unicode code points that aren’t bit-for-bit identical
should still compare equal, and thus should be returned as a hit from a text searching routine. Not
only do you have to deal with things like Unicode canonical and compatibility equivalents, but you
also have to deal with linguistically equivalent strings (for example, if you’re searching for
“cooperate,” you probably would want it to find “coöperate” and “co-operate” as well).

By now, you’ve probably figured out that the way to do this is not to match Unicode code points, but
to convert both the search key and the string being searched to collation elements and match them
instead.

In fact, searching is where different levels of equivalence really come in handy. If you want to ignore
case differences, for example, you can declare that anything that’s equivalent down to the secondary
level matches and ignore tertiary-level differences. To ignore accent variations as well, you’d treat
only primary-level differences as significant and ignore both secondary-level and tertiary-level
differences.

Doing this requires catching the collation process at a slightly earlier point than you do for sorting.
Instead of going the whole way and converting the search key and the string being searched into sort
keys, you stop a step earlier when they’re still sequences of collation elements. That is, you skip the
step where you segregate all the weight values into separate parts of the sort key and (possibly)
reverse the order of the weights at the secondary level. Instead, you catch things while all of the
weights are still stored together in one numeric value. Typically, you convert the search key into a
sequence of collation elements and just convert the string being searched into collation elements a
character at a time while you’re searching.

Ignoring secondary- or tertiary-level differences in this situation is simple: they occupy certain ranges
of bits in the collation element, so you can just mask out the parts of the collation element you’re not
interested in. In our previous examples, a 32-bit collation element is divided into a 16-bit primary

126 Much of the material in this section is drawn from Laura Werner, “Unicode Text Searching in Java,”

Proceedings of the Fifteenth International Unicode Conference, session B1, September 1, 1999.

 Searching and Sorting

462 Unicode Demystified

weight with 8-bit secondary and tertiary weights. If you’re only interested in primary differences, you
just mask off the bottom 16 bits of the collation elements before doing your comparison. You also
have to be careful of ignorable characters: if, after masking off the parts you don’t care about, you
end up with zero (or whatever value is used to signal an ignorable character), you skip that collation
element without using it in the comparison.

There is one additional complication: If you find a match, it doesn’t count as a match unless it begins
and ends on a grapheme cluster boundary: If accent differences are important, you don’t want a
match if you’re searching for “cote” and find “coté” in the text, but if “coté” is in the text in its
decomposed form, “cote” is a prefix of it, and you’ll find it, even though you’re not supposed to and
wouldn’t if “coté” was represented in memory in its precomposed form. So when you get a
prospective match, you have to check whether it begins and ends on a grapheme bondary: “cote”
wouldn’t match “coté” because the matching sequence of code points ends in the midle of a
grapheme cluster: it includes the “e” but not the accent. This is very similar to the work you have to
do to implement a “Find whole words only” function, which we’ll look at in a minute.

Depending on the API you’re using, getting the collation elements in the form you need them may be
difficult (unless, of course, you have a searching API). In Java, you can use the
CollationElementIterator class to access the collation elements. The ICU libraries for both C
and Java actually provide a searching API on top of the CollationElementIterator utility.

The Boyer-Moore algorithm
Sequential access to the collation elements in a string before they’re split into the multiple zones of a
sort key is all you need to do a simple brute-force string search in a Unicode-compatible
linguistically-sensitive way. But there are, of course, better, more efficient ways to search a string for
another string.

One of the classical efficient string-search algorithms was first published by Robert S. Boyer and J.
Strother Moore of the University of Texas in a 1977 article in Communications of the ACM.127 The
Boyer-Moore algorithm takes advantage of the fact that each comparison actually tells you more than
just that two characters don’t match.

Let’s say you’re searching for the word “string” in the phrase “silly spring string.”128 In a traditional
brute-force search, you’d start with the search key and the string being searched lined up at the first
character and start comparing until you find a difference:

s i l y p r n gl is t r n gis

t r n gis

The “s”es compare equal, but then you fail comparing “t” to “i,” so you slide “string” over one and
try again:

127 Robert S. Boyer and J. Strother Moore, “A Fast String Searching Algorithm,” Communications of the

Association for Computing Machinery, Vol. 20, No. 10, pp. 762-772, 1977.

128 This example is lifted directly out of the Werner paper, op. cit., because I couldn’t think of a better

example.

 Searching

 A Practical Programmer’s Guide to the Encoding Standard 463

s i l y p r n gl is t r n gis

t r n gis

This time, the first comparison fails (“s” against “i”), so you slide “string over one and try again:

s i l y p r n gl is t r n gis

t r n gis

And so it goes until you finally locate “string” at the end of “silly spring string.” By the time you’ve
found it, you’ve performed 21 character comparisons.

There’s a better way. Start as before, with the two strings lined up at their initial positions, but start at
the end of the search key:

s i l y p r n gl is t r n gis

t r n gis

You compare the “g” to the space. This tells you that “string” doesn’t occur at the first position in the
phrase. But you also know that the space doesn’t occur at all in the search key. Because of this, you
know that “string” also can’t occur starting at any of the positions up to and including the one you
just checked. So you can slide the search key over six spots and try again there:

s i l y p r n gl is t r n gis

t r n gis

This time, you can work your way back from the end of the search key until you get to the “t,” which
isn’t equal to the “p”. Again you know you don’t have a match at the position you’re trying. Since we
also know the letter “p” doesn’t occur in our search key, we can slide over to the first position
following the “p”:

s i l y p r n gl is t r n gis

t r n gis

So the next thing we do is compare the “g” to the “s.” Again, this tells us we don’t have a match.
Unlike the other characters we’ve looked at, however, “s” does appear in the search key, so we slide
over just far enough to put the last “s” in the search key (which also happens to be the first “s” in the
search key) at our current position and try again:

 Searching and Sorting

464 Unicode Demystified

s i l y p r n gl is t r n gis

t r n gis

And this time we have a match. This time it took us 13 character comparisons.

The key to the Boyer-Moore search is going through the search key first and building up a table that
tells you for each character how far you can skip forward before doing the next comparison. For
“string,” the table would look like this:

s 5

t 4

r 3

i 2

n 1

g 0

(everything

else)

6

(You’ll notice that when we compared “t” to “p”, we only slid over 2 instead of the 6 the table would
suggest. This is because of the matches we saw before. For each match, you deduct one from the shift
value you use when you get to the mismatch.)

The beauty is that if you repeatedly search for the same search key, you can reuse this table, which
can save a lot of time.

What happens if the same character occurs more than once in the search key? The table contains the
lowest shift value that would apply to that character. So if the word was “status,” you’d get this table
of shifts:

s 0

t 2

a 3

u 1

(everything

else)

6

When you see a “t” in the string being searched, it could mean you have to shift forward either two or
four characters, so you play it safe and shift forward two. Likewise, an “s” could mean you need to
shift forward five, or it could mean you have a match, so you treat it as a potential match. The bottom
line is that if you shift too far, you may miss a match. If you don’t shift far enough, you may just
make a few otherwise unnecessary comparisons. So you’re conservative when populating the shift
table.

For a simple byte-based encoding where you don’t have to worry about things like expanding and
contracting character sequences, this is simple. Your shift table has 256 entries, which is entirely

 Searching

 A Practical Programmer’s Guide to the Encoding Standard 465

manageable. For Unicode, a 64K table is unwieldy, and a 1MB-plus table is even more unwieldy,
which would seem to make the Boyer-Moore algorithm unworkable.

Using Boyer-Moore with Unicode
Actually, it’s worse than 1 MB because you’re comparing collation elements, not Unicode code
points, and collation elements are 32 bits wide. A table with four billion elements is definitely
unworkable.

Of course, the Boyer-Moore algorithm actually isn’t unworkable with Unicode. The solution is one
of those clever “Why didn’t I think of that?” solutions. It was first discovered (and patented129) by
Mark Davis of IBM (actually Taligent at the time of the patent). The key is in how you handle a
character that occurs in the sort key twice: you use the shorter shift distance.

When working with Unicode, you still use a 256-element table (actually, it can be any size you want:
the principle is the same) and you use a hash function of some kind to map the collation element
values down into this one-byte space. There are a number of different ways you can perform this
hashing, but the simplest is to just isolate the low byte of the primary weight from the collation
element and use that as your index into the table. More complicated hash functions can give you
somewhat better distribution, but it’s usually not worth the trouble.

If you have multiple collation elements with the same low byte in their primary weights, the entry in
the table is the shortest shift distance for any of the collation elements that map to that table entry. As
with characters that occur multiple times in the search key, this may mean you sometimes don’t shift
as far as you might have been able to, giving up a little performance, but you still get the right
answer, and in real-world use you don’t give up much performance.

There are two additional complications. One is ignorable characters. If they occur in the string being
searched, they don’t hurt. They may mean your shift distances aren’t quite big enough, but you’ll still
get the right answer. If they occur in the search key, on the other hand, you have to filter them out
before calculating your shift distances or you risk shifting too far.

The other fun thing is matching up the collation elements to the characters in the original string
you’re searching. If you treat the shift values as how many code points to move ahead, rather than
how many collation elements to move ahead (which can be cheaper, since you can avoid mapping
some characters to collation elements), you have to watch out for expanding characters and adjust
your shift values to account for the possibility of skipping over expanding characters.

If, on the other hand, you go by collation elements, everything’s already expanded and you don’t
have to worry about shifting too far. In this case, though, you have to watch out for false matches.
You might find a match that starts on the second (or later) collation element of an expanding
character. You’d need to do some extra bookkeeping to detect this condition.

129 IBM has agreed to license the patented code freely. This is the approach used in ICU, which is an

open-source project.

 Searching and Sorting

466 Unicode Demystified

“Whole words” searches
Many times you want to search a document for a string, but you only want a match to count as a hit if
the match is a whole word (that is, if you’re searching for “age,” you don’t want the system to tell
you it found those letters in the middle of “cabbages”).

To avoid this, you can do one of two things. You can either check after you find a match to see
whether both ends of the match fall on word boundaries, or you can adjust the Boyer-Moore
algorithm so that when it shifts forward, it shift to the next word boundary following the position the
shift table says to shift to. (In fact, you can check to see whether the end of the search key falls on a
word boundary at the current position and know you don’t have a match without doing any
comparisons at all, although doing one comparison usually helps more.)

But how do you tell whether a position in the text is a word boundary? There are basically two
approaches to this problem: the pair-based approach and the state-machine-based approach. The pair-
based approach looks at two characters and decides whether there’s a word boundary between them.
The state-machine-based approach essentially parses the text (or some subset of it) to find word
boundaries according to a state machine. It can consider more context than just two characters and
can sometimes produce more accurate results (and, in fact, is required for some languages).

These are also the main approaches to deciding where to put line breaks when laying out a paragraph
of text. Because of this, I’m going to defer a full treatment of these techniques to the next chapter
when we talk about laying out lines of text.

Ven when you’re not doing a “whole words” search, you have to be sure that a matching sequence
begins and ends on a grapheme cluster boundary, as we saw earlier in the chapter. The same
techniques that are useful for locating word boundaries are also useful for locating grapheme cluster
boundaries.

Using Unicode with regular expressions

In addition to doing a normal search where you match a literal pattern to a document (with
potentially varying degrees of looseness in what constitutes a “match”), text is often searched for
text that matches a regular expression. A regular expression is an expression that describes a
category of related strings. Any string in that category is said to “match” the regular expression.
For example a regular expression like this…

p[a-z]*g

…might be used to specify a category consisting of all the words that start with p and end with g.
“Pig,” “pug,” “plug,” and “piling” would all match this regular expression. If you were to search a
string for this regular expression, the search would stop on any of those words (or any other word
that began with p and ended with g).

I’m not going to explain how to write a regular-expression engine—there are enough books out
there that do this. But as always, there are things to think about when implementing a regular-
expression engine for Unicode.

Unicode Technical Report #18 gives a set of guidelines for writing a Unicode-compatible regular
expression engine. It provides for three levels of Unicode compatibility, as follows:

 Using Unicode with regular expressions

 A Practical Programmer’s Guide to the Encoding Standard 467

x� Level 1 is basic Unicode support. This is the minimal set of features necessary to make a
regular expression engine usable with Unicode.

x� Level 2 goes beyond Level 1 by adding in a deeper understanding of how Unicode text is
structured.

x� Level 3 provides complete locale sensitivity of the kind we’ve been looking at for regular
searching and sorting.

There isn’t the room to go into lots of detail on exactly what each of these levels mean, but here’s a
brief summary. Level 1 requires or recommends the following:

x� The engine must (when operating on UTF-16 text) correctly work on UTF-16 code units
instead of treating them as pairs of bytes.

x� The regular-expression language must have some way to refer to a Unicode character by its
code point value (for example, you could specify the Greek capital letter sigma with something
like \u03A3). Since not all systems can display (or allow you to type) every character in the
Unicode repertoire, this is essential.

x� The language must have some way to specify Unicode categories. In an ASCII-based regular
expression language, it’s feasible to express “all letters” by saying [a-zA-Z], but since there
are thousands of “letters” in Unicode (tens of thousands if you count the Han characters), this
isn’t feasible. You need a special token that at least lets you specify groups of characters with
the same Unicode general category.

x� The language needs some way to remove characters from a set of characters. This would let
you say things like “all Latin consonants” by saying something like [a-z]-[aeiou]. This
goes hand in hand with the previous need for categories. Without it, there’s no reasonable way
to say things like “all currency symbols except the cent sign.”

x� If the engine supports case-insensitive matching, it’s got to be smart enough to handle all the
Unicode case equivalences. For Level 1 support, single characters that map to multiple
character when uppercased don’t have to be supported, but multiple mappings do. A case-
insensitive match to the Greek letter sigma, for example, has to match both lowercase forms.

x� If the regular-expression language supports matching of line boundaries, the support has to
conform to the Unicode newline guidelines, recognizing as newlines not only all of the various
ASCII and Latin-1 characters that can be used as newlines, but also LS and PS (U+2028 and
U+2029) and the CRLF sequence.

Level 2 adds the following features to Level 1:

x� It must allow specification of supplementary-plane characters by code point value and must
treat them as first-class characters, even if it’s actually operating on UTF-16 text where they’re
stored as surrogate pairs.

x� It must correctly match canonically-equivalent strings.

x� Its concept of a “character” should match a normal user’s concept of a “character” (the Unicode
documents tend to refer to this concept as a “grapheme”). This basically not counting as
matches apparent matches that don’t begin and end on grapheme cluster boundaries.

x� It should be fairly intelligent about word boundaries. In particular, combining marks and
formatting characters should be ignored when examining pairs of characters to determine
whether they constitute a word boundary.

x� Case-insensitive matches should work correctly with characters (such as the German letter ß)
that can turn into multiple characters when uppercased.

Level 3 goes whole hog and provides fully language-sensitive support. This basically builds on top
of the collation-element stuff we’ve been looking at in most of the rest of the chapter. It’s a lot

 Searching and Sorting

468 Unicode Demystified

slower than the language-insensitive stuff we’ve been looking at so far, and should generally be an
option rather than a requirement.

Level 3 support involves:

x� Mapping the Pi and Pf categories to Ps and Pe in a way that’s appropriate for the specified
locale. (Basically this means taking the ambiguity out of the way Unicode handles quotation
marks.)

x� Treating as a “grapheme” anything that speakers of the specified language would consider to be
one. Basically this means dealing not only with the generic Unicode graphemes of Level 2, but
also treating as “graphemes” anything specified as a contracting character sequence in the
locale’s sort order. In Spanish, for example, “ch” would be considered a single grapheme.

x� Respecting the locale’s conception of what a “word” is. For languages such as Thai or
Japanese, this may involve some fairly sophisticated linguistic analysis.

x� Allowing for locale-dependent loose matching. This is essentially providing the ability to allow
sequences with only second- or third-level differences according to the sort order to match if
desired. For example, “v” and “w” are variants of the same letter in Swedish, so a pattern
containing “v” should still match a “w” in the text (in Swedish).

x� Range specifications should be according to the language’s sort order, not the order of the
Unicode code point values. This means, for example, that [a-ø] would have a different
meaning in English (where it’d only match about half the alphabet) and Swedish (where it’d
match the entire alphabet).

 469

CHAPTER 16 Rendering and Editing

If the second-most-important process that gets performed on text is string comparison (the basis of
sorting and searching), by far the most important process that gets performed on text is rendering:
that is, drawing it on a computer screen or printing it on a piece of paper. A lot of the time this goes
hand in hand with providing a user with some way of entering text into the computer in the first place
and with some way of editing the text once it’s been entered.

Rendering and editing text are both enormously complicated subjects, and we’re not going to go into
all the gory details here. Again, most of the time you’ll be able to take advantage of the facilities
provided by your operating environment to allow you to render and edit Unicode text. And much of
the complexity isn’t unique to Unicode, but is inherent in the various scripts Unicode can represent
and there to be dealt with no matter what encoding scheme you’re using to represent those scripts.
But as with the other processes we’ve looked at, there are enough interesting things about rendering
and editing that are unique to Unicode that it’s worth taking a long look.

There are essentially three main categories of things that have to be done when rendering text,
regardless of encoding, all of which become more interesting when Unicode is your encoding. They
are:

x� Splitting a large body of text up into lines and paragraphs. This can be as simple as looking for
spaces in the text and breaking a line at the last space that comes before the desired right margin,
but for many scripts it’s much more complicated.

x� Arranging the individual characters on a line of text. Again, this can be as simple as putting them
in a single-file line running from left to right, but can get a lot more complicated, especially when
the Unicode bi-di algorithm must be used.

x� Figuring out which glyph to draw for each character. Often, this is a simple one-to-one mapping,
but for many scripts the rules for deciding which glyphs to draw for a character or series of
characters are much more complicated.

 Rendering and Editing

470 Unicode Demystified

In addition to these considerations, we’ll take a brief look at some of the considerations involved in
editing Unicode text.

Line breaking

If you’re drawing more than a few words, the first thing you have to do when drawing text on the
screen is to break it up into lines. Usually a text-rendering process will maintain something called a
line starts array that simply lists the offset in the backing store of the first character of each line of
rendered text. In order to draw a block of text, the first thing you need to do is build that line starts
array.

Dividing a block of text up into lines generally proceeds in three basic conceptual phases:

x� Locate all the positions in the text where a line break has to go. This divides the text into a series
of blocks. For the purposes of this discussion, we’ll call these blocks “paragraphs,” although it’s
possible in most word-processing programs to have forced line breaks within a paragraph.

x� For each paragraph that can’t fit entirely on one line, locate all the positions in that paragraph
where it would be legal, according to the rules of the text’s language, to break a line. (For
example, it’s not okay to break a line in the middle of an English syllable, and it’s not okay to
break a line in the middle of an English word unless you’re capable of hyphenating it.) This
divides the paragraph into a series of short units. Again, for the purposes of this discussion, we’ll
call these units “words,” even though you can run both into situations where two or more real
words form a single unit for the purposes of line breaking and situations where a single real word
breaks into multiple units for the purposes of line breaking.

x� Assemble the words into lines. The simplest and most common algorithm for this is to pack as
many words as possible onto the first line, pack as many of the remaining words as possible onto
the second line, and so on until you’ve assembled all of the words in the paragraph into lines.
More complicated algorithms are also possible, and in fact professional typesetting software
usually uses more sophisticated algorithms than the simple “maximal packing” algorithm we’re all
familiar with.

As with the other processes we’ve looked at, these three conceptual phases can be (and usually are)
interleaved, and it’s usually possible to abbreviate some of the phases (for instance, you can usually
get away without finding every single word boundary in a paragraph you’re dividing into lines).

For that matter, because it can be expensive to calculate the entire line starts array for a long
document, you usually see line starts calculated on an as-needed basis: typically, the line starts are
only calculated for the part of a document that’s visible on the screen (often with some slop on either
side to make scrolling faster) and more line starts are calculated as more text is scrolled into view.

In addition, most text-processing software will optimize the calculation of line starts so that only a
minimal set of line starts are recalculated when there’s a change to the text. (In fact, often line lengths
are stored instead of actual line starts, since you can get away with updating less stuff this way.) For
instance, a localized change such as the addition or deletion of a single character or word will only
affect the line starts in a single paragraph. In fact, if you’re using the maximal-packing algorithm, it
only affects the line starts that follow the location of the change: you can start at the line of the
change and recalculate line starts until you either get to a line whose starting position didn’t change
or to the end of the paragraph. (Algorithms other than the maximal-packing algorithm usually require
re-wrapping the whole paragraph, or propagating in both directions from the change, since they con-
sider more context.)

 Line breaking

 A Practical Programmer’s Guide to the Encoding Standard 471

Line breaking properties
Most text-layout issues are language-specific (or transcend language) rather than being unique to
Unicode, although by allowing a user to mix languages or scripts, certain issues may come up more
often with Unicode than with other encoding schemes.

The most interesting piece of the line-breaking process from the standpoint of dealing with Unicode
is the process of boundary analysis: dividing a document up into paragraphs and dividing a paragraph
up into words. As with most other processes, the Unicode standard gives both rules and guidelines
for doing this analysis on Unicode text. You’ll find these rules in Unicode Standard Annex #14. (I
say “rules and guidelines” because some of the material in UAX #14 is normative and some is just
informative.)

UAX #14 sets forth a set of character properties that describe how a line breaking process should
treat the characters. Some of these properties are normative; most are informative. The complete
listing of which characters have which line-breaking properties is in the file LineBreak.txt in the
Unicode Character Database.

UAX #14 basically divides the entire Unicode repertoire into several broad categories:

x� Characters that are always followed by a line break (“breaking characters”)

x� Characters that may never be preceded or followed by a line break (“glue characters”)

x� Characters that stick to the characters that precede them and are otherwise transparent to the
algorithm (“combining characters”)

x� Spaces, which affect the treatment of other characters

x� Characters whose treatment is dependent on context

x� A few special categories

The first category, breaking characters, is the most important, and is normative. These characters
force a line break to happen afterwards, no matter what. This is how you divide a document up into
paragraphs. The characters in this category mark the end of a paragraph. The characters in this
category include LS, PS, and FF. LF, CR, and the CRLF combination also fall into this category, but
because the CRLF combination gets treated as a single breaking “character,” CR and LF get their
own special categories: basically LF behaves the same as the other breaking characters, and CR also
does, unless it’s followed by LF. A break can never occur between CR and LF.

All of the other categories are concerned with how you divide up paragraphs into words for the
purposes of line breaking. (Remember we’re using “paragraph” and “word” to refer to units of text
that are divided and assembled by a line-breaking algorithm—they usually, but not always, map onto
the common-sense definitions of “paragraph” and “word”.) For the rest of this section, we’ll use the
phrase “word break” to refer to a boundary between “words” for the purposes of line breaking— that
is, a “word break” is a place in the text where it’s legal for a line break to happen.

Glue characters are the next most important category. There is never a word break on either side of a
glue character. Basically, it’s these characters’ job to suppress any word breaks that would otherwise
occur (that is, they “glue” characters or words together). This category basically includes the WORD
JOINER, all the characters with “NO-BREAK” in their name (NBSP, ZWNBSP, etc.), plus a handful
of special-purpose characters that also have “gluing” semantics.

 Rendering and Editing

472 Unicode Demystified

The third normative category contains the combining characters. This includes not only the
characters you’d expect (the combining and enclosing diacritical marks, the characters in the “Mc”
and “Me” categories), but also a few other things. Specifically, the non-initial conjoining Hangul
jamo (i.e., the conjoining vowels and final consonants) also fall into this category, as do all of the
Indic vowel signs. The basic idea is that all of these characters are basically non-leading characters in
combining character sequences. For the purposes of breaking, the whole combining sequence should
be treated as a single character, with the first character in the sequence determining the sequence’s
behavior. Thus, all of the characters in the sequence are “glued” together, and the sequence behaves
as a unit.

Interestingly, the invisible formatting characters also get treated as combining characters. Of course,
they’re not really combining characters, but they get treated the same way because they’re each
intended only to have an effect on one process and to be invisible to all the others. The easiest way to
threat a character as invisible for line breaking is to treat it the same way as a combining character.
(The exceptions, of course, are ZWSP and WORD JOINER, the invisible formatting characters
whose whole job is to affect line breaking.)

UAX #14 also calls out a few special characters for normative purposes. The zero-width space
(ZWSP) always precedes a word break. Other spaces can affect the behavior of surrounding
characters in interesting ways. The object replacement character relies on out-of-band information to
determine how it behaves for word-breaking purposes. Surrogate pairs stick together like other
combining character sequences. (This rule shouldn’t strictly be necessary, since surrogates aren’t
really characters. A UTF-16 surrogate pair should behave according to the rules for the character it
represents.)

The other line-breaking categories are all informative and are designed, like the default Unicode
Collation Algorithm ordering, to give a reasonable default line-breaking behavior for every character
in Unicode. Without going into detail on all the categories, this is the approximate behavior they’re
designed to achieve (for full details, see UAX #14 itself):

x� There’s generally a word break after a series of spaces, although this is dependent on the
characters on either side of the run of spaces.

Basically, the one exception to the rule about word breaks after spaces (other than the normative
behaviors we already looked at) has to do with punctuation in some languages. Some punctuation
marks in some languages (for example, the question mark in French) are separated from the words
that surround them with spaces on both sides, like this:

Parlez-vous français ?
Even though there’s a space, there shouldn’t be a word break between most punctuation marks
and the word that precedes them.

x� There’s generally a word break after a series of dashes or hyphens, except when they precede a
numeral (in this case, a dash or hyphen might be being used as a minus sign). [The big exceptions
are the em dash, which has a word break both before and after, and the Mongolian hyphen, which
has the word break before instead of after.]

x� Word breaks don’t occur in the middle of a sequence of dot-leader characters.

x� Certain punctuation marks, such as periods or commas, have a word break after them except when
the occur in the middle of a numeral. Other punctuation marks, such as the question and
exclamation marks, always have a word break after them.

x� Opening punctuation (such as the opening parenthesis) never have a word break after them, and
closing punctuation never have a word break before. Since quotation marks are often ambiguous,
they don’t have word breaks on either side.

 Line breaking

 A Practical Programmer’s Guide to the Encoding Standard 473

x� In the languages that use the Han characters, what constitutes a “word” is difficult to figure out
and often ambiguous, so it’s actually okay to break a line in the middle of a word. So the Han
characters and the Han-like characters (i.e., Hangul, Hiragana, Katakana, Bopomofo, etc.)
generally have word breaks on both sides. However, there are various punctuation and diacritical
marks (the ideographic period, small Kana, the Katakana long-vowel mark, etc.) that can’t occur
at the beginning (or sometimes the end) of a line and “stick” to the preceding or following
character as appropriate.

x� Fullwidth presentation forms get treated the same as Han characters. A bunch of other characters
that don’t have fullwidth variants (such as the Greek and Cyrillic letters) get treated either as Han
characters or as regular Latin letters depending on their resolved East Asian width property.

x� Thai and Lao are the other interesting case. Like Japanese and Chinese, they don’t use spaces (or
any other mark) between words. But unlike them, you’re still only allowed to break lines between
actual words. This can be accomplished by using the ZWSP, but better systems actually analyze
the text to determine where the word boundaries are. UAX #14 just puts the affected characters
into their own special category that indicates more information is needed to parse a run of these
characters into words.

The important thing to remember here is that these category assignments are designed to give a
reasonable default behavior. Sometimes (although not as often as with the UCA) tailorings are
necessary to get good line-breaking behavior for a particular language. For example, the quotation-
mark characters have language-dependent semantics (a particular mark might be an opening quote in
one language, but a closing quote in another). Their behavior can be nailed down in a language-
specific tailoring. Another example is Korean, which can be written either with or without spaces
between words. If it’s written without spaces, Hangul syllables behave the same way as Han
characters. If it’s written with spaces, they behave the same way as Latin letters.

Implementing boundary analysis with pair tables
So how do you actually implement code to do word boundary analysis?130 The classical approach to
this problem is to use a pair table. In its simplest incarnation, a pair table is a two-dimensional array
of Boolean values. For each possible pair of adjacent character categories, the table tells you whether
the position between them is a word boundary or not.

This, of course, is simple to implement: You use the techniques we’ve already looked at to map each
character in the pair to a category and then use the categories to look up the answer in the pair table.

A straight pair-based algorithm can be pretty limiting, however, because it only considers two
characters. For instance, you can’t correctly handle sequences of combining characters with a simple
pair-based algorithm, nor can you correctly handle the case where a punctuation mark is separated
from the preceding word by a space (without making simplifying assumptions, anyway). Usually, the
pair-based algorithm is extended to cover situations like this: you purposely skip over a run of
combining marks or spaces and look up the characters on either side of the run in the pair table.
Instead of a Boolean, the table contains tags that tell you things like “there’s always a break here,”
“there’s a break here only if there weren’t any intervening spaces,” “there’s a break here only if there
were intervening spaces,” etc.

This is the approach suggested by UAX #14, which gives both sample code for implementing this
algorithm and a sample pair table that implements the semantics it describes.

130 Most of the material in this section is drawn from my own paper, “Text Boundary Analysis in
Java,” Proceedings of the Fourteenth International Unicode Conference, session B2.

 Rendering and Editing

474 Unicode Demystified

Even this can break down in some sufficiently complex situations, although those situations are
relatively rare.131 You can continue to extend the pair-table algorithm to deal with the complex cases,
but this requires more hard-coding and is less flexible.

To see how this works, let’s say we’re implementing a drastically simplified algorithm. Our
algorithm has only three character categories: letters, whitespace, and sentence-ending punctuation.
A “word” is a sequence of zero or more letters, followed by a sequence of zero or more whitespace
characters, followed by a sequence of zero or more sentence-ending punctuation characters, followed
by a sequence of zero or more whitespace characters (the idea is to implement something that will
correctly handle French punctuation). If you implement this as a pair table, it looks like this:

 ltr punct

ltr *

punct X *

Notice that we don’t include the whitespace category in the pair table. It has to be handled
algorithmically to get the effect we want. Also notice that there are three things that can appear in the
cells: an asterisk, an X, or nothing. The asterisk means “put a break between the two characters only
if there’s intervening whitespace.” The X means “always put a break between the two characters,
intervening whitespace or not,” and the empty cell means “never put a break between the two
characters, intervening whitespace or not.”

So to implement this, you need code that reads a character and takes note of its category, reads more
characters until it reads a non-whitespace character and takes note of whether it saw any whitespace
characters, and then looks up the categories of the two non-whitespace characters in the pair table,
using the result (and whether or not there was whitespace between them) to decide whether to place
the break there.

Implementing boundary analysis with state machines

An alternative approach is to recognize that locating word break positions is essentially a parsing
problem and apply the traditional tools and techniques that are used for parsing text into tokens.
Here, the traditional approach is to use a finite state machine.

In this approach, you still use a two-dimensional array, but this time only the columns represent
character categories. Each row represents a state of the state machine. You start in some well-defined
“start” state and then for each character, you look up its category and then use the category and the
current state number to determine the next state. You continue to read characters, look up categories,
and look up new states until you transition to a well-defined “end” state, which tells you the character
you just read is the first character of the next “word” and you should put a word break between it and
the preceding character. Then you start over in the start state with the first character in the next word
(the character you just looked at) and do the whole thing again.

So if you use a state machine to implement our example algorithm, you get a set of state transitions
that look like this:

131 In fact, the ones I can think of actually are related to other processes that use the same algorithms (we’ll look

at some of these later), not line breaking.

 Line breaking

 A Practical Programmer’s Guide to the Encoding Standard 475

start

letter ws punct. ws

punct.

ws

letter ws punct. ws

letter letter Letter,
punct.

start

letter ws punct. ws

punct.

ws

letter ws punct. ws

letter letter Letter,
punct.

If you model this transition diagram as a two-dimensional array, you get this:

 ltr ws punct

start 1 4 3

1 1 2 3

2 STOP 2 3

3 STOP 4 3

4 STOP STOP 4

Notice that we don’t have to special-case the handling of the whitespace now; the state transition
table takes care of that. This means you can consider however much context you need to determine a
break position, and you don’t have to write special-case code to handle the situations where you need
to consider more than two characters.

Now the one thing that isn’t clear from this example is what you do when you need to look at several
characters after the break position to determine where the break position is going to go. The way
we’ve got things set up above, when we transition to the “stop” state, the break position always goes
before the character that caused us to go to the “stop” state. This means that you always have to be
able to tell you’re at a break position after looking only at the character immediately following it.

One simple way of doing this is to deviate a bit from having the parser be a pure deterministic state
machine. You mark either each transition or each state (each state is almost always sufficient) with a
flag. Instead of using your transition to the “stop” state as your indication of where to put the break,
you use the flags. You start with a prospective break position at your starting point (or, in a lot of
algorithms, one character after your starting point, to avoid endless loops). Each time you enter a
flagged state (or follow a flagged transition, if you go that route), you update the prospective break
position to be before the character you just looked at. The break goes wherever your prospective
break position was at the time you transition to the “stop” state. This approach will let you consider
multiple characters after the break position in the relatively rare circumstances where you have to do
that.

Of course, the marking technique isn’t perfect: it always moves the mark forward, and you can, in
very rare situations, run into cases where you find, after looking at more characters, that you actually
need to move the break position backwards. I have yet to run into a real-world situation where this
has happened, but if you did, that’d probably mean it was time to switch to using a nondeterministic
state machine.

 Rendering and Editing

476 Unicode Demystified

One problem with using a state-machine-based approach is that you generally have to start at the
beginning of the text: the state machine assumes you’re in some ground state (generally a known
word boundary) when you begin. If you have to parachute into the text in the middle rather than
parsing the whole thing (we’ll see why this is important in a minute), you actually need to back up
from the random-access position until you find a position where you can safely start using the state
machine to do the parsing without worrying about getting the wrong answer. (For pair-based
approaches, you might need this too, but you only have to worry about things you’ve already had to
special-case, such as the spaces in our earlier example.)

Typically you can locate the “safe place to turn around” with straight pair analysis: you identify the
pairs of characters that always, no matter what, have a word boundary between them and seek
backwards until you see one of these pairs. Occasionally, however, you might have to use a more
sophisticated state-table-based approach to avoid seeking back to the beginning of the paragraph
every time.

Performing boundary analysis using a dictionary
Correctly handling Thai and Lao is more difficult. These languages don’t use spaces between words,
but still require lines to be broken at word boundaries (as opposed Chinese and Japanese, for
example, which also don’t use spaces between words but permit you to break lines almost anywhere).

The classical way of handling this problem is to use a dictionary-based algorithm: you compare the
text to a list of known words and use the matching sequences to parse the text into words.

This is fairly complicated. The simplest approach (find the longest word that matches the beginning
of the text, put a word break after it, then repeat this process for the remainder of the text until you’ve
used up everything) doesn’t work most of the time. It might be, for example, that the first word in the
text isn’t the longest word in the dictionary that matches; it might be a shorter word that starts with
the same letters. If you use the longest match, it may cause you to come to a sequence of letters that
don’t match any word in the dictionary.

If you were doing this on English without spaces, for example, and the sentence you were trying to
parse was “themendinetonight”, you’d wind up trying “theme” as your first word and discovering this
left you with something that began with “nd” as your second word.

What you actually have to do is find the set of words in the dictionary that enables you to use all the
characters. This basically involves trying various sequences of words until you find one that fits—the
approach is similar to a traditional maze-solving algorithm: try each sequence of turns one at a time
until you find the sequence that gets you all the way through the maze. In our example, “theme”
would lead you to “nd,” so you’d fall back on “them,” which would eventually lead you to “eto,” so
you’d fall back on “the.” With a few more wrong turns and backtrackings, you’d eventually end up
with “the men dine tonight.”

Of course, if there are multiple sequences of words that match the text you’re parsing, you’re stuck.
You’ve either got to just pick one and hope for the best or use something like digram or trigram
analysis (analyzing the relative frequencies of the various two- or three-word sequences in the text to
figure out which sequence of words is the most likely, an approach that requires another table of
digrams or trigrams and their frequencies).

 Line breaking

 A Practical Programmer’s Guide to the Encoding Standard 477

You’re also stuck if you hit a word that isn’t in the dictionary, be it an uncommon word or just a
typo. There are various fallback approaches that can be used here. You could assume you’ve seen a
typo and use auxiliary information to guess what the word should have been. You can break the text
up so that the longest series of letters you could parse successfully gets kept and you start over with
the remainder of the text after skipping an offending character. Or you could fall back on algorithmic
approaches: While it isn’t possible to locate word boundaries in Thai purely algorithmically, you can
locate syllable boundaries algorithmically.

Of course, you don’t want to use the dictionary-based approach on everything. After all, punctuation
and spaces do occur in Thai text and always mark word boundaries. Generally you use the techniques
we looked at earlier in the chapter and then fall back on the dictionary only when you encounter a
sequence of two or more Thai or Lao letters in a row.

A couple more thoughts about boundary analysis
It’s probably evident that parsing Unicode text looking for logical boundaries is useful for things
other than just line breaking. This is how you could tell, for example, whether a search hit falls on
word boundaries or not (for a “find whole words” search). It’s how you know what to select when a
user double-clicks or triple-clicks at some arbitrary place in the document, and it’s the approach you
use to count words or sentences in a document.

One important thing to keep in mind, though, is that the exact definition of “word” varies depending
on what you’re doing with the information. For double-click selection or spell checking, you might
need a dictionary-based algorithm where you don’t for line breaking (such as for Japanese or
Chinese). For “find whole words” searching, you want to exclude whitespace and punctuation from a
“word,” where you generally want to include these things for line breaking. For word counting, you
might want to keep together sequences of characters (such as hyphenated phrases) that the line-break
routine will divide up. And so on. A generalized algorithm that lets you substitute your own pair
tables or state tables will let you do all these things without writing a whole new parser each time.

Performing line breaking
So once you’ve analyzed a paragraph into “words” (i.e., units of text that have to be kept together on
one line), how do you use that information to actually divide the paragraph up into lines?

There are many different ways of doing this, but the most common (probably because it’s the
simplest) is to use the maximal-packing algorithm. The basic approach here is to fit as many words as
possible on the first line, then fit as many of the remaining words as possible on the second line, and
so on until you reach the end of the paragraph.

One obvious way to approach this is to interleave the process of parsing the text into words with the
process of measuring it. You know how many pixels you have available, and you just parse into
words until the total number of pixels exceeds that. Then you insert a line break and start over with
the next word.

An alternative approach is to leap forward and then work your way back. If you’re wrapping by
number of characters instead of pixels (or you’re working in a monospaced font where they
correlate), you can skip forward the maximum number of characters that’ll fit and then back up until
you reach a word boundary. This approach can also work if you already know the widths of the text
you’re working with. If you’ve got a good idea of the average width of the characters in the font

 Rendering and Editing

478 Unicode Demystified

you’re using, you could jump forward to the spot in the text where the end of the line would be if
every character was the average width, measure to see how close you got, and then work your way
forward or backward from there, as appropriate, parsing the text into words.

One point to keep in mind is that you usually can’t measure the text a character at a time to figure out
how much text will fit on the line. This (generally) works for English, but for many other scripts, the
characters interact typographically: the width of a character is dependent on the characters that
surround it (because the glyph that will be displayed depends on the surrounding characters). This
means you have to measure text at least a word at a time. Of course, this also means you have to
perform glyph mapping on the text. In fact, since this may depend on rearrangement, you may also
have to perform glyph rearrangement before you can break the text into lines accurately (this can be
tricky, because glyph rearrangement depends on line breaking in some scripts—you may have to do
speculative glyph rearrangement and then redo it if your assumptions turn out to be wrong).

Another point to keep in mind is that the widths of pieces of text may depend on where the line break
actually goes: If the text includes the SOFT HYPHEN, for example, which is invisible unless it
occurs at the end of a line, you have to make sure you take its width into account if the break is going
to occur after it. (If your line breaking routine does hyphenation, you likewise have to take the width
of the hyphen into account.) In fact, in some languages, such as Swedish, words actually have
different spellings when they’re hyphenated, so extra letters may be added (or deleted) before or after
the hyphen in some languages.

Because of all these complications, the usual course is to measure all of the text that would go on the
line if the line break were in some position (with all the necessary processes happening on the text to
get an accurate measurement). You pick a spot for the line break, measure the entire resulting line,
decide if it’s too long or too short, skip an appropriate distance in the appropriate direction, try again,
and so on until you’ve got an optimally-fitting line.

Hyphenation and justification are two techniques that often come into play when dividing text into
lines. If you can’t find a good fit, for example, you may have to hyphenate a word to get a better fit.
Hyphenation in most languages involves the same kind of dictionary-based techniques used for
regular line breaking in Thai. Other approaches may involve adding or removing inter-word or inter-
character spacing to get the right margin to line up better (in languages like Thai when you don’t nor-
mally have inter-word spacing, you may get a minimal amount of inter-word spacing adding by a
justification routine to line up margins). Sometimes, alternate glyphs may actually be used for certain
letters to get things to line up better (this works particularly well in Arabic, for example, where there
are often a number of different ways pairs of characters may join together that yield different widths;
Arabic justification also makes use of extender bars called kashidas to introduce extra space between
certain pairs of letters when necessary to make a word wider).

Often, advanced techniques like these are used globally across all the lines in a paragraph to get
optimal-looking results. For instance, a more-advanced line breaking algorithm might:

x� Break in less-“optimal” places to avoid leaving a single word alone on the last line of the
paragraph.

x� Avoid hyphenation on certain lines to avoid “ladders” (i.e., several lines in a row that end with a
hyphen).

x� Deviate from maximal packing so as to keep the amount of inter-word or inter-character spacing
more consistent from line to line of a justified paragraph.

x� Deviate from maximal packing in a way that keeps the “color” (the approximate density of the
ink) consistent across the paragraph.

 Line breaking

 A Practical Programmer’s Guide to the Encoding Standard 479

x� Allow the text to go slightly outside the margin on either side (this is called “optical justification”:
round characters, for example, look lined up with the margin when they actually go a little beyond
the margin and don’t look lined up when they actually are).

Line layout

Once you’ve decided which words are going to go together on a line, the next thing is to determine
the order in which the characters will be arranged on that line.

For the majority of scripts, this is straightforward: The characters just march in succession, one by
one, from the left-hand side to the right-hand side (or, in some languages, from the top of the page to
the bottom). There are a couple of situations where it gets more interesting than that:

x� The most common is combining character sequences. Usually, a combining character sequence
turns into a single glyph, but sometimes (especially when there are a lot of base-diacritic
combinations) the rendering process has to draw two (or more) separate glyphs and figure out
how to position them relative to each other. Vowel and tone marks in Thai must be stacked, for
example. Points in Hebrew and Arabic need to be positioned correctly relative to the base char-
acter (in Arabic in particular, the rules for how to do this can get pretty complicated in a high-
quality font). And so on. This sort of thing is usually done in the font itself, and we’ll look at this
more closely when we talk about glyph selection.

x� Indic scripts may have complex positioning rules. Vowel marks don’t always position relative to
the consonant that immediately follows them: if there are multiple leading consonants in the
syllable, sometimes they all come into play (left-joining vowels and the left halves of split vowels,
for example, usually go at the extreme left of their syllables rather than merely exchanging places
with the consonant to their left). The exact placement of viramas, rephas, and diacritical marks
often depends heavily on the surrounding letters. Again, most of this is usually taken care of in the
font and will be looked at more closely in the next section. The one exception is left-joining
vowels. On many systems, they’re just treated as separate characters and rearranged by the line-
layout algorithm before glyph mapping.

x� The big challenge in line layout, and the one we’ll spend the rest of the section looking at, is bi-di.
If you’re dealing with one of the right-to-left scripts (currently Hebrew, Arabic, Syriac, and
Thaana), there’s complicated work that goes on when these languages mix with left-to-right
languages (or, much of the time, with numerals) on the same line. The Unicode bidirectional
layout algorithm was designed to make sure you always get a well-defined ordering when scripts
of different directionality are mixed on a line.

We already looked at the Unicode bi-di algorithm in Chapter 8, but we focused on the results it’s
designed to produce. Here we’ll look at little more closely at how to implement this behavior.

Unicode Standard Annex #9 describes the bi-di algorithm in excruciating detail (it’s also explained in
Section 3.12 of the Unicode standard itself, but UAX #9 is more up to date). The bi-di algorithm
works by dividing up the line into directional runs, groups of characters that all run in the same
direction (left to right or right to left). Within a directional run, the characters are laid out in the nor-
mal straightforward manner: the characters run one by one either from right to left or from left to
right. The big challenge comes in figuring out how to order the runs relative to each other.

To do this, the bi-di algorithm organizes the characters into embedding levels. Each level consists of
a sequence of directional runs and embedded levels. The items in each level are arranged relative to
each other in a consistent direction (again, either left to right or right to left).

 Rendering and Editing

480 Unicode Demystified

To see how this works, consider the following sentence:

Avram said and smiled.

It consists of three directional runs at two levels. The outermost level runs left to right and contains
the two outer directional runs, “Avram said” and “and smiled,” and the inner level. The inner level,

which runs right to left, contains the inner directional run, “ .”

Without doing explicit embeddings, the deepest you can get is three runs: You can have a left-to-
right outer level with right-to-left levels embedded within it. If a right-to-left level contains a numeral
(numerals always run left to right), that’s an inner level that runs left to right. Combining character
sequences in right-to-left text generally also get treated as inner levels that run left to right (this is so
that after the character codes have been reordered for display, the combining marks still follow the
characters they combine with). Of course, explicit embeddings can be used to get deeper levels of
embedding, up to a maximum of 62 (which should be way more than enough for any rational piece of
text).

To lay out a line, you need three buffers (actually, you can generally optimize some of them out, but
bear with me for a few minutes). The first buffer contains either the characters, the glyph codes they
map to, or sequence numbers mapping positions in the display back to positions in the backing store
(or vice versa). We’ll call this the “character buffer.” The second buffer contains the resolved bi-di
category for each character; we’ll call it the “category buffer.” The third buffer contains the resolved
embedding level for each character. We’ll call it the “level buffer.”

The character buffer starts out containing all the characters in the line in their normal (logical)
Unicode order. The category buffer starts out containing every character’s directional category as
specified by the Unicode Character Database. The level buffer starts out as either all zeros or all
ones, depending on the paragraph’s directionality. (The bi-di algorithm uses a convention that even-
numbered levels are left-to-right levels and odd-numbered levels are right-to-left levels—if the
paragraph’s directionality is left-to-right, everything starts out at level 0; if right-to-left, everything
starts out at 1.) The paragraph’s directionality is usually specified with a property on the document or
with styling information; in the absence of either, it defaults to the directionality of the first strong-
directionality character in the paragraph.

The next thing you do is take care of any explicit embeddings or overrides. These can be specified
either by out-of-band styling information or by the explicit directional characters in the General
Punctuation block (that is, the LRE (“left-to-right embedding”), LRO (“left-to-right override”), RLE
(“right-to-left embedding”), and RLO (“right-to-left override”) characters). When you see an RLE or
RLO, you increment the embedding level of all characters between it and the next matching PDF
(“pop directional formatting”) character to the next-higher odd value. For LRE and LRO, you
increment the embedding level to the next-higher even value. (The sequences can nest; the
incrementing happens at each nesting level.)

For the override characters, you also change the entries in the category buffer for the characters
between them and the next PDF (except for any additional embedding or override characters you
encounter). For LRO, everything between it and the next PDF (except characters embedded in a
nested pair of explicit embedding/override characters) becomes L; for RLO, everything becomes R.

To see how this works, let’s look at another example. Let’s say you’re trying to get this as your
displayed text:

 Glyph selection and positioning

 A Practical Programmer’s Guide to the Encoding Standard 481

“The first two books of the Bible are and .”,

The algorithm begins with things looking like this (backing-store order is shown running from left to
right here to make things a little easier):

 , #“The first two books of the Bible are and .”#
RRRRRNRRRNN#NLLLNLLLLLNLLLNLLLLLNLLNLLLNLLLLLNLLLNRRRRRRNLLLNRRRRNN#
11

The first # sign is an LRE and the second one is a PDF. This causes the Hebrew words in the English
sentence to be treated as part of the English sentence, keeping the English sentence in order, rather
than as part of the Hebrew sentence, which would break the English sentence into pieces and put
them out of order. After dealing with the explicit embeddings, we get this:

 , #“The first two books of the Bible are and .”#
RRRRRNRRRNN#NLLLNLLLLLNLLLNLLLLLNLLNLLLNLLLLLNLLLNRRRRRRNLLLNRRRRNN#
11111111111 222

The next thing you do is resolve weakly-typed characters. This causes combining characters to be
treated the same as the base characters they attach to, and it causes punctuation inside numerals to be
treated the same as the digits (if a numeral occurs in a left-to-right directional run, it gets
incorporated into that run). Since our example doesn’t have any numbers or weakly-typed
characters, this pass doesn’t do anything to it.

Then you resolve neutral characters. If a neutral character has characters with the same directionality
on either side, it takes on the same directionality; otherwise it takes on the directionality of the
embedding level. At the end of this pass, every character’s entry in the category buffer is either L or
R. In our example, that gives you this:

 , “The first two books of the Bible are and .”
RRRRRRRRRRRLLLLLLLLLL LLLLLLLLLL LLLLLLLLLLLLL LLLLLRRRRRRLLLLLRRRRLL
11111111111222

Once you’ve gotten things to this point, you can go back and find the rest of the levels. Basically, for
each character whose directionality is counter to the directionality specified by its entry in the level
buffer (“L” characters with an odd embedding level or “R” characters with an even embedding level),
you increment its entry in the level buffer. (Actually, numerals are special-cased: they go up two
levels when the underlying embedding level is even.) For our example, that gives you this:

 , “The first two books of the Bible are and .”
RRRRRRRRRRRLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLRRRRRRLLLLLRRRRLL
1111111111122222222222222222222222222222222222222 33333322222 333322

At this point, you don’t need the category buffer anymore; its whole purpose is to help you get the
embedding levels right. Now you can use the embedding levels to reorder the text. You start by
locating every run of characters whose embedding level is 1 or higher and reversing their order. For
our example, this results in reversing the whole string:

“. dna era elbiB eht fo skoob owt tsrif ehT” ,
223333222223333332222222222222222222222222222222222222211111111111

 Rendering and Editing

482 Unicode Demystified

Then you locate every run of characters whose embedding level is 2 or higher and reverse them
again:

”The first two books of the Bible are and .” ,
2222222222222222222222222222222222222233333322222333322 11111111111

And so on. So for our example you’d again reverse the runs with a level of 3:

”The first two books of the Bible are and .” ,
22222222222222222222222222222222222222 33333322222 33332211111111111

And there you have it!

This seems like a lot of work and a lot of passes through the text, but like most of the other
algorithms we’ve looked at, it can be optimized. It’s possible to go from the original text to the
resolved levels in a single pass using a state-machine-based algorithm, leaving only the reordering
pass as a separate pass.

I’ve glossed over some crucial details here in the interest of brevity. For the full story, refer to UAX
#9. The Unicode Web site also includes two reference implementations of the bi-di algorithm. One
follows the description in UAX #9 literally, making numerous passes through the text. The other
reference implementation uses a state machine to do the whole job in one pass.132

Things also get more complicated when you’re doing all this in context and have to do glyph
reordering as well as line breaking and glyph selection (a paragraph of Arabic text, for example).
You can’t actually do the three processes in three separate passes as we’re looking at them here.
UAX #9 gives these recommendations:

x� Start, for each paragraph, by applying the bi-di algorithm to the whole paragraph, but only go far
enough to figure out the embedding levels; don’t actually reorder the characters.

x� Map the “reordered” characters to glyphs. This lets you get the right results with Arabic letters
and choose the right glyph for the “mirrored” characters (those that change glyph depending on
their directionality).

x� Use these glyphs when measuring the text to parse it into lines, and divide it into lines.

x� For each line, reorder the glyphs according to their embedding levels.

x� And finally, draw everything on the screen.

The reordering has to come after the line breaking. This is because the words that come first in the
logical order should go before the line break. For example, if you have this sentence…

132 One thing to be aware of: There was a paper presented at the April 2001 Unicode conference [Steven

Atkin and Ryan Stansifer, “Implementations of Bidirectional Reordering Algorithms,” Proceedings of the

Eighteenth International Unicode Conference, session C13] that showed that the two reference

implementations didn’t produce the same results in a few rare cases, and that the various commercial

implementations of the Unicode bi-di algorithm varied even more widely. Hopefully this problem, at least

with the reference implementations, has been fixed by the time this book hits the streets, but it’s worth

watching out for. The non-optimized reference implementation, by definition, always gives the right answer.

 Glyph selection and positioning

 A Practical Programmer’s Guide to the Encoding Standard 483

Avram said and smiled.

…an you split it into two lines so that only one of the Hebrew words can fit on the first line, you get
this:

Avram said
 and smiled.

The other thing to keep in mind is that if you’re doing styled text, you can’t apply the bi-di algorithm
separately to each style run—the bi-di algorithm may reorder the style runs. In other words, if you
underline “said” and “ ,” you should get this…

Avram said and smiled.

…and not this:

Avram said and smiled.

Glyph selection and positioning

Arguably the most important part of drawing Unicode text is glyph selection and positioning. The
Unicode character-glyph model (encode the semantics, not the appearance), combined with the
inherent complexities of certain scripts, make rendering a complicated affair, at least for some
scripts. For others, combining character sequences make things interesting.

Dealing with this sort of thing is usually the province of font designers, but it’s important to have
some knowledge of how various font technologies work, as some support for certain scripts may also
require help from the rendering engine.

Font technologies
Let’s start by talking for a few moments about font technology and how things are normally done in
modern computerized fonts. This will help the following discussions of particular technologies and
techniques make more sense.

In a modern text-rendering system, a font is a piece of software. It works in concert with the
rendering engine itself to draw text on an output device, such as the computer screen or a piece of
paper. A typical font may supply:

x� Glyph images (bitmap fonts) or glyph descriptions (outline fonts). A glyph description may stand
alone or may rely on other glyph descriptions to draw all or part of its glyph. (An accented-e
glyph description might just call though to separate descriptions for the e and the accent, for
example.)

x� One-to-one mappings between code points in one or more character encoding standards and
glyphs.

 Rendering and Editing

484 Unicode Demystified

x� Tables that allow for more-complex many-to-many mappings between code points and glyphs.

x� Tables that allow the rendering engine to make alternations in the default position of a glyph
depending on the surrounding glyphs.

x� Tables that alter the default glyph mappings based on style settings chosen by the user.

There are two basic categories of font technologies: “bitmap” and “outline” fonts. In a bitmap font,
each glyph has a bit-oriented image associated with it; this bit image is simply copied to the screen to
draw that character. Because the character has essentially already been “rasterized” by the font
designer, it’s designed for a particular combination of point size and device resolution. Bitmap fonts
are essentially obsolete in modern personal computers and printers, but you still see them on PDAs
and in various embedded applications (the displays on cell phones or copy machines, for example).

Outline fonts, on the other hand, are resolution independent. An outline font stores a geometric
description of an ideal shape for each glyph. Each glyph description consists of zero or more ordered
lists of points in an ideal coordinate space. Each ordered list of points gets connected together to
form a closed shape called a “loop” or “contour” (this isn’t quite like a child’s connect-the-dots
puzzle: some points in the loop are “off-curve” points—instead of actually being connected into the
loop, they define the shape of a curve that connects together the preceding and following points). The
loops get colored in to form the glyph (when loops intersect, there are rules that describe which parts
get colored in, which is what allows you to have characters with “holes” in them). The rendering
engine uses the idealized description to create a bitmapped image on the fly that is used to represent
the character. An outline font can thus represent the same font at any size.

At small point sizes or coarse resolutions, however, the ideal coordinate space that is used to describe
the glyphs begins to interact uncomfortably with the actual coordinate space where the rasterized
image will be drawn, so outline fonts also include “hints” or “instructions” that are used to optimize
display at low resolutions. The instructions for each glyph define an algorithm for deforming the
idealized shape in a way that fits onto the output device’s coordinate system well while still honoring
(as much as possible) the type designer’s intent.

The first major outline-font technology in the personal-computer arena was Adobe Systems’
PostScript, which first appeared on the Apple LaserWriter printer in 1986. This was followed a
number of years later by Apple’s TrueType font technology, which first appeared in Apple’s System
7 [or did it actually come out sooner?] in [when?]. For a while after that, these two incompatible
font technologies coexisted. When Microsoft adopted TrueType for Windows in [when?], a situation
arose where computers were generally using TrueType to render their characters on screen and
printers were using PostScript to render the same characters on paper. Since it was possible for a
low-end printer to rely on the host computer to rasterize the whole page and just send the bit image
down to the printer, TrueType started to become more popular.

This led to a merger of the two technologies in [when?], forming OpenType. OpenType fonts use the
TrueType font file format, but can contain glyph outlines and hints in either the old TrueType format
or in the old Postscript format, along with various tables of supplementary information. This format
is currently supported by Microsoft and Adobe, as well as many other vendors.

Meanwhile, Apple went its own way, extending the basic TrueType format in other ways to create
TrueType GX, which first appeared in [when?]. The basic TrueType GX format is still compatible
with OpenType, but includes supplementary tables for various fancy typographical effects that aren’t

 Glyph selection and positioning

 A Practical Programmer’s Guide to the Encoding Standard 485

recognized by OpenType renderers. TrueType GX has since evolved into Apple Advanced
Typography (AAT).133

Old-style TrueType fonts are compatible with both OpenType and AAT, and newer OpenType or
AAT fonts are generally (thought not always) minimally compatible with each other, although (unless
they were designed as dual-purpose fonts) they behave as old-style TrueType fonts on the system
they weren’t designed for.

[I’m reconstructing all of this from memory. I suspect I have details of the story wrong, in
addition to missing all the dates when things came out. I suspect I’ll also have to clean up the
story a bit to avoid making enemies on one side or the other.]

OpenType and AAT fonts contain one or more character mapping tables (or “cmap” tables) that
map code points in some encoding standard to internal glyph indices. A font can have multiple
cmaps, allowing it to be used with more than one character encoding standard without the system
having to perform code conversion before it can render. These days, fonts from all the major font
vendors include cmap tables for Unicode (specifically UTF-16). The glyph indices aren’t
standardized— these are internal values used only by the renderer to access the glyph outlines. Glyph
indices are two-byte values, meaning a single font can never contain more than 65,536 glyphs. The
cmap table maps single characters to single glyphs; more complex mappings are handled differently
in OpenType and AAT.

Poor man’s glyph selection
Most Unicode-compatible systems begin by doing the stuff they can do without any cooperation from
an underlying font engine (or from the fonts themselves). There’s actually quite a bit of Unicode that
can be covered using a rendering engine (or a font) that doesn’t support complex typography. With
suitable fonts but no special rendering technology, you can handle:

x� Latin (precomposed characters only)

x� Greek (again, precomposed characters only)

x� Cyrillic

x� Armenian

x� Georgian

x� Hebrew (unpointed, assuming you apply the bi-di algorithm to the characters before you pass the
characters to the renderer)

x� Ethiopic

x� Cherokee

x� Han, Hiragana, Katakana, and Bopomofo (assuming the fonts can hold sufficient numbers of
characters)

x� Hangul (precomposed syllables only)

x� Yi

x� Canadian aboriginal syllabics

133 Apple’s rendering engine for AAT fonts is called Apple Type Services for Unicode
Imaging, or ATSUI (pronounced “at-sooey”), which gets my vote for funniest-sounding computer-
industry acronym—I always want to say “gesundheit” when someone talks about it.

 Rendering and Editing

486 Unicode Demystified

But you can actually go a bit beyond this by performing mappings on characters before sending them
to the renderer. If you map to Normalized Form C before sending characters to the renderer, you pick
up support for all combining character sequences that have an equivalent precomposed form.

But you can actually go a little beyond just this, especially if you do compositions that are excluded
in Normalized Form C. For example, you can’t do fully-pointed Hebrew this way, but you can do
some other languages that only use a few combinations of Hebrew letters and points, such as Yiddish.

Many proportional-font technologies provide some ability for characters to overlap: you can actually
have a character draw outside its designated bounding box. You can use this technique to get some
support for combining character sequences that can’t be normalized to Form C: you just have the
glyphs for the combining characters overhang whatever happens to precede them. Of course, if the
width of the preceding character can vary, you won’t get very good-looking results, but it’s better
than nothing (this can also give you rather crude support for a few more scripts, such as Thai, pointed
Hebrew, or Thaana, as long as you don’t encounter characters that have more than one mark on them
[such as Thai consonants with a top-joining vowel and a tone mark]).

If the font technology allows you to specify kerning pairs (pairs of characters that can be moved
closer together than the default) you can use this to fine-tune the placement of combining marks for
the characters they’re being applied to, although this doesn’t help you when marks have to be moved
vertically or change shape to avoid colliding.

And you can also handle one script that requires complex typography: Arabic. The minimally-
required contextual forms of the Arabic letters (and the minimal combinations of these forms with
points) are in the Arabic Presentation Forms B block as compatibility composites. Using the rules in
the ArabicShaping.txt file from the Unicode Character Database, you can perform minimal
contextual shaping.

The algorithm for this is fairly simple:

x� Map the text to Normalized Form C.

x� Split the text into lines and apply the Unicode bi-di algorithm.

x� If you encounter U+0627 ARABIC LETTER ALEF to the immediate left of U+0644 ARABIC
LETTER LAM, check the joining class of the character to the right. If it’s R or N, replace the lam
and alef with U+FEFB ARABIC LIGATURE LAM WITH ALEF ISOLATED FORM. If it’s L
or D, replace the lam and alef with U+FEFC ARABIC LIGATURE LAM WITH ALEF FINAL
FORM. (In real life, this step actually has to be extended to take into account pointed forms of
alef as well as the unadorned version.)

x� Go through each character on the line in visual order. Look up its joining category in
ArabicShaping.txt, along with the categories of the characters on either side. Use this table to
match the abstract character the Arabic block to an appropriate presentation form from the Arabic
Presentation Forms B block:

class to left current class class to right
presentation
form to use

any N any independent

R or D L any initial

L or N L any independent

any R L or D final

 Glyph selection and positioning

 A Practical Programmer’s Guide to the Encoding Standard 487

any R R or N independent

L or N D R or N independent

R or D D R or N initial

L or N D L or D final

R or D D L or D medial

The abbreviations in the table should be fairly self-evident: L means the character connects to the
character on its left but not the character on its right; R means the character connects to the character
on its right but not the one on its left; D means the character can connect to characters on both sides
(D stands for “dual-joining”). N means the character doesn’t connect to anything (it stands for “non-
joining”). Anything not listed in ArabicShaping.txt is, by definition, in category N.

It’s theoretically possible to extend this technique to get somewhat better-looking results by also
using the ligatures in the Arabic Presentation Forms A block. But this generally doesn’t work very
well in practice (points and other marks still tend to get misplaced, for example) and very few fonts
actually provide glyphs for these characters.

Arabic is the only script for which Unicode actually encodes presentation-form characters for all the
contextual forms for each letter, but it’s possible to extend this technique to other scripts using
special fonts and code points in the Private Use Area.

Glyph selection and placement in AAT
Apple Advanced Typography fonts go way beyond the basics to provide lots of advanced-typography
features. Perhaps most important among the extra features in AAT fonts is the glyph metamorphosis
table, or “mort” table, which provides the ability to do much more complex character-to-glyph
mapping than is possible with the standard cmap table.134

The transformations in the mort table are applied after the mappings in the cmap table have been
applied. One advantage of this design is that it makes the font independent of the character encoding
of the original characters: The original characters are mapped first into internal glyph indices using
the cmap table, and then the resulting sequence of glyph indices can be further transformed into a
different sequence of glyph indices (using the mort table) before being rendered.

AAT provides for two different kinds of glyph transformations. Non-contextual transformations are
one-to-one mappings that aren’t based on surrounding characters. These mappings are instead based
on global settings such as the internal state of the renderer. This lets you do things like choose
between regular and old-style numerals, or between regular lowercase letters and small caps,
depending on a font-feature setting. It also lets you pick different glyphs depending on whether text is
being rendered vertically or horizontally (parentheses and hyphens, for example, rotate ninety
degrees when used with vertical text).

134 My main sources for this information were the TrueType Reference manual, available online at

http://fonts.apple.com/TTRefMan/index.html, and Dave Opstad, “Comparing GX Line

Layout and OpenType Layout,” http://fonts.apple.com/WhitePapers/

GXvsOTLayout.html.

 Rendering and Editing

488 Unicode Demystified

More interesting are contextual transformations. AAT makes use of finite state machines to allow
glyph selection for a particular character to be based on arbitrary amounts of context on either side.
In fact, the state-machine implementation actually allows you to modify the text stream as it goes,
which permits some fairly complex mappings. All of this not only allows you to do the kind of
contextual glyph selection necessary for cursive joining in Arabic, but also lets you do things like
reorder glyphs (to deal with left-joining Indic vowel signs, for example), add glyphs to the text
stream (to deal with split Indic vowel signs represented by single code points in the original text), and
remove glyphs from the text stream (to make Indic viramas invisible, for example).

Contextual glyph transformations are also how you do ligature formation and accent stacking in
AAT. In fact, an accented letter is just a special kind of ligature in AAT. AAT includes the concept
of a “compound glyph.” A compound glyph doesn’t have its own outlines, but instead uses the
outlines from one or more other glyphs, possibly applying transformations to them as part of the
composition process. Essentially, it calls the other glyphs as subroutines. The letter é, for example,
would generally have a compound glyph: It’d use the glyph for the regular letter e, plus the glyph for
the acute accent, possibly repositioning the accent to appear in the right place above the e.

The one problem with this approach is that it doesn’t lend itself well to arbitrary combinations of
accents and base characters, especially if a single character will have a bunch of accents applied to it.
If the font designer didn’t think of the particular base-accent combination you want to use, figure out
how the pieces should go together to draw it, and assign it a glyph code, an AAT font can’t draw it.

AAT fonts can include a lot of other interesting goodies, including:

Kerning. Kerning is the process of fine-tuning the positioning of two characters to look better,
usually by moving them closer together. Normal font spacing usually leaves a little bit of white space
between each pair of characters, but this can make certain pairs of characters appear to be too far
apart. For example, the word “To” looks better if the crossbar of the T hangs a little over the “o,” and
“AVANTI” looks better if the slanted strokes of the As and V are moved a little closer together so
the letters overlap. AAT kerning tables not only allow for this kind of pair-based kerning, but also
allow state-table-based algorithms that let you consider more than two characters at a time when
deciding how to position the characters. It also supports “cross-stream kerning,” where a character is
moved up or down based on the surrounding characters, which can be useful for things like hyphens
and dashes (a hyphen should be positioned higher when it’s between two capital letters or two digits
than when it’s between two small letters, for example).

Justification and tracking. Tracking is a global adjustment that moves all the characters on a line
closer together or farther apart. Justification is, as we saw earlier, the process of systematically
widening or narrowing a line of text using various techniques to take up a given amount of horizontal
space. Both of these processes interact in interesting ways with the design of the type and with the
script you’re using, and AAT allows you to add special tables to a font that specify just how these
processes should take place on the text rather than leaving it to the rendering process. This lets the
font designer choose, for example, when to justify by inserting kashidas, when to justify by
increasing interword spacing, when to justify by adding intercharacter spacing, when to do a
combination of these things, and in what proportions, and when to do things like break up ligatures.

Baseline adjustment. In English text, we’re used to the idea of text sitting on a “baseline.” With the
exception of letters like the lowercase “p” that have “descenders,” letters all sit on an imaginary line.
If a particular line of text mixes text of different point sizes, the differently-sized pieces of text line
up along the baseline.

 Glyph selection and positioning

 A Practical Programmer’s Guide to the Encoding Standard 489

The baseline is in a different place in some other scripts. Han characters and their allied scripts (such
as Hangul and Kana) commonly use a baseline that runs through the center of the line: differently-
sized characters are centered vertically with respect to each other. Devanagari and other Indic scripts
use a “hanging baseline”: the horizontal stroke at the top of most characters is the thing that stays in
the same place as the point size changes.

If you mix characters that use different baselines on the same line of text, you need some way of
relating the different baselines to one another so that things appear to line up correctly. AAT fonts
can include a special table that includes information to facilitate this.

Optical alignment. Characters typically include a little bit of white space on ether side so that they
don’t touch when drawn in a row; this is called the “left-side bearing” and “right-side bearing.” This
extra white space can lead to a ragged appearance when the text is lined up along a margin,
especially if type size varies from line to line. In addition, straight and curved strokes don’t appear to
line up right if the leftmost pixels of the curved stroke line up with the leftmost pixels of the straight
stroke, requiring curved characters to actually be positioned slightly outside the margins. Certain
punctuation marks in some scripts are also allowed to appear outside the margins. AAT fonts can
include tables to facilitate this kind of positioning.

Caret positioning. An AAT font can also include tables that indicate where to draw the insertion
point when it’s positioned between two characters that are represented by a ligature, and that let you
do things like specify a slanted caret that’ll draw between the characters in an italic or oblique
typeface.

These are just some of the special features that can be included in an AAT font. There’s a lot of other
stuff that you can do as well. In addition, Apple’s ATSUI renderer handles a number of things for
you automatically (the Unicode bi-di algorithm being the big one). A lot more work goes into
designing a good AAT font, but it leaves less work in the end for the application developer.

Glyph selection and placement in OpenType
OpenType has some features in common with AAT, owing to their common lineage, but some
important differences as well.135 Both share the same overall file format (but contain different tables),
and both can make use of TrueType outlines. In addition, OpenType fonts can use Adobe Type I
Compact Font Format (CFF) outlines. Both AAT and OpenType also support bitmap glyphs, but
have different formats for them.

OpenType has a lot of the same features as AAT, but takes a completely different approach. For
example, its approach to complex glyph selection is totally different. It starts the same way—
characters are mapped to glyphs in a one-to-one manner via the cmap table, which is the same as the
cmap table in AAT, and then additional transformations are performed on the resulting glyph indices.

In OpenType, the additional transformations are defined in something called the glyph-substitution
table, or GSUB table. The GSUB table uses a different operating principle from AAT’s mort table.
Instead of a state-machine-based implementation, the GSUB table uses a string-matching

135 For the section on OpenType, I relied on the OpenType font specification, as found at

http://partners.adobe.com/asn/developer/opentype/, as well as on the Opstad paper

cited earlier.

 Rendering and Editing

490 Unicode Demystified

implementation. You specify a list of sequences of glyph indices and the glyph indices to map them
to. There’s a lot of flexibility in this. You can do the same kinds of non-contextual mappings that are
possible in AAT (although OpenType fonts don’t include a built-in concept of “font feature”; choices
of glyph based on font features are left to the rendering engine).

There’s also a lot of flexibility in the contextual mappings: you can specify literal strings to be
replaced by other literal strings, or you can specify strings based on various “glyph classes” or user-
defined collections of glyphs. You can also specify sequences that must appear before or after the
sequence to be mapped in order for the mapping to take place. In essence, you have something very
similar to a regular-expression-matching system at your disposal for specifying glyph substitutions.
In effect, this system also uses a state machine for doing glyph substitution. The big difference
between this and the AAT state-machine implementation is that the AAT state machine
implementation allows the glyph stream to be modified on the fly while the state machine is passing
over the text. This makes reordering and insertion of new glyphs, both necessary for proper rendering
of many Indic scripts, more difficult in OpenType. It’s still possible [as far as I can tell], but most
OpenType fonts for Indic scripts don’t bother, leaving the work of dealing properly with split vowels
to the underlying rendering engine, which must preprocess the text in ways analogous to the handling
of the Unicode bi-di algorithm.

[Do I have this right? I know the IBM team had to do a bunch of extra work to handle Indic
scripts using OpenType in Java, but I don’t know exactly what the issues were—it does look
like the font format does support the necessary mappings. What am I missing here?]

One really neat thing about OpenType fonts is their handling of combining marks and accents.
OpenType has the compound-glyph idea that AAT uses, because it inherits it from the TrueType
outline format (CFF outlines don’t have this capability), but it provides a more powerful approach to
accent application: the GDEF and GPOS tables. The GPOS table functions kind of like a fancier
version of the TrueType kerning table (some early formats of which are still also supported by Open-
Type), but it allows adjustment of character positions in both directions, where the AAT kerning
tables only allow adjustment in one direction. Better yet, the GPOS table lets you position glyphs
relative to each other by mating attachment points, which are defined (along with some other stuff) in
the GDEF table. In this way, for example, instead of saying that when you see an e and an acute
accent next to each other, the accent should be moved to the left so many pixels and down so many
pixels so it draws in the right place over the e, you can simply say that for all Latin-letter/top-joining-
accent combinations, you should mate the top-center attachment point on the letter with the bottom-
center attachment point on the accent. You then leave it to the GDEF table to specify where those
points are on the various letters and accent marks. This kind of thing can drastically shrink the
number of entries you need in the GPOS table (and, by eliminating the need for compound glyphs,
the number of glyph indices you have to waste for letter-accent combinations).

These tables can be set up in such a way as to work right with multiple combining marks on a single
base character (including arbitrary Unicode combining character sequences) and can do the same
kinds of contextual matching that’s possible in the GSUB table.

OpenType font files also include tables for justification, baseline adjustment, and caret positioning
that do roughly the same things as their AAT counterparts, but they have a different format from the
analogous tables in AAT fonts.

 Glyph selection and positioning

 A Practical Programmer’s Guide to the Encoding Standard 491

Special-purpose rendering technology
There are specialized applications that go outside the bounds of what normal rendering engines can
do and require specialized rendering engines. For example, Unicode provides math and musical
symbols, but mathematical formulas and music both require much more complex shaping and layout
than normal written language.

Another interesting case is Arabic. Because of its cursive nature, there’s an almost endless variety of
combinations of characters that might have special forms (not to mention the rather complex placing
of vowel points and other marks around the letters) and trying to get calligraphic-quality text with
contextual forms and ligatures in a conventional font technology just becomes too complicated. To
do really first-class Arabic typography requires more of an algorithmic approach. There exist
specialized rendering engines just for Arabic that use special fonts and take this kind of algorithmic
approach.

Compound and virtual fonts
In any language, you’ll get the best-looking results if you use styled text and actually specify things
like the font to use and the point size and style to use with it. But Unicode, combined with the
Internet, raise the likelihood of running into text in some language and script other than the ones you
read and write. And while if you don’t read it, it might not matter so much what you see, you can
generally make some sense out of it (or take it to someone who does read it) if it still shows up the
way it’s supposed to.

For this reason, you’re seeing operating systems come with special Unicode fonts that include glyphs
for all the Unicode characters (or at least a sizable subset). This technique can get rather unwieldy,
however.

Another approach is to use a compound font. Some systems give you the ability to specify an ordered
list of fonts to try using to display text if the font the document asks for isn’t available or the
document uses characters that aren’t in that font. In this way, instead of having a huge “Unicode”
font, you can have separate Greek, Hebrew, Arabic, Japanese, etc. fonts. This fallback list can be
thought of as a “font” on its own—it just relies on various other fonts to supply the actual glyphs.
This technique can be used to avoid having to carry huge multi-megabyte font files around to see all
of Unicode and it allows users to fine-tune things to their liking (picking a preferred default font for
their native language, for example, or preferring Chinese glyphs over Japanese glyphs for the Han
characters).

Usually, at the root of a hierarchy like this is a “last resort” font. You can use this to get something
more meaningful than the standard “missing” character for characters that aren’t in any of the fonts in
the fallback list. The “last resort” font usually has one glyph for each Unicode character block, and
that glyph is used for all the characters in that block. In this way, if you don’t have a Devanagari font,
for example, you can at least still tell that a piece of text you can’t read was in Hindi (or some other
language that uses the Devanagari script).

[Is it possible to show a few example glyphs from Apple’s last-resort font?]

Java and the MacOS are two examples of environments that use a virtual-font technique to handle
Unicode’s huge repertoire of characters.

 Rendering and Editing

492 Unicode Demystified

Special text-editing considerations

Finally, it’s worth taking a little time to look at a few things you need to keep in mind if you’re
writing a Unicode-compatible text editing utility. There are a number of Unicode-specific things to
keep in mind when allowing a user to edit text.

Optimizing for editing performance
The first isn’t actually Unicode-specific at all, but if you don’t already know about it, it’s worth
taking a few minutes to discuss. That’s a useful technique for speeding performance during editing.

Let’s say you have a one-million-character document and you start typing at the beginning. If
you’ve stored your text in one contiguous block (probably with some slop space at the end so you
don’t have to reallocate your character storage on every keystroke), you have to slide a million
characters up two bytes in memory with every keystroke. This, obviously, is generally
unacceptably slow.

It generally makes more sense to break the document up into pieces. This way, you don’t have to
shove massive numbers of characters around whenever you’re doing edits at the beginning of the
document, and you don’t have to allocate a new block and copy all the characters into it every time
you overflow the available storage space. This technique also lets you read a document from disk
in pieces rather than all at once and, if you’re memory-constrained, lets you page parts of the
document out to disk as you’re working.

But full-blown block storage can be complicated to maintain; there’s a lot of bookkeeping
associated with keeping track of which blocks are where, which text is in which block, when to
split or coalesce blocks, and so on. A simpler approach with many of the same performance
benefits involves splitting the document up into only two blocks. It’s called gap storage.

To understand how gap storage works, let’s start by imagining your typical memory buffer holding
a piece of text. Normally the buffer will be bigger than the actual text so you have room for it to
grow as the user edits. It looks something like this:

low memory

high memory

text

extra space

 Special text-editing considerations

 A Practical Programmer’s Guide to the Encoding Standard 493

But you don’t have to keep the extra space at the end of your backing store. What the gap
technique does instead is move it around as the text is edited. So after an edit in the middle of the
document, the buffer looks like this:

low memory

high memory

text

extra space

text

site of last edit

The idea is very simple. Instead of moving all the text above the edit position up or down in
response to an edit, you instead reposition the gap so that it occurs immediately after the position
of the edit. The edit itself, whether an insertion or a deletion, doesn’t cause any more characters to
move at all: it behaves just as an edit at the very end of the document would with ordinary storage.

On average, you move a lot fewer characters around with this technique than you would the old-
fashioned way. Better yet, if you’re doing the edits in response to keyboard input, where large edits
happen one character at a time, you get an even bigger win. If I type a ten-letter word at the
beginning of the document, the gap is moved to the beginning of the document in response to the
first keystrokes. The other nine characters all get inserted at the position of the gap and require no
more moves at all! This approach can generally give you lightning-fast performance.

The bookkeeping associated with gap storage is minimal. Basically you have to keep track of
where in the backing store the gap is and how big it is. Operations that only retrieve text from the
buffer without changing it don’t generally move the gap, so you need to keep track of whether a
retrieval is directed at text before or after the gap. If a retrieval of text crosses the gap, then you
may have to do a little more work (or move the gap), but the bookkeeping is still much simpler
than doing the same thing with a full-fledged block storage mechanism.

Of course, if the text grows beyond the bounds of the storage buffer, you still have to reallocate the
storage and copy the text into the new buffer, but since moving the gap can be done as part of the
process of copying the text from the old to the new buffers, the incremental cost of the reallocation
can be kept down. If you’re memory-constrained, you have to rely on a virtual memory subsystem
to do the paging in and out for you.

The gap technique can be even more fruitful for the other data structures associated with the text
than for the text storage itself, such as the data structure that stores styles and other out-of-band
information, or the line starts array.

Let’s consider style storage for a moment. Typically, style information is stored in a run array, a
data structure that associates records of style information with positions in the text. Each entry in a
style run array refers to a style run: a contiguous sequence of characters that have the same styling

 Rendering and Editing

494 Unicode Demystified

information. The entry specifies the position and length of the style run in the text and contains a
pointer to another record somewhere that describes how that run of text is to be drawn (or possibly
contains some other information about the text).

Now think about what happens when you add a character to a style run near the beginning of the
document. All of the style runs that come later in the document have to have their positions
updated so that they refer to the same characters they did before your addition. You can get around
this by storing lengths instead of positions—this way only the run you’re actually changing needs
to be updated—but now it becomes more difficult to find out which styles are in effect at an
arbitrary position in the text. To do that, you have to start at the beginning of the run array and
walk it, accumulating run lengths until you find the run containing the position you’re interested in.

It’s really best if you store both the positions and the lengths of the runs in the run array, but you
don’t want to waste time updating every run in the array every time an edit happens to the
document. Gap storage can be a big help here.

With run arrays, you’re not so much interested in the performance you save from not moving
entries up and down every time there’s an edit. Run arrays are usually much smaller than character
arrays, and whole runs are added and deleted a lot less frequently than they’re updated. Here, gap
storage helps you with the task of updating run positions in response to edits.

You proceed the same way as before: Each time there’s an edit, you reposition the gap in the run
array so that it occurs immediately after the run that’s affected by the edit. Then you only have to
update that run’s length in response to the edit.

The magic is happening in the repositioning. The trick is the way you store the run positions. For
the runs before the gap, you store the positions in the normal way: relative to the beginning of the
text. For the runs after the gap, you store the positions relative to the end of the document instead.

Now the position of a given run only gets updated when it switches polarity. If you have a bunch of
localized edits in the same style run, the gap is immediately after it and the runs after it don’t have
to have their positions recalculated (they’re relative to the end of the document, and while the end
of the document will move, their positions relative to it don’t). When, later on, you make a change
later in the document, the positions of the runs after your first edit are recalculated as part of
moving the gap. The recalculation is simple: you just add up the lengths as you switch things.

Let’s say you have this sentence:

I am very happy to meet you.

It has three style runs: “I am,” “very,” and “happy to meet you.” The style run array starts out
looking like this:

 Special text-editing considerations

 A Practical Programmer’s Guide to the Encoding Standard 495

(0, 5) plain

(5, 4) bold

(9, 19) plain

(gap)

I am very happy to meet you.

Now let’s say you select “am” and delete it. Now the run array looks like this:

(0, 3) plain

(-23, 4) bold

(-19, 19) plain

(gap)

I very happy to meet you.

You replace “am” with “was once”. The gap doesn’t move and no positions need to be
recalculated. Only the length of the run you’re changing changes:

(0, 11) plain

(-23, 4) bold

(-19, 19) plain

(gap)

I was once very happy to meet you.

If you now go to the end of the document, switch to boldface, and add “But not now!”, the gap
moved back to the end, and all the positions get recalculated:

 Rendering and Editing

496 Unicode Demystified

(0, 11) plain

(11, 4) bold

(15, 19) plain

(gap)

I was once very happy to meet you. But not now!

(33, 12) bold

This technique can be very useful in keeping style information and other metadata up to date
without sacrificing performance.136 It’s also useful for doing the same kind of thing with internal
tables, the line-starts array in particular.

Accepting text input
I don’t want to spend a lot of time dwelling on text input here, but it’s worth emphasizing that
Unicode doesn’t assume a one-to-one mapping between keystrokes and characters any more than it
assumes a one-to-one mapping between characters and glyphs. Code that accepts input from the
user should keep this in mind.

For instance, combining character sequences can cause interesting things to happen. A Vietnamese
keyboard might generate the sequence U+0061 U+0323 U+0302 (representing the letter ��ZLWK�D�
single keystroke. Conversely, it might produce U+1EAD (the precomposed form of the same letter)
with two keystrokes (one for the basic letter and another for the tone mark, potentially in either
order).

A lot of European keyboards have “dead keys,” keys that cause an accent to be applied to the next
character you type, so the two-keystrokes-to-one-character mapping happens even in European
languages. Most encodings tend to favor precomposed forms, so one keystroke producing multiple
characters doesn’t happen as often, but it definitely does happen (in Burmese, some split vowels
can be represented only with combinations of two vowel signs, but the vowel might still be pro-
duced with a single keystroke, for example). It’s important to keep this in mind when designing an
input engine.

The more complicated case happens with the Han characters, which generally require something
called an input method, a whole process that maps keystrokes (or possibly input gestures on some
other device, such as handwriting or voice input) to characters. Because there are so many Han
characters, it’s completely impractical to have a keyboard that includes every character, so smaller
keyboards (often conventional Latin keyboards) are used, and multiple keystrokes are used to enter
each character. In Japanese, for example, it’s fairly common to use a normal English keyboard and

136 The polarity-switching technique used with gap storage and applied to style runs is actually

patented by IBM (the inventors are Doug Felt, John Raley, and me). [What is the status of this
patent? Can non-IBMers use this technique without owing IBM a license fee? Should I
even be mentioning it if not?]

 Special text-editing considerations

 A Practical Programmer’s Guide to the Encoding Standard 497

enter text in romaji (the standard Latin-letter representation of Japanese). As letters are typed, they
appear first as Latin letters, and then as whole syllables are completed, they turn into Hiragana.
When a sequence of letters corresponding to the Romanization of some Kanji character is
completed, the text turns into that character. (Actually, since many Kanji characters have the same
romanization, there’ll usually be an intermediate step where all possible Kanji characters corre-
sponding to a given romanization are shown to the user in a menu and he picks one.)

Similar techniques are used for the other languages that use Han characters. The keystrokes might
represent Latin letters in some recognized romanization, they might represent characters in a
phonetic system such as kana, bopomofo, or hangul, or they might represent more abstract
concepts such as groups of strokes. In all cases, not only are there complex mappings from series
of keystrokes to input characters, but extra work must be done to manage the interaction between
user and computer as keystrokes are assembled into characters.

The main point is that if you want to support East Asian languages, you may have to deal with the
input-method issue, either by providing input methods or ways of writing them, or by tying into
any input-method support provided by the underlying operating system.

Even on an American keyboard, you sometimes input methods coming into play, such as in
implementing the “smart quotes” feature in most word processors that turns " into either “ or ”
depending on context. A transliteration engine (see Chapter 14) generally plays a big role in input-
method support.

Handling arrow keys
Finally, there’s the issue of handling selection feedback and arrow keys. Again, this isn’t always
straightforward in Unicode.

Consider the handling of arrow keys, for example. What should happen when you press the right-
arrow key? The right answer is not necessarily to move the insertion point forward one code point
in the backing store. If, for example, the backing store contains U+0065 U+0301, the insertion
point is before U+0065, and the screen shows the letter é, you don’t want the insertion point to
move forward one code point. If you do, you’re now in the middle of the é, rather than past it. You
either see no movement in the insertion point, it moves past the é and gives a misleading picture, or
it gets drawn through the middle of the é, which is ugly and potentially confusing. If the user types
“a” now, he ends up with “eá” instead of what he really meant, which was probably “éa”.

But it isn’t just regular combining character sequences that can cause trouble. What should happen,

for example, as you arrow through “ ”? [spacing] There are two marks here with a fairly clear

distinction between them, but the mark on the left () actually comes after the mark on the right:

the mark on the left is a left-joining vowel sign. Should you be able to arrow into the middle of a
syllable like this?

What about something more complex like this:

�

 Rendering and Editing

498 Unicode Demystified

This syllable is actually made up of four code points. The main letter, k, is represented by . The

second letter is r, which is represented by a boomerang-shaped mark that gets subsumed into the

, appearing here only as the spike sticking out of the bottom of the loop. In fact, to get the k and

r to join together in this way, there’s actually a virama (a vowel-killer sign) after the to cancel

its inherent vowel and make it combing with the r. The virama is invisible in this particular
syllable: its presence is represented by the fact that the k and r have combined into a single glyph.

Finally, you have the vowel, i, which is represented by the mark on the left.

Here the relationship between visual positions and positions in the backing store is very
complicated. The fourth character in the backing store comes first, followed by the first character
stacked on top of the third. The second character isn’t visible at all.

[put together a picture that shows this clearly]

You could actually have the insertion caret appear inside the syllable cluster in cluster-specific
positions (AAT fonts actually let you do this kind of thing), but it’s very complicated and difficult
and may actually be confusing to the user. Most of the time, the only reasonable solution to this is
for the arrow keys to move syllable by syllable when dealing with Indic syllable clusters in the
scripts that have complicated reordering or shaping rules. So you may not only have to keep
regular combining character sequences together, but also Indic syllables.

You also have to watch out for this issue when handling mouse clicks. You don’t want a mouse
click to put the insertion point in the middle of a combining character sequence any more than you
want the user to arrow into it.

The bottom line is that your arrow-key algorithm (not to mention your hit-testing algorithm, your
selection-drawing algorithm, and possibly your line-breaking algorithm) has to honor grapheme
cluster boundaries. It may be able to deviate a bit from Unicode 3.2’s default definition of a
grapheme cluster, but it has to treat the text in logical units that make sense to the user, units that
may be multiple code points in length.

The parsing techniques we looked at earlier in the chapter for line breaking can also be brought to
bear to parse text into grapheme clusters.

On top of all this, you may also encounter text that contains invisible formatting characters such as
the zero-width joiner and non-joiner. You’ve got to skip these as well when you’re handling the
arrows keys unless, of course, your editor has some sort of “show invisible characters” feature
turned on. Otherwise it just looks like the keystroke didn’t register.

An even uglier problem happens in bidirectional text. The right arrow should move you to the right
whether you’re in left-to-right or right-to-left text. So if you’re in right-to-left text, the right arrow
actually moves you backwards through the backing store.

Furthermore, interesting things happen when you have text of mixed directionality on the same
line. Any boundary between directional runs can be interpreted as two positions in the backing
store. For example, in the following sentence…

 Special text-editing considerations

 A Practical Programmer’s Guide to the Encoding Standard 499

Avram said and smiled.

…the visual position between the first set of English letters and the Hebrew snippet could either

represent position 11 in the backing store (after “Avram said” and before “ ”) or position

18 (after “ ” and before “and smiled”). The visual position between the Hebrew and the
second English phrase can represent the same two positions. Furthermore, either logical position in
the backing store can map to both visual positions on the screen. For example, if I’m at position 11
and I insert a Latin letter, it appears after (i.e., to the right of) “Avram said.” If I insert a Hebrew

letter, it appears before (i.e., to the right of) “ ”.

So you have to keep track of which you mean, you have to draw both insertion point positions, and
you have to do some complex gymnastics as you go through the text with the arrow keys.

As you arrow through the text from the left, for example, the insertion point goes up one by one
until it gets to 11 (the ambiguous visual position). Then it jumps to position 17 (between the last
two Hebrew letters) and counts down until it gets to position 12. The next right arrow (the other
ambiguous visual position) is position 18, after which the positions count up again. (If you left-
arrow through the text, positions 11 and 18 switch places.)

Avram said and smiled.
0 1 2 3 4 56 7 8 9 10

11
17
16

15
14

13
12

18
19

20 21
22

23
24

25
26

27
28

29
30

direction of cursor movement

I’ve seen some interesting algorithms to get this effect right. Basically they involve re-applying
pieces of the Unicode bi-di algorithm on the fly as the user arrows through the text. Generally,
though, you already need some kind of data structure that maps positions in the backing store to
the order of the characters on the screen. You’ve generally had to produce this mapping to draw
the characters. Instead of re-applying the bi-di algorithm on the fly, it’s generally easier to just
keep this mapping around and use it to help determine what position in the backing store corre-
sponds to the next visual position on screen.

Handling discontiguous selection

In addition to handling arrow keys, you have to deal with drawing selections. We talked about this
in Chapter 8, but it’s worth repeating that if you’re dealing with bidirectional text, selection
drawing becomes more complicated. If a selection crosses the boundary between directional runs,
you have a discontinuity. The discontinuity can be either in the rendered feedback on screen
(“logical selection”) or in the characters in the backing store (“visual selection”). For instance, if in
our example sentence you click down between “Avram” and “said” and drag to the position

between “ ” and “ ”, you could either have meant to select a logically contiguous range

consisting of “said” and “ ”…

 Rendering and Editing

500 Unicode Demystified

Avram said and smiled.Avram said and smiled.

…or you could have meant to select a visually contiguous range consisting of “said” and “”:

Avram said and smiled.Avram said and smiled.

Logical selection is generally easier to implement in spite of the fact that you may have several
visually discontiguous highlight ranges to draw. After all, a selection highlight that spans a line
boundary may also consist of two visually discontiguous highlight ranges.

Visual selection can be a little easier on the user, but can be tricker to implement. This isn’t just
because you have to keep track of more than one selection range in memory. It also makes things
like copy and paste harder. For example, it seems logical that if you select some text, choose “Cut”
from the program’s “Edit” menu, and then change your mind and choose “Paste” from the “Edit”
menu without doing anything in between, you should get back what you had originally. If you

select “said” and “ ” as we saw above, said “Cut,” and then immediately said “Paste,” you’d
expect to get the original sentence back again. But remember that the two selected words weren’t
originally contiguous in memory. This means the paste operation has to put them back in two
logically discontiguous locations so they’ll wind up being drawn next to each other. “Said” goes

between “Avram” and “ ” in the backing store, but “ ” goes between “ ” and “and.”

If you’re not pasting at a directional boundary, the two pieces are stored contiguously in memory,
but the order may be different because you want the stuff you copied to the Clipboard to come out
in the same order as you originally saw it. So if you paste at the beginning of the sentence, you
want to see this:

said Avram and smiled.

To get this effect, both “said” and “ ” go before “Avram” in the backing store, and “said”

precedes “ ”. On the other hand, if you did a “Copy” instead of a “Cut” and then pasted the

duplicate words between “ ” and “ ”, you’d want to see this:

Avram said said and smiled.

The pasted text still comes out with “said” to the left of “”, but because you’re pasting into

right-to-left text now, “ ” precedes “said” in the backing store.

Handling multiple-click selection

The last interesting thing you may have to worry about is double- and triple-click handling.
Generally, double-clicking selects a word and triple-clicking selects a line, paragraph, or sentence,
depending on the application. You can use the same parsing techniques that are used for locating

 Special text-editing considerations

 A Practical Programmer’s Guide to the Encoding Standard 501

possible line-break positions to figure out where the selection range should begin and end in
response to a multiple click.

Of course, the “word” you select with a double-click might or might not be the same thing as a
“word” for the purposes of line breaking. You may or may not want to include whitespace and
surrounding punctuation, for example. In languages that don’t use spaces between words, such as
Japanese, you might want to honor word boundaries anyway using a dictionary-based parser. Or
you may want to use a heuristic of some type that selects more text than you’ll find between
possible line-break positions (which usually only include one character). In Japanese, for example,
a common heuristic might be to select a contiguous range of Kanji followed by a contiguous range
of Hiragana and any leading or trailing punctuation (if the user clicked in Kanji or Hiragana), or a
continuous range of Katakana (if the user clicks in Katakana). This is usually a decent
approximation of real word boundaries. (Of course, in Chinese this will select a whole sentence of
paragraph—for Chinese it’s better to use a dictionary-based algorithm or just select a single
character.)

Sentence parsing can also be tricky. In English, for example, you can’t tell for sure whether a
period marks the end of a sentence or just the end of an abbreviation (you can tell when it’s being
used as a decimal point or URL delimiter, though, because it isn’t followed by a space in these
situations). One heuristic is to behave as though the period is at the end of a sentence if it’s
followed by whitespace and the next letter after the whitespace (and any intervening punctuation
such as parentheses or quotation marks) is a capital letter. If the next letter is a small letter, you’re
not at the end of a sentence.

Of course, this is a pretty inexact heuristic. It’ll choke on a person’s name with a preceding title
(such as “Mr. Jones”), for example. You can tune the algorithm by including a list of common
abbreviations that are usually followed by capitalized words (such as “Mr.,” “Mrs.,” “Ms.”, “Dr.,”
etc.), but of course this list is language-specific.

 503

CHAPTER 17 Unicode and Other Technologies

Of course, most of the time you don’t actually want to implement the Unicode standard; you just want
to use it. In slightly over ten years of existence, Unicode has racked up an impressive array of
supporters. A lot of other standards depend on it, and a lot of products use it in one way or another.
In this last chapter, we’ll take a look at some of the places where Unicode intersects with other
technologies and standards.

Unicode and the Internet

Perhaps the area where Unicode will be most important over time is on the Internet. Here you have
an area where people all over the world can communicate with each other and access information. If
they just do this in English, use of the Internet will wind up limited mostly to English-speaking
countries. Instead, there’s a growing push for material on the Internet to be available in a wide
variety of languages.

Of course, if you go beyond English, ASCII doesn’t cut it any more as a method of representing
characters, and if you go outside the Western European languages, neither does Latin-1. This means
either designing the Internet protocols and the various pieces of software that speak them to handle
many different character encoding standards, or it means Unicode. (In most cases, the actual answer
is “both.”)

Of course, a wide variety of standards and technologies is in use on the Internet. They were
developed at different times by different people and are currently maintained by different standards
bodies, so it’s no wonder that they exist a different points along the adoption curve or take different
approaches to integrating Unicode support. Below we take a look at a few of the most important
standards.

 Unicode and Other Technologies

504 Unicode Demystified

The W3C character model
The World Wide Web Consortium, or “W3C” for short, is an industry group responsible for many of
the more important Internet standards, including XML and HTML. It has a standing
internationalization committee whose job it is to look over other W3C standards and make sure that
they don’t contain biases in favor of particular languages or nationalities.

Since the W3C aims for all of their standards to be internationally usable, they’ve adopted Unicode
as the standard character encoding for all of their standards that involve encoded characters. But just
saying “the text will be in Unicode” doesn’t go far enough—you still have to worry about things like
versions of Unicode, encoding formats, normalization forms, and so forth—so the W3C has issued a
document, the Character Model for the World Wide Web, that attempts to nail down all these
ancillary issues in the context of W3C standards.137 All W3C standards published or updated after the
character model was published have to follow its recommendations.

Here’s a quick summary of what the W3C character model specifies:

x� It demands that W3C technologies never assume one-to-one mappings between characters (in all
the myriad definitions of “character”), code points, glyphs, and keystrokes. (Unicode, of course,
assumes this.)

x� It proposes a list of more specific terms than “character” and “string” and provides definitions.

x� It requires that all implementations of W3C specifications treat all text as though it were encoded
in Unicode, although it allows other encodings to be used.

x� It requires all W3C standards either to assume all text is in either UTF-8 or UTF-16 (or both, with
an appropriately unambiguous way of distinguishing between the two), or to provide some
mechanism for specifying the encoding used by various pieces of text. If the latter, it requires that
the default be UTF-8 or UTF-16 if no encoding is explicitly specified, and it strongly
recommends the use of the IANA charset identifiers for the purposes of identifying character
encodings. (We’ll talk more about the IANA charset identifiers in a minute.)

x� It places strong restrictions on the use of Unicode private-use characters. In particular, it requires
that W3C specifications neither impose semantics on any private-use code point nor provide a
mechanism for formally imposing semantics on private-use code points. The idea here is to
preserve these code points’ identity as private-use code points, rather than allowing some of them
to be usurped for some purpose by a particular protocol. W3C protocols have to use markup
elements to identify characters that aren’t in Unicode (MathML, for example, has a special
mglyph element for specifying math symbols that aren’t encoded in Unicode).

x� It requires the presence of some kind of escaping mechanism to allow the use of characters in text
(such as the ampersand or less-than sign) that normally have special syntactic meaning, and to
allow the representation of all Unicode characters even in documents that don’t actually use
Unicode as their encoding. It doesn’t specify a particular format for an escape sequence (although
it strongly recommends XML’s “ሴ” format), but it does require that escape sequences
have an explicit end character (such as the semicolon in the XML escape sequence), allowing the
code point value to have any number of digits.

x� It imposes very specific normalization requirements: Processes that produce or modify text must
produce it in Normalized Form C (escape sequences can’t be used to get around this: the text

137 The document is available at http://www.w3.org/TR/charmod. At the time of this writing,

January 2002, the most recent version was Working Draft 20, dated December 2001. A working draft

doesn’t have normative force and may still be changing. But the draft was in the final stages of revision. By

the time this book appears in print, the final version of this document should have been adopted and

published.

 Unicode and the Internet

 A Practical Programmer’s Guide to the Encoding Standard 505

must still be in Normalized Form C even after all escape sequences are turned into real
characters). Processes that receive text must interpret is as Normalized Form C and must not
normalize it themselves. Processes that receive text encoded using encodings other than Unicode
must convert it to Unicode using converters that produce Normalized Form C.

The idea here is to place responsibility for normalizing the text as early in the process as possible:
with the processes that actually produce the text in the first place. This lets processes that only
receive text to be lighter-weight: they don’t have to do anything special to make sure variant
forms of the same strings compare equal. In fact, they’re prohibited from normalizing it
themselves because this would introduce a potential security hole: the text might be interpreted
differently depending on the receiving process.

x� It recommends discouraging or prohibiting the use of compatibility composites, but doesn’t
actually require (or even recommend) converting text to Normalized Form KC. (More on this
below.)

x� It defines two strings as equal only if, after converting both to the same Unicode encoding format
and turning all escapes into real characters, they’re code-point-for-code-point equal. (This
assumes they were both in Normalized Form C to begin with.) One of the important implications
of this is that string matching is case-sensitive.

x� It recommends a couple of consistent methods of indexing particular characters in strings. In
particular, it recommends indexing strings by abstract Unicode code point (regardless of actual
storage format) or, failing that, by physical code unit, and it recommends a zero-based indexing
format (actually, it recommends numbering the “cracks” between the code points or units, rather
than the units themselves, which works out to the same thing).

x� It recommends that standards allow the use of all Unicode characters in URL references, even
though only ASCII characters are actually allowed in URLs, and specifies how the non-ASCII
characters are to be converted into ASCII in real URLs. (More on this below.)

x� It recommends that W3C standards specify a particular version of Unicode for their syntactic
elements, but make an open (non-version-specific) reference to Unicode for their non-syntactic
elements. It also specifies that open references always be to Unicode 3.0 or later.

Earlier drafts of the W3C character model actually restricted the allowable repertoire of Unicode
characters to a subset of the whole Unicode repertoire (disallowing more than just the private-use
characters), effectively making “W3C normalization” a different and more-restrictive beast than
regular Unicode normalization. These requirements have been removed from the W3C character
model, but appear instead in a separate document, “Unicode in XML and Other Markup Languages,”
which has been published jointly by the Unicode Consortium as Unicode Technical Report #20 and
by the W3C as W3C Note 15.

The basic idea behind UTR #20 is that there are characters included in Unicode whose functions are
normally done with markup tags when Unicode is used in markup languages such as XML. UTR #20
enumerates those characters that are redundant or conflict with markup tags and explains why they
shouldn’t be used and what should be done instead.

Basically, UTR #20 discourages the use of certain invisible formatting characters and certain
compatibility composites, but not all of the characters in either category. In particular:

x� It discourages the use of the LS and PS characters (you should use the <p> and
 tags
instead), or specifies that they, like CR and LF, should be treated as plain whitespace rather than
actual line and paragraph delimiters.

x� It discourages the bi-di embedding and override characters in favor of markup tags that do the
same things.

x� It discourages the deprecated Unicode characters because they’re deprecated.

 Unicode and Other Technologies

506 Unicode Demystified

x� It discourages the interlinear-annotation characters in favor of markup tags that do the same thing.

x� It discourages the object-replacement character, which is basically only for internal
implementation use in the first place.

x� It discourages the Plane 14 language-tag characters in favor of markup tags that do the same
thing.

x� It does not discourage the other invisible formatting characters, including the non-breaking
characters, the zero-width joiner and non-joiner, the zero-width space, the left-to-right and right-
to-left marks, and the various language-specific formatting characters, all of which either happen
inside words where interposing markup tags would mess things up, or otherwise don’t cause a
problem when used with markup.

x� It lists a fairly small subset of Unicode compatibility composites that it recommends converting to
Normalized Form KC and a few others that it recommends replacing with markup. It recommends
leaving most Unicode compatibility composites alone, however, either because they actually have
semantic differences from their decomposed versions (in particular, the various styled versions of
various letters, which are usually used as symbols) or because these isn’t currently any markup
that can produce the appropriate effect (for example, the various symbols intended for use in
vertical CJK text).

XML
The Extensible Markup Language, or XML for short, is a document format for expressing structured
data in a simple text-based manner. An XML file consists of arbitrary textual data interspersed with
“markup,” text in specially-defined formats that imposes structure on the data and supplies extra
information about it. XML doesn’t specify a particular method for representing particular kinds of
data, but merely provides a generalized mechanism for representing arbitrary structured data in a flat
text file. Other standards, such as XSL (Extensible Stylesheet Language), MathML (Mathematical
Markup Language), XHTML (Extensible Hypertext Markup Language), and SVG (Scalable Vector
Graphics) specify how XML can be used to represent different specific kinds of data.

The XML standard, not surprisingly given its source, follows the recommendations in the W3C
character model: It’s based on Unicode as the character encoding for the text, but discourages the use
of private-use characters, most compatibility composites, and most invisible formatting characters.
Numeric character references (XML’s escaping mechanism) are based on abstract Unicode code-
point values. All of the XML syntax characters are defined in terms of their Unicode code point val-
ues. All XML parsers are required to understand both UTF-8 and UTF-16, but are permitted to
understand non-Unicode encodings as well.

An XML document is assumed to be in Unicode unless it’s explicitly tagged as being in some other
encoding. If it’s not tagged, it can be either UTF-8 or UTF-16; UTF-16 documents must begin with
the byte-order mark, which is used both as a signal that the document is in UTF-16 and as a signal of
the document’s byte order. Text that doesn’t begin with a byte-order mark and which doesn’t begin
with an explicit character-encoding declaration is assumed to be in UTF-8. If the document contains
byte sequences that aren’t legal in UTF-8, it’s an illegal XML document.

Interestingly, the XML standard doesn’t specify an encoding for the encoding declaration itself, but
instead gives a method whereby the encoding of the declaration can be deduced (since the document
either has to start with the declaration or with a byte-order mark, and the declaration has to start with
“<?xml”, this isn’t that hard). If the encoding specified in the declaration is found not to match the
actual encoding used in the document, this is also an error.

In all the cases where strings have to be matched in XML (matching start tags and end tags, for
example, or matching attribute names and values to their declarations), the matching happens using

 Unicode and the Internet

 A Practical Programmer’s Guide to the Encoding Standard 507

simple binary comparison—in other words, an XML parser is required to assume the text has already
been converted to Normalized Form C, and case differences are significant. One important
implication of this is that identifier matching is case-sensitive: </record> is not a legal closing tag
for <RECORD>.

XML includes an identifier syntax similar to the ones used in programming languages. It generally
follows the Unicode identifier-syntax guidelines, with a few extra punctuation characters. But the
XML standard lays out explicitly which characters are considered to be “letters,” “digits,”
“combining marks,” and so on. These definitions are based on the Unicode Character Database
general categories from Unicode 2.0, when the XML standard was adopted. This means more-recent
“letters,” such as Sinhala, Khmer, Myanmar, and the various extensions to the Han repertoire, aren’t
legal in XML identifiers (they are legal in XML character data, just not in identifiers). Most likely,
the next version of the XML standard will update the repertoire of name characters to whatever
version of Unicode is current at that time. Of course, documents that use the new name characters
wouldn’t be backward compatible with XML 1.0 documents.

XML forms the basis for many other Internet document standards, such as XHTML, CSS, XSL,
SVG, MathML, and so on, all of which therefore inherit XML’s Unicode compatibility.

HTML and HTTP
Users of the World Wide Web are, of course, familiar with Hypertext Markup Language (or
“HTML”), the markup language used for most of the styled-text documents on the Web. HTML is
similar to XML (both are based on SGML), but the syntax is a lot looser, and it’s been around a lot
longer. The most recent version of HTML, HTML 4.1, uses Unicode as the base character set and
generally follows the W3C character model. Earlier versions of HTML, however, were based on ISO
8859-1.

Documents in HTML 4.1 can actually be in any encoding, much as XML documents can, with the
actual encoding specified in the document. HTML doesn’t have a designated place for this
information like XML does, so it appears as an attribute in the <META> element in the document’s
header.

There’s been a move to bring HTML into conformance with XML. That is, instead of HTML looking
kind of like XML but having some important differences, it’d be nice for HTML to actually be based
on XML, much as other document formats like XSL and SVG are. The result of this move is
XHTML, an XML-based format that does the same things HTML does, but with a tighter syntax.
XHTML, of course, inherits XML’s Unicode support.

The HTTP protocol that’s used by Web browsers has the ability to exchange information about the
encodings of the documents being exchanged, but because of spotty application support, the
encoding specified in a document’s HTTP header might not be the document’s actual encoding (and
FTP and other file-sharing protocols don’t have any way at all of exchanging information about
document encodings). Better to rely on the information in the document itself.

 Unicode and Other Technologies

508 Unicode Demystified

URLs and domain names
A Uniform Resource Locator, or URL, is a short text string that identifies and helps locate a
particular resource on the Internet; it’s sort of the Internet equivalent of a person’s mailing address.138

The syntax for URLs is very restrictive: basically only the uppercase and lowercase Latin letters, the
Western digits, and a handful of special symbol and punctuation characters are allowed in URLs,
which makes it possible to transmit a URL in almost any character encoding and through almost any
protocol.

The problem, of course, is that the use of just the Latin letters introduces a bias toward languages that
use the Latin alphabet. This wouldn’t be a big problem is URLs were just internal identifiers, but
they’re not. These days, you see URLs everywhere, and they’re intended to be mnemonic: You’ll
always see http://www.ibm.com, not http://129.42.16.99.

The URL specification explicitly provides a mechanism for escaping characters in URLs: You can
use the percent sign followed by two hexadecimal digits to indicate an arbitrary byte value. The
problem with this is that nothing specifically says what the byte values mean or how they’re to be
interpreted.

The industry is converging around always treating escape sequences in URLs as referring to UTF-8
code units. That is, the industry is converging around always interpreting
R%c3%a9sum%c3%a9.html to mean Résumé.html (and always representing Résumé.html as
R%c3%a9sum%c3%a9.html). If everybody agreed on this, then you could use illegal URL
characters (such as the accented é in our example) in URL references in other kinds of documents
(such as HTML or XML files) and know there’s a universally-understood method of transforming
that into a legal URL. Web browsers or other software could do the reverse and display URLs that
include escape sequences using the characters the escape sequences represent (at least in the cases
where they represent non-ASCII characters) and let you type them in that way.

The XML standard already allows URL references to be specified this way and specifies that they be
converted to legal URLs by using the escape sequences to mean UTF-8 code units, and the W3C
character model will extend this to the other W3C standards. Various other standards are also
converging on this approach.139

The %-escape approach, unfortunately, doesn’t work for Internet domain names, which have a more
restricted syntax: Each component of a domain name can consists only of Latin letters, Western
digits, and hyphens, must begin with a letter, and must end with a letter or digit. Each individual

138 Technically speaking, a URL is a string that identifies a particular resource by specifying an access

path—a way of reaching it, hence the term “locator.” There’s also something called a URN, or Uniform

Resource Name, which identifies a resource in a way that’s independent of access path. The standards com-

munity uses the term URI, or Uniform Resource Identifier, as an umbrella term for both URL and URN.

Informally, the term URL is used in a manner synonymous with “URI,” which is the convention used

here.Also, in some documents, the “U” in all of these terms is said to mean “Universal” rather than

“Uniform.”

139 My information here is mostly coming from the W3C Internationalization Working Group’s paper on

“URIs and Other Identifiers,” found at http://www.w3.org/ International/O-URL-and-

ident.

 Unicode and the Internet

 A Practical Programmer’s Guide to the Encoding Standard 509

component of a domain name can’t be longer than 63 characters, and the entire domain name
(including the periods between components) can’t be longer than 255 characters.

Some protocols and some software implementations let you go outside these restrictions, but doing
so poses a big risk to interoperability. There have been a bunch of creative name-mangling schemes
proposed for representing arbitrary Unicode strings using only legal domain-name characters, and the
Internet Engineering Task Force, the other big body that maintains Internet standards, has an
Internationalized Domain Names working group working on an official proposal. As of this writing,
this work is still ongoing, and domain names are still restricted to Latin letters.140

Mail and Usenet
Mail and Usenet (newsgroups) are the oldest services on the Internet, and their transfer protocols
show that. While there are many proprietary email and bulletin-board systems out there with all kinds
of features, the standard Internet protocols for mail and news are pretty simple and primitive.

The various mail and news protocols are all based on the Internet Engineering Task Force’s Request
for Comments #822 (or “RFC 822” for short).141 RFC 822, which dates way back to the dawn of
personal computers, specifies the format for mail messages on the Internet. It defines a mail messages
as a series of CRLF-delimited lines of 7-bit ASCII text. RFC 822 goes on to give a detailed
specification of the message header format and the address format, but does not go into any more
detail as to the contents of the message body. The message body simply extends from the end of the
header (delimited by a blank line) to the end of the message.

RFC 822 doesn’t impose a line-length limit, but many mail protocols do. In particular, the SMTP
protocol imposes a 1,000-byte maximum length on each line of a message (this counts the CR and LF
at the end).

This format is fine for simple text messages (at least if you speak American English), but rather
constraining, and it doesn’t help you if you want to send things other than text in your email. Over the
years, various methods have been devised for sending things other than text (or in addition to text, or
text in encodings other than ASCII) in the body of an RFC 822 message. The one that eventually
caught on is MIME, the Multipurpose Internet Mail Extensions, the most recent version of which is
documented in RFCs 2045, 2046, 2047, 2048 and 2049.

MIME adds a few extra fields to the standard RFC 822 message header that are used to say more
about what’s in the message body. There’s a MIME-version field that identifies the message as
being in MIME format (and could be used to identify the version of MIME, except that there’s
currently only one version of MIME), there’s a Content-Type field that identifies the type of the
message body (e.g., text, image, multipart message body, undifferentiated byte stream, application-
specific binary data, etc.), and there’s a Content-Transfer-Encoding field that specifies how the

140 My sources here are RFC 1034, “Domain names: Concepts and Facilities,” and RFC 2825, “A

Tangled Web: Issues of I18N, Domain Names, and the Other Internet protocols”, both found on the IETF

Web site, www.ietf.org.

141 The IETF formally publishes a lot of documents as “requests for comments.” Even though many of

these do become formal standards, they’re generally still referred to by their RFC numbers rather than the

new numbers they get assigned when they become standards. The IETF actually encourages this, by setting

things up so you search for all documents by their RFC number.

 Unicode and Other Technologies

510 Unicode Demystified

data type specified by the Content-Type field is encoded into lines of 7-bit ASCII characters. If the
Content-Type starts with multipart, the message body is divided up into multiple parts, each of
which gets its own Content-Type and Content-Transfer-Encoding. This lets you do things
like send the same message in several alternative formats, attach binary files to a message, or include
a separate message (for example, one you’re forwarding) in the message body.

Many of the Content-Types also allow you to specify parameters. For text messages, the most
important parameter is the charset parameter, which identifies the encoding scheme used to encode
the text. (The term “charset” is a bit of a misnomer, harkening back to the days when there was a
straightforward transformation between all coded character sets and character encoding schemes.
Nowadays, the charset parameter specifies a character encoding scheme, not a coded character
set.) A standard ASCII message is understood to have the following Content-Type declaration in
its header:

Content-Type: text/plain; charset=US-ASCII

The Internet Assigned Numbers Authority (IANA), which is affiliated with the IETF (they’re sister
organizations under the umbrella of the Internet Society, or ISOC), is the registration authority for
various Internet-related parameters, including things like domain names. The IANA registers
Content-Types and charsets. There are a number of Unicode-related charset identifiers
registered by the IANA:

utf-8 UTF-8

utf-16be UTF-16 in big-endian byte order

utf-16le UTF-16 in little-endian byte order

utf-16 UTF-16 with a byte-order mark to specify the byte order (if the BOM is

missing, this is the same as utf-16be)

scsu Standard Compression Scheme for Unicode

There are other charset identifiers for Unicode that are obsolete now. There aren’t yet charset
identifiers for the various flavors of UTF-32, but that’ll probably happen eventually.

The Content-Transfer-Encoding field is important because the only character encoding that can
safely be included in a message and expected to make it unscathed from source to destination without
encoding is ASCII. For all other encodings, the only way to make sure the message body makes it
where it’s going without getting messed up is to use a special transfer encoding. For text, this takes
the text in its native encoding (for us, Unicode) and applies an algorithmic transformation to convert
it into 7-bit ASCII.

MIME specifies two basic ways of doing this: quoted-printable and Base64. Quoted-printable is best
for situations where most of the encoded data actually is readable ASCII text and you want to
preserve human readability. It represents the printable ASCII characters as themselves (except for the
= sign). All other byte values are represented by an = sign followed by a two-digit hexadecimal
number. Thus, the word “Résumé” in UTF-8 comes out like this in quoted-printable:

R=C3=A9sum=C3=A9

(The lower-case é, U+00E9, is 0xC3 0xA9 in UTF-8.)

Since quoted-printable doesn’t mangle the original ASCII characters, it’s useful for messages in
Latin-based scripts. You might identify such a message with a header like this:

 Unicode and the Internet

 A Practical Programmer’s Guide to the Encoding Standard 511

Content-Type: text/plain; charset=utf-8

Content-Transfer-Encoding: quoted-printable

Quoted-printable also requires that lines be only 80 characters long (counting the CRLF), so the =
sign is also used at the end of a line to indicate that the CRLF following it was inserted by the
protocol and not in the original message (CRLF sequences that aren’t preceded by = are actually part
of the message).

The other format, Base64, is better for pure binary data or for text where the majority of the text isn’t
readable as ASCII. It’s also a little more robust in the face of various transformations than quoted-
printable can be (if you only escape non-7-bit characters, control characters, and the = sign, a quoted-
printable message can still be mangled on its way through an EBCDIC-based mail gateway and may
mess up interpretation of a multipart MIME message).

In Base64, each sequence of three bytes (24 bits) is converted into four ASCII characters, with six
bits of the original 24-bit sequence going to each character. This means you need 64 characters to
represent each “nibble” (hence the name). The 64 characters chosen (the uppercase and lowercase
letters, the digits, +, and /) were chosen because they’re not syntax characters in anything that might
appear in a MIME message and they exist in EBCDIC and will stay intact through an EBCDIC-based
gateway. (A 65th character, =, is used at the end of messages as padding.) The word “Résumé” in
UTF-8 would look like this in Base64:

UsOpc3Vtw2k=

This, of course, isn’t human-readable, but it works well for cases where the majority of the text isn’t
ASCII in the first place. A Unicode-encoded Japanese message, for example, might have a heading
like this:

Content-Type: text/plain; charset=utf-16be

Content-Transfer-Encoding: base64

Like quoted-printable, Base64 divides everything into 80-character lines (counting the terminating
CRLFs), but since spaces and control characters aren’t used in Base64, they can just be filtered out
on the decoding side.

Of course, the normal MIME encoding only helps you with the body of a message; the header
information still has to be in ASCII. One piece of the MIME specification, RFC 2047, addresses this
issue with an escaping scheme that can be used in certain parts of an RFC 822 header to allow non-
ASCII characters. Basically, it’s a shorthand for the format above: you specify the encoding using a
charset identifier, you specify the transfer encoding using B or Q, and then you have the encoded
text. It looks like this:

Subject: =?utf-8?Q?Here’s my r=C3=A9sum=C3=A9?=

None of these schemes is particularly beautiful, of course, and they impose some overhead on the
size of messages, but they do let you use Unicode and other encodings in protocols that weren’t
originally designed for them. These days, most Internet mail clients understand MIME and do the
work necessary so that you see that last example the way you expect to:

Subject: Here’s my résumé

 Unicode and Other Technologies

512 Unicode Demystified

Unicode and programming languages

Most of the more recent programming languages now either use Unicode as their base internal
character encoding or have a way to let you use it if you want. Many even allow Unicode characters
in the syntax of the language in addition to using it in comments and literal strings.

The Unicode identifier guidelines
The Unicode standard actually gives guidelines for how programming languages (and other protocols
such as XML) that want to use the full Unicode range in their identifiers can do it.142 The basic idea
is to extend the common definition of identifier (a letter followed by zero or more letters or digits) to
the full Unicode repertoire, and to do so in a way that allows for combining character sequences and
invisible formatting characters.

The guidelines say that an identifier may start with anything Unicode considers a “letter” (all
characters with general categories Lu, Ll, Lt, Lm, Lo, and Nl). Subsequent characters may be
“letters,” combining marks (Mc and Mn, but not Me), “digits” (Nd but not No), connector
punctuation (Pc), or formatting codes (Cf). Specs following these guidelines are encouraged to allow
but ignore the formatting characters, but this isn’t required.

Since the actual characters in these categories change with each Unicode version, a specification
making use of this guideline has to either list all the characters or nail itself to a specific Unicode
version (XML nailed itself to Unicode 2.1, for example).

Individual specifications can do with these guidelines whatever they want, including ignore it, but
following them ensures that users of non-Latin scripts will be able to construct identifier names in
their native languages without any undue constraints being imposed by the systems they’re using.
Most specs that allow Unicode in identifiers follow the Unicode identifier guidelines and add
additional legal characters.

Java
Sun’s Java programming language has led the way in terms of Unicode support. The base char data
type is specifically defined to be a UTF-16 code unit, and not just an unsigned 16-bit integer, and a
Java String is a sequence of char and therefore inherits this characteristic.

One of the implications of this is that all the Java functions that operate on String and char know
they’re operating on UTF-16 text and can do the right thing. The case-conversion functions in Java
follow the mappings in the Unicode Character Database, for example. The various character-type
queries on Character are also based on the Unicode categories.

Non-Latin characters are also legal in Java syntax. A Java source file can be in virtually any
encoding, but is translated into Unicode internally at compile time. The specific syntax characters are
all ASCII characters, but non-ASCII characters are allowed not just in literal strings and comments,
but also in identifiers (see the above section). Java provides an escaping mechanism, the \u1234

142 See pp. 133-135 of the Unicode standard.

 Unicode and programming languages

 A Practical Programmer’s Guide to the Encoding Standard 513

syntax, for putting Unicode characters into a Java source file when the source file isn’t actually in
Unicode (and provides the native2ascii tool to facilitate this).

The Java class libraries offer an extensive array of Unicode support facilities, including character

encoding conversion, language-sensitive comparison, text boundary detection, rendering, and

complex input-method support. There aren’t specific APIs for text searching, transliteration, or

Unicode normalization, but these are all available in open-source libraries. The Unicode Collator

class doesn’t automatically do the Unicode Collation Algorithm default order, but the implementation

follows the UCA guidelines. The rendering and input facilities don’t yet support every script in

Unicode, but more scripts are added in every release (as of J2SE 1.4, the built-in text rendering

software was OpenType compatible, implemented the Unicode bi-di algorithm, and supported

Hebrew, Arabic, Devanagari, and Thai, in addition to the scripts that don’t require contextual shaping

or bidirectional reordering.)

C and C++
C and C++, being older, don’t directly support Unicode. The char data type is simply defined as an
integral type in C, so implementations can make it any size they want and the string-handling routines
in the standard libraries can treat char data as any encoding they want. Most treat char as an 8-bit
byte and use whatever the default platform encoding is (or sometimes just ASCII) as their encoding.

The wchar_t data type was added to allow for “wide” characters, such as Unicode, but doesn’t
necessarily help. Like char, the language spec doesn’t impose any particular semantics on
wchar_ts, so portable code can’t depend on wchar_t data being Unicode. Worse, the C and C++
standards don’t even require wchar_t to be big enough to hold a UTF-16 code unit; like the other
integral types, it only has to be as big as char, not necessarily bigger.

Some compilers and runtime libraries treat wchar_t as Unicode, but if you’re trying to write code
that’s portable to any C or C++ compiler, you can’t depend on this. There are, of course, many
Unicode support libraries available for C and C++, however.

Javascript and JScript
Javascript and JScript, the two Web-browser scripting languages from Netscape and Microsoft
respectively, are both based on the ECMA 262 standard for scripting languages. ECMA 262, or
ECMAScript, also uses Unicode as its base character type in strings. The third edition of ECMA 262
specifically nails this down to specify that string data is in UTF-16 and that the internal APIs assume
Normalization Form C. It also stipulates that ECMAScript source code is Unicode and provides an
escaping mechanism similar to Java’s for including otherwise-untypable Unicode characters in
source code. The third edition of ECMA 262 provides for a minimal set of Unicode-compatible
string manipulation APIs; the idea was to keep things small and rely on whatever Unicode support is
available from the host system. Most ECMAScript implementations also provide a method of
accessing the Unicode support available from the host system.

Visual Basic

The current version of Microsoft Visual Basic is Unicode-compatible. Its internal character storage

mechanism is Unicode, so all strings are automatically in Unicode. The option compare text

statement enables locale-sensitive string comparison, which is Unicode-aware. The behavior here is

 Unicode and Other Technologies

514 Unicode Demystified

both case- and accent-insensitive (in other words, it ignores secondary and tertiary differences).

[I really feel like I should be saying more than this, but was having trouble finding
information. Can someone help me out?]

Perl
[read Simon Cozens’ paper and see whether it has anything to add to this]

Unicode support in Perl is a work in progress, and is phasing in gradually over the lifetime of Perl
version 5.143 The Perl community is moving in the direction of using UTF-8 as its internal encoding,
but support is currently (as of Perl 5.6) incomplete, lacking, for example, the kind of transcoding I/O
you need to use Unicode internally under all conditions.

The UTF-8 support in Perl has “character semantics.” This means that operations that index by or
match individual bytes in other encodings match whole characters (actually, Unicode code points) in
UTF-8, regardless of how many bytes they take up internally. Character-type queries and other
related operations follow the specifications in the Unicode Character Database. The \x character
escaping syntax has been extended to allow for values above 255: \x{2028} refers to the Unicode
paragraph separator, for example. (For values between 128 and 255, the semantics are slightly
different: \xE9 is always the byte value 0xE9 (the Latin-1 é character), while \x{E9} is the Unicode
é (internally 0xC3 0xA9, the UTF-8 representation of the letter é).

There’s also a new \p token that matches all characters in a particular Unicode category. For
example, \p{Lu} matches any Unicode uppercase letter. Actually, “category” here is more than just
the general categories from the UnicodeData.txt file: you can use the \p syntax to match characters
in a given script (\p{InTibetan}), or with a particular bi-di property (\p{IsMirrored}), or many
other things as well as the general categories.

Currently, the UTF-8 support in Perl doesn’t interact well with the locale support in Perl, which is
based on the older POSIX locale standard, which is based on the old byte-oriented character
encodings. This means things like locale-sensitive string comparison don’t work well when operating
on Unicode strings. [Is this really true? Is it being fixed?]

Finally, there’s a use utf8 pragma that enables the use of UTF-8 in Perl source files, where they
can appear both in string literals and regular expressions and also in identifiers.

143 My source for this information is http://www.perldoc.com/perl5.6/pod/

perlunicode.html.

Unicode and operating systems

As with the other technologies we’ve looked at, the major operating systems all either have Unicode
support now or are moving rapidly in the direction of adding it. Here’s quick rundown.

Microsoft Windows

 Unicode and operating systems

 A Practical Programmer’s Guide to the Encoding Standard 515

Microsoft has been gradually adding Unicode support to Windows for some time now.144 Windows
XP, NT and 2000 are built upon a Unicode base: all of the system APIs store strings as Unicode.
(This is not true in Windows 95, 98, and Me—the two operating system lines have been united in
Unicode support with the introduction of the home and professional versions of Windows XP.) The
file system and networking protocols are Unicode-based too. The system uses the UTF-16 encoding
internally and is based on Unicode 2.1.

For backward compatibility, all of the Win32 API functions that take strings as parameters come in
two flavors: a version whose name ends in “A” (for ANSI) that takes the strings in one of the
traditional byte-oriented Microsoft code pages, and a version whose name ends in “W” (for “wide”)
that takes the strings in UTF-16.

Windows includes an extensive array of character encoding converters and provides a wide variety of
Unicode-aware functions for such things as string comparison, boundary detection, case mapping,
character-type queries, and so forth. [I don’t know the specifics here, and after some time
rummaging around on the MS Web site, I’m convinced that I need an actual MSDN
subscription to find out more. I can probably get access to that at work, but that’s just not
going to happen as part of putting this “first draft” together. I’ll have to remember to come
back and beef this section up. Any reviewer help here would also be greatly appreciated.]

Finally, Windows 2000 includes a Unicode-aware text layout and display engine called Uniscribe
that provides the ability to display multiscript text. It implements the Unicode bi-di algorithm and
does the character shaping and accent stacking necessary to handle Arabic, Thai, Devanagari, Tamil,
and Vietnamese (as well, of course, as those scripts that don’t require complex shaping, such as
Latin, modern Greek, Hebrew, and CJK). [Does Uniscribe also handle vertical CJK text?]

MacOS
MacOS 9 and earlier aren’t Unicode based, but do have extensive Unicode support. Among the APIs
are:

x� the Text Encoding Conversion Manager, an extremely sophisticated and complete API for
converting between various character encodings,

x� Apple Type Services for Unicode Imaging (ATSUI), Apple’s answer to Microsoft’s Uniscribe, a
Unicode-compatible text rendering engine that handles complex typography (it implements the
Unicode bi-di algorithm and supports Apple Advanced Typography, where most other script-
specific complex shaping behavior can be handled in individual fonts),

x� the Multilingual Text Engine (MLTE), an ATSUI-based styled-text editing utility,

x� the Text Services Manager, which provides Unicode-compatible input method support, and

x� the Unicode Utilities, which provide Unicode-compatible language-sensitive comparison
(including UCA support [I’m guessing this; is it true?]), language-sensitive boundary detection,
and character property queries.

MacOS X includes all of the above services in its Classic and Carbon APIs and has counterparts to
most of them in its Cocoa API. It includes a variable-length Unicode-based string object, CFString,

144 My sources are various documents found on the Microsoft Web site, particularly at

http://www.microsoft.com/globaldev. [I’m worried that some of the information I’m
finding on the Microsoft site is out of date. Is there someone who can make sure I’m current
on this stuff?]

 Unicode and Other Technologies

516 Unicode Demystified

in its Core Foundation services. The underlying technologies are generally Unicode-based, although
not all underlying technologies, owing to their diverse origins, use the same flavors of Unicode. In
general, the application programmer doesn’t have to worry about this, but there are issues at the
boundaries of some of the environments (or in upgrading a MacOS 9 application to run under
Carbon).145

Varieties of Unix
It’s difficult to generalize about Unicode support in Unix because there are so many different flavors
of Unix and they all have different feature sets. All the big Unix vendors support Unicode to one
degree or another.

[Can I, should I, go to the trouble of figuring out something more intelligent to say here about
the individual Unix vendors? This is a difficult one because I was having trouble locating
information and it’d be difficult to figure out which Unix versions merited discussion. I’m kind
of hoping the comments on Linux below will suffice.]

One interesting development of the past several years has been the rise of Linux, the open-source
version of Unix. In the past few years, Linux has not only gained popularity, but gained so much
popularity that most of the major Unix hardware vendors have found themselves announcing support
for it alongside their own proprietary versions of Unix. This might have the effect of bringing more
consistency, if not outright standardization, to the Unix world.

In 1999, a bunch of Linux vendors and other supporters (including biggies like IBM, HP, and Sun)
got together to form the Free Software Foundation, an industry standards body dedicated to coming
up with a universal specification for Linux implementations—basically, a common feature set (or
group of feature sets) for Linux implementations. Implementations conforming to the Linux
Standards Base, or LSB, could be relied upon to have a certain set of features and APIs.

An important offshoot of the LSB effort was the Linux Internationalization Initiative, nicknamed
LI18NUX, which was charged with standardizing the internationalization capabilities of Linux
implementations. They issued the Linux Globalization Specification146 for the first time in 2000. It
includes specifications for every aspect of software internationalization, from low-level character
manipulation APIs to tools support, rendering support, and input method support.

Among the things that the LI18NUX specification mandates is support for UTF-8 across a wide
variety of locales. In addition to the standard Unix and C internationalization libraries, it also
mandates (for the more-sophisticated implementations) the inclusion of ICU.

ICU, or International Components for Unicode, is an open-source project coordinated out of IBM. It
consists of a broad array of utilities for Unicode support and related internationalization tasks
including character encoding conversion, language-sensitive comparison and searching, boundary
detection, character property queries, case mapping, transliteration, bidirectional reordering, and so
on. It was originally based on the already-extensive internationalization libraries in Java, but goes
beyond them (and has reimplemented them in C) to the point that there’s now an ICU4J that contains

145 My sources are various documentation volumes found online at http://

developer.apple.com/techpubs.

146 http://www.li18nux.net/docs/html/LI18NUX-2000.htm.

 Unicode and operating systems

 A Practical Programmer’s Guide to the Encoding Standard 517

all the ICU features that aren’t in the JDK (ICU4J is also mandated for LI18NUX-conforming
Linuxes that support Java).

Unicode and databases

[There’s supposed to be a section here that talks about how Unicode is handled in database
systems, but I don’t know anything about that and don’t currently have access to any good
research material. I thought I’d start with information on how the SQL standard handles
Unicode, but SQL is an ANSI/ISO standard, which means it can’t be found online. If I use that
as my source, I’m going to have to go find a physical copy, probably in a library somewhere, or
a contact who can give me the scoop. I’ll do that in the next draft.]

[As for the individual database systems, the bottom line is that all the big database vendors
support Unicode in their products. I don’t know whether it’s worth it to go into detail on just
how they support it.]

[Should I even have this section, or should I leave it out?]

Conclusion

The bottom line of all this is that Unicode is firmly entrenched in the software community. The
software that doesn’t support it now (and is still being actively maintained) will. Interest in
international markets and internationalized software continues to grow, and not only does Unicode
solve a real problem, it’s the only technology that solves that particular problem.

Unicode got where it is today through a carefully-maintained balance of careful, meticulous design
and political know-how. Careful attention was paid to backward compatibility and interoperability,
to upholding existing practice, to making sure everything was implementable in reasonable and
reasonably-performing ways, to consistency, comprehensiveness, and elegance, and to making sure
the needs of all the prospective user communities were taken seriously and addressed. That the
Unicode standard is thriving (as evidenced by the increasing attendance at each successive
Unicode Conference, in addition to the growing number of Unicode-compatible software products)
is a testament to just how well these different and often conflicting objectives were balanced. It’s
doubly impressive when you consider just how many write-only standards there are out there.
Unicode is not only an idea whose time has come, but an idea’s realization whose time has come.

And which is here to stay, at least as long as we’re still manipulating written language on
computers.

 519

Glossary

AAT. Abbreviation for Apple Advanced Typography.

Abstract character repertoire. A collection of characters with no reference to their encoded
representation (for example, “the English alphabet”). See the discussion of character encoding
terminology in Chapter 2.

Accent. A diacritical mark, usually modifying the sound of a vowel or indicating that a syllable has
stress applied to it.

Accent stacking. The process of adjusting multiple diacritical marks applied to the same base
character so that they don’t collide with each other. See the description of combining character
sequences in Chapter 4.

Accented letter. A letter with one or more accented or other diacritical marks applied to it.

Accounting numerals. Chinese characters that are used in place of the “normal” Chinese numerals for
accounting and commercial purposes, generally because they’re more difficult to alter. See the
discussion of Han characters as numerals chapter 12.

Acute accent. A slanted line drawn over a vowel, usually to indicate primary stress or to change the
sound of the vowel in some way.

Addak. A sign used in Gurmukhi to indicate consonant gemination.

 Glossary
.

.

.
.

520 Unicode Demystified

Additive notation. A system for writing numerals in which the numeric value is derived by adding
together the numeric values of all of the individual characters in the numeral. See the discussion of
numerals in chapter 12.

Additive-multiplicative notation. A system for writing numerals in which the numeric values of some
characters are added together and the numeric values of other characters are multiplied together
(generally the order of the characters tells you whether to add or multiply). See the discussion of
numerals in Chapter 12.

Alef maksura. A special form of the Arabic letter alef sometimes used at the end of a word. See
Chapter 8.

Alifu. The name for the null-consonant character in Thaana. See Chapter 8.

Al-lakuna. The Shinala virama. See Chapter 9.

allkeys.txt. The data file giving the default weights of all Unicode characters for the Unicode
Collation Algorithm. See Chapter 15.

Alphabet. A writing system in which the individual characters represent individual sounds
(“phonemes”) in the language. A “pure” alphabet uses letters to represent both consonant and vowel
sounds.

Alphabetic. The property applied to all letters in alphabetic writing systems.

Alphasyllabic. (or “alphasyllabary”) A writing system in with characteristics of both alphabets and
syllabaries. An alphasyllabary typically consists of complex marks representing syllables, but which
can be decomposed into individual marks (which over change order or shape) representing the
individual sounds.

Alternate weighting. A property given to certain characters in the Unicode Collation Algorithm.
These characters have several different possible sort weights that are user-selectable at the time a
comparison is performed. See Chapter 15.

American National Standards Institute. One of the main standards-setting bodies in the United States;
the United States national body in ISO.

American Standards Association. The old name of the American National Standards Institute.

Angkhankhu. A Thai punctuation mark used to mark the ends of long segments of text.

Ano teleia. A bullet-like character used as a semicolon in Greek. See the discussion of Greek in
Chapter 7.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 521

ANSI. Abbreviation for American National Standards Institute.

ANSI X3.4-1967. The official standard number of ASCII.

Anusvara. A character used in Devanagari and some other Indic scripts to indicate nasalization or an
n or m sound at the end of a syllable. See Chapter 9.

Apple Advanced Typography. Apple’s advanced TrueType-derived font format. See Chapter 16.

Arabic form shaping. Another term for contextual shaping when applied to Arabic. This term is used
with a couple of deprecated formatting characers that control whether contextual shaping is applied
to the Arabic presentation-form characters. See the “deprecated characters” section of Chapter 12.

Arabic numerals. 1) The common name for the digit characters used in English and other Western
languages. Also known as “European digits” or “Western digits.” These digits are not generally
used with Arabic. 2) One of two sets of digits normally used with Arabic. These are not the same as
the “Arabic numerals” used with English and ther European languages.

Arabic-Indic numerals. The term used in Unicode to refer to the native digit characters used with
Arabic and other languages that use the Arabic alphabet.

ArabicShaping.txt. A file in the Unicode Character Database that specifies a minimal set of rules for
performing Arabic and Syriac contextual shaping. See Chapter 5.

Array. A data structure in which the individual elements are stored contiguously in a single block of
memory.

Articulation mark. A mark applied to a musical note to indicate how it should be articulated.

ASA. Abbreviation for American Standards Association, the old name of ANSI.

Ascender. The part of a character that rises above the font’s x-height (such as the vertical stroke on
the lowercase letter b).

ASCII. American Standard Code for Information Interchange. A character encoding developed from
early telegraphy codes in the early 1960s that is still the most widespread character encoding
standard used in data processing today. ASCII encodes the twenty-six letters of the English alphabet,
plus the Western digits and a small selection of punctuation marks and symbols, and is a subset of a
wide variety of other encodings.

ASCII_Hex_Digit. A property given to those Unicode characters that can be used as dgits in
hexadecimal numerals and are also in ASCII. (The upper- and lower-case letter A through F, plus
the digits 0 through 9.)

Asomtavruli. A style of Georgian writing predominantly used in ecclesiastical texts and sometimes as
capital letters. See Chapter 7.

 Glossary
.

.

.
.

522 Unicode Demystified

Aspiration. Letting extra air escape the mouth in the pronunciation of a letter. The difference
between the t at the beginning of “toy” (an aspirated t) and the t in “stamp” (an unaspirated t).

ATSUI. Apple Type Services for Unicode Imaging. Apple’s advanced text-rendering technology.
See Chapter 16.

Attachment point. A location in a glyph shape in an outline font where a mark can be applied. An
accent can be positioned correctly relative to different base characters by mating its attachment point
to a particular attachment point on the base character. See Chapter 16.

Augmentation dot. A dot which, when applied to a muscial note, lengthens the note by half its normal
value.

Backing store. The area of memory containing the text that’s being displayed (or otherwise
manipulated).

Backspace. 1) A control character in a telegraphy code that indicates that the printhead should be
moved back one character position, or the direct descendats of a control code with this original use.
2) The key on a keyboard that deletes the character before the insertion point.

Backwards level. A level in a multi-level string comparison algorithm where differences later in the
string are more significant than differences earlier in the string. See Chapter 15.

Bank. One of two or more alternate collections of characters that can be represented by the same
numeric values in an encoding scheme (used particular with older telegraphy codes such as the
Baudot code). Special control characters are used to switch between banks. See Chapter 2.

Bantoc. A Khmer character that shortens the preceding vowel. See Chapter 9.

Bariyoosan. A Khmer punctuation mark used to mark the end of a section. See Chapter 9.

Base character. A character to which a diacritical mark can be applied.

Base64. A transfer encoding syntax that represents arbitrary binary data using only 65 printing
characters that exist in almost all seven-bit encodings. See Chapter 17.

Baseline. An imaginary line against which all characters on a line of text are aligned. When text
from different fonts or different type sized is mixed on a line, the charaters all line up along the
baseline.

Baseline adjustment. The process of properly lining up text from scripts that use different baselines
on a single line of text. (For instance, letters in Western scripts sit on the baseline, which letters in

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 523

most Indic scripts hang from the baseline. When Western and Indic writing is mixed on a single line
of text, the baseline of one script has to be adjusted upward or downward to make the text appear to
line up properly.) See Chapter 16.

Basic Multilingual Plane. The official name of Plane 0 of Unicode and ISO 10646. This is the plane
where the characters in all modern scripts are located. See Chapter 3.

Baudot. Emile Baudot, who invented a “printing telegraph,” the immediate predecessor of the
teletype machine.

Baudot code. 1) The method of representing characters used with Baudot’s printing telegraph. 2)
Also used to refer to a number of other telegraph codes that shared a similar five-bit, stateful
structure. See Chapter 2.

BCD. 1) A method of representing numeric quantities using binary digits that preserves the ability to
do decimal arithmetic on it. 2) Alternate name for BCDIC. See Chapter 2.

BCDIC. An in-memory character representation on early IBM computers based on the punched-card
codes of the day. Four bits of the six-bit code were used to indicate the location of a punch in the
rows 0 to 9, and the other two bits were used to indicate punches in the zone rows. See Chapter 2.

Beam. A line that connects together a group of musical notes (usually all the notes that occur in a
single beat).

BEL. A control code that, in old telegraphy codes, caused a bell to ring (or some other audible signal
to happen) on the receiving end of the communication link.

Bicameral script. A script with two sets of letters: upper case and lower case.

Bi-di. 1) Short for bidirectional text layout. 2) Used as a collective term for the scripts that require
bidirectional text layout.

Bi-di algorithm. Short for bidirectional text layout algorithm.

Bi-di category. A property assigned to a character to indicate its directionality.

Bidi_Control. A character property applied to the invisible formatting characters that can be used to
alter the default behavior of the bi-di algorithm. See Chapter 5.

BidiMirroring.txt. A file in the Unicode Character Database that links together characters with mirror-
image glyphs. This file can be used to implement a rudimentary version of mirroring. See Chapter 5.

Bidirectional text layout. The process of arranging characters of mixed directionality on a single line
of text.

 Glossary
.

.

.
.

524 Unicode Demystified

Bidirectional text layout algorithm. The part of the Unicode standard that defines just how characters
of mixed directionality should be arranged on a single line of text. For more on this algorithm, see
Chapters 8 and 16.

Big5. An industry-developed character encoding standard for Traditional Chinese commonly used in
Taiwan.

Big-endian. 1) A serialization format that sends and receives multiple-byte values most-significant-
byte-first. 2) A processor architecture that stores the most significant byte of a multi-byte value
lowest in memory.

Binary comparison. The process of comparing two strings by performing a simple numeric
comparison of the individual code point values until a difference is discovered.

Binary tree. A linked data structure consisting of individual nodes that are arranged in a hierarchy
and where each node points to no more than two other nodes.

Bindi. The Gurmukhi anusvara. See Chapter 9.

Bit map. 1) An array of Boolean values, usually packed together so that each Boolean value is
represented by a single bit. 2) A series of bytes representing a visual image where each bit
determines whether a particular pixel is lit or not.

Bitmap font. A font where the glyph images are represented as bit maps that can be copied directly
into the display buffer. See Chapter 16.

Bit-mapped display. A display device that is controlled by a bit map in memory, where the bit map
specifies which pixels are to be lit.

Bitwise comparison. Alternate term for binary comparison.

Blanked. An alternate-weighting mode in the Unicode Collation Algorithm where all character with
alternate weights are treated as completely ignorable. See Chapter 15.

Block. A contiguous range of code point values in the Unicode encoding space set aside for a
particular purpose (e.g., the Greek block contains characters used in Greek).

Block storage. A storage scheme for a long range of contiguous information (such as a text
document) that stores it by dividing it up into a number of separate blocks in memory. See Chapter
16.

Blocks.txt. A file in the Unicode Character Database that gives the boundaries of the different
“blocks” of the Unicode encoding space. See Chapter 5.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 525

BMP. Abbreviation for Basic Multilingual Plane.

BOCU. Byte-Order Preserving Compression for Unicode. A Unicode compression scheme that will
produce the same sort order as the raw UTF-8 or UTF-32 text. See Chapter 6.

BOM. Abbreviation for Byte order mark.

Bottom-joining vowel. An Indic vowel sign that is drawn below the consonant it modifies.

Boundary analysis. The process of analyzing a piece of text for boundaries between linguistic units
such as words or sentences. Line breaking and double-click detection are two processes that perform
boundary analysis.

Boustrophedon. Text where successive lines are written with alternating directionality (i.e., a left-to-
right line is followed by a right-to-left line, which is followed by a left-to-right line, etc.). Used in
ancient Greek and a few other ancient writing systems.

Box drawing character. A character representing a straight line, an angle, or some other piece of a
box. A succession of box-drawing characters are used together to draw lines and boxes on character-
oriented display devices.

Boyer-Moore search. A fast text-searching algorithm that takes advantage of the mix of characters in
the search key to skip over positions in the text being searched where a match can’t start. See
Chapter 15.

Breathing mark. One of two marks used in polytonic Greek to indicate the presence and absence of
an “h” sound at the beginning of a word or syllable.

Breve. A U-shaped diacritical mark, usually used to indicate the absence of stress on a particular
syllable.

Byte order. The order in which the individual bytes of a multi-byte value are stored in memory or
sent over a communication link.

Byte order mark. The Unicode code point value which, by convention, can be used at the beginning
of a Unicode text file to indicate its byte order or to announce the Unicode character encoding
scheme being used in that file. See Chapter 6.

C0. In an ISO 2022-based encoding, the range of code point values from 0x00 to 0x1F set aside for
control characters, or the set of control characters allocated to this range. In most ISO 2022-based
encodings, the C0 set consists of the ASCII control characters.

 Glossary
.

.

.
.

526 Unicode Demystified

C1. In an ISO 2022-based encoding, the range of code point values from 0x80 to 0x9F set aside for
control characters, or the set of control characters allocated to this range (and represented using
escape sequences in a 7-bit encoding).

Candrabindu. A mark used in Devanagari and some other Indic scripts to indicate nasalization. See
Chapter 9.

Canonical accent ordering. Alternate term for canonical reordering.

Canonical composite. A Unicode character whose canonical decomposition is different from the
character itself (i.e., a Unicode character representing a character that can also be represented with a
combining character sequence). See Chapter 4.

Canonical decomposition. The preferred method of representing a particular character in Normalized
Form D. For most characters, this is the same as the character itself, but for characters that can also
be represented with combining character sequences (i.e., canonical composites), the equivalent
combining character sequence (or, if the same character can be represented with more than one
combining character sequence, the equivalent sequence with the combining marks in canonical
order). See Chapter 4.

Canonical order. For a given collection of Unicode combining marks applied to a base character, the
order in which they are to be arranged in normalized Unicode text. See Chapter 4.

Canonical reordering. The process of putting a sequence of Unicode combining marks into canonical
order. See Chapter 4.

Canonical representation. For a character that has multiple representations in Unicode, the
representation that must be used in some Unicode normalized form. See Chapter 4.

Canonically equivalent. Two strings are said to be canonically equivalent if they’re identical when
converted to Normalized Form D. See Chapter 4.

Cantillation mark. A mark used in Hebrew and some other scripts to indicate accent and stress,
especially for chanting in a liturgical context. See Chapter 8.

Capital. Alternate term for upper case.

Caret. A mark used to indicate a position in text where more text is to be inserted. Also used as an
alternate term for insertion point.

Caron. A v-shaped diacritical mark drawn over some letters to alter their pronunciation.

Case folding. The process of converting a piece of text to a case-independent representation, usually
done as part of comparing it to another piece of text when case differences between the two aren’t
significant. See Chapter 14.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 527

Case mapping. The process of converting a cased letter (or series of cased letters) to a particular
case. See Chapter 14.

Cased letter. A letter with different upper case and lower case forms.

CaseFolding.txt. A file in the Unicode Character Database containing mappings that can be used to
perform case folding on a piece of Unicode text. See Chapter 5.

Case-insensitive comparison. The process of comparing two strings in such a way as to treat
differences in case as insignificant (e.g., “hello”, “Hello”, and “HELLO” all compare equal).

Cc. The abbreviation used in the UnicodeData.txt file to identify characters as belonging to the
“control character” general category. See Chapter 6.

CCCII. Chinese Character Code for Information Interchange. A Taiwanese industry-developed
encoding standard. See Chapter 2.

CCITT. Consultative Committee for International Telephone and Telegraph. A European standards
body that sets standards for the telecommunications industry.

Cedilla. A hook- or comma-shaped mark that attaches to the bottom of some consonants to change
their pronunciation.

CESU-8. Compatibility Encoding Scheme for UTF-16, 8-bit. A character encoding form for Unicode
similar to UTF-8, but differing in its treatment of supplementary-plane characters. Supplementary-
plane characters are basically represented as though they are converted first to UTF-16 and then the
UTF-16 surrogates are converted directly to UTF-8. See Chapter 4.

Cf. The abbreviation used in the UnicodeData.txt file to denote character with the “formatting
character” general category. See Chapter 5.

CGJ. Abbreviation for combining grapheme joiner.

Character. 1) The minimal unit of writing in some writing system (see grapheme). 2) Any of a
collection of marks having the same semantic and generally considered to be the same by ordinary
users of a writing system; the abstract concept of which a glyph is a concrete representation.
(Compare glyph.) 3) The entity represented by a Unicode code point (or by a code point in some
other encoding).

Character code. Alternate term for code point.

Character encoding form. A mapping from code points to code units. The way in which code points
in a coded character set are represented in memory. The intermediate layer between a coded
character set and a character encoding scheme in the Unicode character encoding model. See
Chapter 2.

 Glossary
.

.

.
.

528 Unicode Demystified

Character encoding scheme. A mapping from code points to bytes. The way in which code points in
a coded character set are represented in a serialized medium such as a disk file or communication
link. See Chapter 2.

Character generator chip. The device that maps from code point values to lit pixels on the screen in a
character-oriented display device.

Character mapping table. The table in a TrueType-based font that maps from code point values to
glyph indexes. See Chapter 16.

Character-oriented display. A display device that is controlled by a range of code points in memory,
using a character generator chip to map from the code point values to the groups of lit pixels on the
screen.

Character repertoire. See abstract character repertoire.

Character set. Usually used as a synonym for coded character set or abstract character repertoire.

CharMapML. Character Mapping Markup Language. An XML-based format for describing
mappings between encoding standards.

charset. The parameter used in a number of IETF standards to specify the character representation
used. A “charset” is equivalent to a character encoding scheme.

Chinese character. One of the characters originally used used for writing Classical Chinese and now
used for a variety of languages, including Japanese and Korean.

Choon. The dash-like character used with Katakana characters used to indicate prolongation of a
vowel sound.

Choseong. A Hangul jamo character representing the initial consonant sound of a syllable.

Chu Han. Vietnamese name for Chinese character.

Chu Nom. The characters used to write Vietnamese prior to the 20th century. The Chu Nom
characters are constructed according to the same principles that guided the construction of the
Chinese characters, but are specific to Vietnamese.

Circumflex accent. A mark similar to an upside-down V drawn above certain vowels to change their
sounds.

CJK. Chinese, Japanese, and Korean.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 529

CJK Joint Research Group. The group that originally developed the unified Han repertoire in
Unicode. The forerunner of the Ideographic Rapporteur Group.

CJK Miscellaneous Area. The area of the Unicode encoding space running from U+2E80 to U+33FF
and containing various characters used with the Han characters in various languages. This includes
punctuation, symbols, and various phonetic writing systems used in conjunction with Han characters.

CJK Unified Ideographs area. The area of the Unicode encoding space containing the Han characters.

CJK-JRG. Abbreviation for CJK Joint Research Group.

CJKV. Chinese, Japanese, Korean, and Vietnamese.

CL area. The area in an ISO 2022-based encoding running from 0x00 to 0x1F and set aside for
control characters. In most ISO 2022-based encodings, the ASCII control characters are assigned to
the CL area.

Closing punctuation. Alternate name for ending punctuation.

cmap table. Abbreviation for character mapping table.

Cn. The abbreviation used in the UnicodeData.txt file for noncharacter code point.

CNS 11643. The official encoding standard of the Taiwanese government.

Co. The abbreviation used in the UnicodeData.txt file for private-use character.

Code chart. A chart that shows the mappings from characters to code point values in a character
encoding standard.

Code page. Alternative name for coded character set.

Code point. 1) An abstract numeric value representing a character. 2) In Unicode 2.0, this term was
used for what is now called a code unit. See Chapter 2.

Code point value. One of the values a code point can have.

Code set. In Extended UNIX Code, one of the four coded character sets it can switch between. See
Chapter 2.

Code unit. A fixed-length numeric value representing a code point (or part of a code point) in
memory. A code point may map to a single code unit, or to a sequence of code units. See Chapter 2.

Coded character set. A mapping of characters to code point values. See Chapter 2.

 Glossary
.

.

.
.

530 Unicode Demystified

Code-switching scheme. A character encoding scheme that allows the representation of more than
one coded character set, usually through the use of control characters or escape sequences to switch
from one coded character set to another.

Coeng. The Khmer virama. See Chapter 9.

Collation. Another term for language-sensitive string comparison.

Collation element. A collection of weight values for a particular character or contracting character
sequence according to a particular sort order.

Collation key. A sequence of weight values for a string according to a particular order. The weights
are ordered in such a way that binary comparison of collation keys produces the same result as
language-sensitive comparison of the original strings.

Collation strength. In language-sensitive comparison, the level of differences that are significant.

Combining character. A character which combines typographically in some way with the preceding
character. Combining characters are generally accents, vowel signs, or other diacritical marks.

Combining character sequence. A sequence of Unicode code points that together represent a single
character, usually a letter with one or more marks (such as vowels or diacritical marks) applied.

Combining class. A number from 0 to 255 assigned to every character in Unicode (non-combining
characters all have a combining class of 0) and used to arrange the characters in a combining
character sequence into canonical order.

Combining grapheme joiner. A character that can combine two grapheme clusters together into a
single grapheme cluster.

Combining half mark. A combining character representing half of a double diacritic.

Combining mark. A mark, usually a diacritical mark, that attaches to the character that precedes it in
the backing store.

Combining spacing mark. A combining mark that occupies space on the baseline.

Commercial numerals. Alternate term for accounting numerals.

Comp_Ex. Old name for Full_Composition_Exclusion.

Compact array. A data structure that can be used to represent an array containing repetitive patterns
of values in a compact manner that preserves speed of lookup. See Chapter 13.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 531

Compatibility area. The section of the Unicode encoding space dedicated primarily to compatibility
characters.

Compatibility character. A character encoded in Unicode solely for round-trip compatibility with
some source standard. Many, but not all, compatibility charcaters are also composite characters.

Compatibility composite. A character whose compatibility decomposition is different from its
canonical decomposition; a compatibility character with a preferred representation in Unicode. See
Chapter 4.

Compatibility decomposition. A mapping from a compatibility composite to a “preferred”
representation consisting of one or more non-compatibility characters. The main difference between
a compatibility decomposition and a canonical decomposition is that canonical decompositions are
exactly equivalent to the original characters; compatibility decompositions, on the other hand, may
lose data (usually formatting data).

Composite character. A character whose canonical or compatibility decomposition is different from
the character itself. See Chapter 4.

Composite key. A key for sorting a record that is constructed from two or more other fields in the
record. See Chapter 15.

Composition. The process of replacing a combining character sequence (or part of a combining
character sequence) with a canonical composite character.

Composition exclusion list. The list of canonical composites that may not appear in any of the
Uniode normalized forms. See Chapter 4.

CompositionExclusions.txt. The file in the Unicode Character Database that contains the
composition exclusion list.

Compound font. A virtual font that draws on more than one other font for the actual glyph shapes.

Compound glyph. A glyph description in an outline font that doesn’t contain actual outlines, but
instead combines together two or more other glyph descriptions. See Chapter 16.

Conform. To meet all the requirements set forth in a standard.

Conjoining hangul jamo. Unicode code points representing Hangul jamo that are meant to be used in
sequences to represent Hangul syllables.

Conjunct consonant. The glyph or glyphs representing a series of consonants with no intervening
vowel sounds in an Indic script. The characters may combine together into a ligature or may remain
as separate glyphs, but all but the last character has a different glyph from the glyph it has in
isolation, and the viramas that connect the characters together aren’t visible.

 Glossary
.

.

.
.

532 Unicode Demystified

Connector punctuation. A punctuation mark that causes the words on either side to join together into
a single word.

Consonant conjunct. See conjunct consonant.

Consonant gemination. The doubling or prolonging of a consonant sound, e.g., the “t” sound in
“fourteen” as spoken by most Americans.

Consonant stack. A vertical stack of two or more glyphs representing consonants without intervening
vowel sounds in Tibetan. The Tibetan analogue to the conjunct consonant in other Insic scripts.

Consonantal. Used to describe an alphabet in which the letters only represent consonants and vowel
sounds are represented by applying diacritical marks to the consonants. (In most consonantal scripts,
some vowel sounds actually are represented with letters, but these letters generally are also used as
consonants.)

Content-transfer-encoding. The entry in a MIME message header specifying the transfer encoding
syntax with which the message’s content is encoded. See Chapter 17.

Content-type. The entry in a MIME message header specifying the type of data the message (or
message part) contains.

Context-sensitive weighting. A situation in language-sensitive comparison in which a particular
character has a different set of weights depending on the surrounding characters. This is usually
treated as a combination of contracting character sequence and expanding character. See Chapter 15.

Contextual shaping. The process by which the glyph to use to represent a given character depends on
the surrounding characters.

Contour. Alternate term for loop.

Contracting character sequence. A sequence of code points that map to a single collation element.
See Chapter 15.

Control character. 1) Alternate term for control code. 2) The Unicode general category consisting
of the Unicode counterparts to the C0 and C1 code points in the ISO 2022 standard.

Control code. A single code point representing a conrol function.

Control function. A sequence of one of more code points that don’t represent characters, but instead
affect the interpreting process in some way (managing the communication protocol, delimiting fields
in structured data, telling the receiving equipment to do something, etc.) A control function
consisting of a single code point is called a control code or control character. A control function
consisting of a sequence of code points is often called an escape sequence.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 533

Control picture. A visible glyph used to represent a control character.

Control point. Alternate term for off-curve point.

CR. Carriage return. A control character that tells the receiving equipment to return the print head to
the home position. On some systems (notably the Macintosh), this is the new-line function.

CR area. The range of code point values from 0x80 to 0x9F in an ISO 2022-based encoding,
reserved for control characters.

CRLF sequence. A code point representing the CR function followed by a code point representing
the LF function. The combination of these two code points in a row is treated as the new-line
function by some systems (notably DOS and Windows).

Cs. The abbreviation used in the UnicodeData.txt file for surrogate character.

Currency symbol. A symbol that precedes or follows a numeral to indicate that it represents a
currency value.

Cursive. Written with characters that generally join together into a single unbroken line.

Cursive joining. Contextual shaping that causes a succession of characters to be drawn connected
together into a single unbroken line.

Dagesh. A dot drawn inside a Hebrew letter to change its pronunciation, generally from a more
liquid sound (such as v) to a stopped sound (such as b). See Chapter 8.

Dakuten. Two small strokes added to the shoulder of a Kana character to change the syllable’s
consonant sound to a voiced consonant. See Chapter 10.

Danda. A vertical stroke used as punctuation with many Indic scripts. It functions more or less like a
period. See Chapter 9.

Dash. A property assigned to characters in the “dash punctuation” category that are dashes rather
than hyphens. See Chapter 5.

Dash punctuation. A category of characters that includes hyphens and dashes. See Chapter 5.

Dasia. The Greek “rough breathing mark,” which was used to indicate the presence of an initial h
sound at the beginning of a word that starts with a vowel. See Chapter 7.

Dead key. A key that generates a character (usually a diacritical mark) but doesn’t advance the print
head or carriage to the next character position.

 Glossary
.

.

.
.

534 Unicode Demystified

Decimal digit value. A property assigned to characters in the “decimal digit number” category that
specifies the numeric value the character represents when used as a decimal digit.

Decimal-digit number. A category of characters that includes all characters that are normally used as
decimal digits in place-value notation.

Decomposition. 1) A property assigned to a character that specifies a sequence of one or more
characters that is equivalent to that character. Usually the decomposition is either the character itself,
a combining character sequence (when the character can also be represented using a combining
character sequence), or some kind of preferred representation of the character. A canonical
decomposition is strictly equivalent to the character; a compatibility decomposition may lose some
data (usually formatting). 2) The process of replacing a character with its decomposition, or of
converting a whole string to Normalized Form D or KD. See Chapter 4.

Decomposition type. 1) Whether a particular decomposition is canonical or compatibility. 2) A
classification applied to compatibility decompositions that attempts to capture what information is
lost by replacing the character with its decomposition.

Default ignorable code point. A character (or unassigned code point value) that should be ignored by
default by a process that doesn’t know how to deal with it specifically. This property is generally
there to specify code points that a font should treat as invisible (i.e., not draw) instead of handling by
drawing a “missing” glyph.

DEL. A control function in ASCII and older telegraphy codes that either is ignored by the receiving
equipment or tells the receiving equipment to ignore the preceding character. Typically represented
by an all-bits-on signal. (The character derives from the practice of erasing an error in a paper-tape
representation of a piece of text by punching out all the holes in the row with the error.) See Chapter
2.

Dependent vowel. In Indic scripts, a mark which, when applied to a consonant character, changes its
inherent vowel to some other vowel sound. See Chapter 9.

Deprecated. 1) Strongly discouraged from use. Character assignments can’t be removed from
Unicode, so if a character was enoded in error, it’s deprecated. 2) A character property assigned to
characters that are deprecated.

Derived data file. A file in the Unicode Character Database whose contents can be derived from data
in other files in the database (or from rules in the standard itself).

Derived property. A property whose members can be determined from other properties rather than by
merely listing all the members.

DerivedAge.txt. A file in the Unicode Character Database that tells when each character was added to
the standard.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 535

DerivedBidiClass.txt. A file in the Unicode Character Database that lists the characters belonging to
each of the bi-di categories.

DerivedBinaryProperties.txt. A file in the Unicode Character Database that lists the characters
belonging to each of the binary properties (i.e., the properties that only have two values). Right now,
the only property listed in this file is the “mirrored” property.

DerivedCombiningClass.txt. A file in the Unicode Character Database that lists the characters in each
of the combining classes.

DerivedCoreProperties.txt. A file in the Unicode Character Database that lists characters with various
properties. The properties can usually be derived from other properties in UnicodeData.txt and
PropList.txt. See Chapter 5.

DerivedDecompositionType.txt. A file in the Unicode Character Database that lists the composite
characters with each of the decomposition types.

DerivedJoiningGroup.txt. A file in the Unicode Character Database that classifies the Arabic and
Syriac letters according to their basic shape.

DerivedJoiningType.txt. A file in the Unicode Character Database that classifies the Arabic and
Syriac letters according to how they can join to their neighbors.

DerivedLineBreak.txt. A file in the Unicode Character Database that lists the characters with each of
the line-break properties.

DerivedNormalizationProperties.txt. A file in the Unicode Character Database that lists groups of
characters with similar behavior under normalization: for example, characters that can’t appear in
normalization form, characters that can only appear in certain normalization forms, characters that
turn into more than one character when converted to certain normalization forms, etc.

DerivedNumericType.txt. A file in the Unicode Character Database that groups the various Unicode
numeric characters together according to how they can be used to represent numbers.

DerivedNumericValues.txt. A file in the Unicode Character Database that lists all the characters that
can represent each numeric value.

DerivedProperties.html. A file in the Unicode Character Database that gives information on all the
derived data files in the database.

Descender. The part of a character that extends below the baseline.

Diacritic. 1) A mark that is added to a letter or other character to changes its pronunciation or
meaning in some way. 2) A property assigned to all Unicode characters that are used as diacritics.

 Glossary
.

.

.
.

536 Unicode Demystified

Diaeresis. 1) Pronouncing a vowel as part of a new syllable rather than as part of a diphthong. 2) A
mark (usually a double dot) applied to a letter to indicate diaeresis.

Dialytika. Greek name for diaeresis.

Dialytika-tonos. A single character representing both a dialytika and a tonos applied to the same
letter.

Digit. A single character in a numeral written with place-value notation.

Digit value. A property applied to all characters that can be used a digits, specifying the numeric
value they represent when used as digits.

Digraph. 1) A pair of characters used together to represent a single sound. 2) A Unicode code point
representing two characters.

Dingbat. A special symbol, usually used decoratively, especially a character from the Zapf Dingbats
font found on most laser printers.

Diphthong. 1) Two vowel sounds pronounced consecutively and sliding into one another. 2) A pair
of vowels used together to represent a single sound, whether or not that sound is actually a
diphthong.

Directional run. A sequence of consecutive characters with the same resolved directionality.

Directionality. A property that specifies the order in which consecutive characters are arranged on a
line of text (and how consecutive lines are arranged on a page). For example, a series of characters
with left-to-right directionality are arranged on a line such that the first character in memory appears
farthest to the left, with the succeeding characters progressing toward the right. A character may
have strong directionality, weak directionality, or neutral directionality. See Chapter 8.

Discontiguous selection. 1) A selection in a text-editing application that includes two or more ranges
of characters that aren’t contiguous in memory. 2) A selection in a text-editing application that two or
more ranges of characters that aren’t contiguous on the screen.

Display cell. 1) In a monospaced font, the space occupied by a single character. 2) In East Asian
typography, the space occupied by a single Chinese character.

Disunify. To take two different meanings or glyph shapes represented by a single code point value
and assign them different code point values. The different uses of the ASCII hyphen character (i.e.,
hyphen, dash, minus sign) are disunified in Unicode.

Dot leader. 1) A sequence of dots spaced at equal intervals and usually used to help lead the eye
between two separated pieces of text (such as a chapter name and page number in a table of

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 537

contents). 2) A single character consisting of one or more dots intended to be used repeatedly in
sequence to form a dot leader. See Chapter 12.

Double danda. A punctuation mark consisting of two vertical strokes used with many Indic scripts.
A double danda usually marks the end of a larger run of text, such as a paragraph or stanza, than is
ended with a single danda. See Chapter 9.

Double diacritic. A diacritical mark that applies to a sequence of two characters. See Chapter 4.

Draft Unicode Technical Report. A Unicode Technical Report that hasn’t reached final approval yet,
but whose content has generally been agreed on in principle. Unicode Technical Reports carry no
normative force while still in draft form. See Chapter 3.

Dual-joining letter. An Arabic or Syriac letter that is capable of connecting cursively to letters on
either side.

DUTR. Abbreviation for Draft Unicode Technical Report.

DUTR #26. A Draft Unicode Technical Report defining CESU-8, a UTF-8-like encoding scheme
used for compatibility on some systems. See Chapter 6.

Dynamic composition. The principle of being able to represent a character with a sequence of code
points representing its constituent parts.

Early normalization. The principle set forth by the W3C that text must be produced in normalized
form by the process that produces it (and kept that way by any process that modifies it). This allows
processes that only receive and interpret text to assume it’s is normalized form. See Chapter 17.

East Asian width. A property assigned to a character that specifies how many display cells it takes up
in East Asian typography. See Chapter 10.

EastAsianWidth.txt. A file in the Unicode Character Database that gives the East Asian width
property for each character.

EBCDIC. Extended Binary Coded Decimal Information Code. A family of encoding standards used
on some IBM computers that evolved from BCDIC (which in turn evolved from earlier punched-card
codes). The original version of EBCDIC added two bits to the six-bit BCDIC code, making it
possible to represent a wider variety of punch patterns than was possible with BCDIC.

Ech-yiwn ligature. The ligature that is often formed when the Armenian letters ech and yiwn occur
together.

 Glossary
.

.

.
.

538 Unicode Demystified

ECMA. A pan-European standards-setting body specializing in information technology standards.
ECMA is an ISO member body. The letters used to stand for European Computer Manufacturers’
Association.

ECMA-6. The original international-standard version of ASCII. This became ISO 646. See Chapter
2.

ECMA-35. The standard that became ISO 2022. See Chapter 2.

ECMA-94. The standard that became ISO 8859-1. See Chapter 2.

ECMAScript. A standard specifying a core syntax and set of libraries for scripting languages.
Netscape’s Javascript and Microsoft’s JScript, as well as some other scripting languages, are based
on the ECMAScript model.

Editing. The process of using a piece of software to interactively change or compose a piece of text.

Elision character. A character that is used to indicate the absence of several other characters. The
apostrophe is often used as an elision character in English.

Ellipsis character. 1) A character, such as the series of periods used in English, that is used to
indicate the absence of one of more words. 2) Elision character.

Em. A unit of measurement along a line of text that is equivalent to the height of the line.

Em dash. A dash that is an em wide, usually used in English to indicate a break in continuity or to set
off a parenthetical expression.

Em quad. A space that is an em wide.

Em space. Alternate term for em quad.

Embedding level. A number assigned to characters by the Unicode bi-di algorithm that governs how
successive directional runs are to be arranged on a line relative to one another. See Chapter 16.

En. Half of an em.

En dash. A dash that is an en wide, usually used in English to separate ranges of numbers or as a
minus sign.

En quad. A space that is an en wide.

En space. Alternate term for en quad.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 539

Enclosing mark. A combining mark that surrounds the character (or grapheme cluster) it is applied
to.

Encoding form. See character encoding form.

Encoding scheme. See character encoding scheme.

Encoding space. The range of possible code point values for a coded character set, often represented
as a two- or three-dimensional array of cells containing characters. The size of an encoding space is
often derived from the size in bits of the code point values. “8-bit encoding space” and “16 ×16
encoding space” are both synonymous with “256-character encoding space.” See Chapter 2.

Encoding standard. A standard that specifies a coded character set, character encoding form,
character encoding scheme, or some combination of the above.

Endian-ness. Alternate term for byte order.

Ending punctuation. A category of characters that serve to mark the end of some range of text (such
as a parenthetical expression or a quotation). See Chapter 5.

Erotimatiko. The semicolon-like mark used in Greek as a question mark. See Chapter 7.

Escape sequence. 1) A sequence of more than one code point representing a control function
(traditionally, the ASCII ESC character was used as the first character of an escape sequence). 2) A
sequence of more than one code point used to represent a single code point in a programming
language or other structured text format (e.g., “\u1234” in Java).

Estrangelo. The oldest style of writing the Syriac letters. See Chapter 8.

EUC. Abbreviation for Extended UNIX Code.

EUC-CN. A version of Extended UNIX Code with code sets drawn from mainland Chinese encoding
standards. See Chapter 2.

EUC-JP. A version of Extended UNIX Code with code sets drawn from Japanese encoding
standards. See Chapter 2.

EUC-KR. A version of Extended UNIX Code with code sets drawn from Korean encoding standards.
See Chapter 2.

EUC-TW. A version of Extended UNIX Code with code sets drawn from Taiwanese encoding
standards. See Chapter 2.

Exception table. An auxiliary data structure used to store records that won’t fit in the main data
structure, or cases where the rules specified in the main structure don’t hold. A data structure that
needs to store mappings for character sequences might use a main table that holds single-character

 Glossary
.

.

.
.

540 Unicode Demystified

mappings and points into one or more exception tables that hold the multiple-character mappings. A
data structure that groups characters into categories for some process might consists of a main table
that maps whole Unicode general categories to its categories and an exception table that contains
category mappings for characters whose mappings don’t match the mapping for their Unicode
category. See Chapter 13.

Expanding character. A character that maps to more than one collation element. See Chapter 15.

Expands_On_NFC. A derived property containing all the characters that turn into multiple characters
when converted to Normalized Form C.

Expands_On_NFD. A derived property containing all the characters that turn into multiple characters
when converted to Normalized Form D.

Expands_On_NFKC. A derived property containing all the characters that turn into multiple
characters when converted to Normalized Form KC.

Expands_On_NFKD. A derived property containing all the characters that turn into multiple
characters when converted to Normalized Form KD.

Explicit embedding character. A character that forces the characters after it to be placed at a new
embedding level. See Chapter 8.

Explicit override character. A character that overrides the inherent directionality of the characters
after it. See Chapter 8.

Extended ASCII. A term used to refer to any of a large number of eight-bit encoding standards whose
first 128 code point assignments are identical to those in ASCII, particularly ISO 8859-1.

Extended UNIX Code. A code switching scheme that allows for the representation of up to four
different coded character sets: One is represented with code point values in the G0 space, one with
code point values in the G1 space, and the other two with code point values from the G1 space
preceded by special “introducer” characters. See Chapter 2.

Extender (property in PropList.txt).

Eyelash ra. A special half-form of the Devanagari letter ra used in certain conjunct consonants. See
Chapter 9.

Fancy text. Alternate term for rich text.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 541

Feather mark. Marks used in Ogham to mark the beginning and ending of a piece of text. See
Chapter 11.

FF. Form Feed. A control character that tells the receiving equipment to advance the platen to the
beginning of the next page.

FIELDATA. A telegraphy code developed by the U.S. Army and which is one of ASCII’s most
important antecedents. See Chapter 2.

FIGS. A control character that would cause the receiving equipment to interpret succeeding code
points as digits or punctuation instead of letters.

Fili. The Thaana vowel signs. See Chapter 8.

Final form. The glyph shape a character takes on when it appears at the end of a word (or, in some
cases, when it appears before a character that doesn’t join to the preceding character).

Final-quote punctuation. A category assigned to half of the quotation-mark characters in Unicode.
Whether the characters in this category are actually closing quotation marks or are instead opening
quotation marks depends on the language of the text.

First series consonants. The Khmer consonants that carry an inherent a sound. See Chapter 9.

FNC. A derived property that gives a mapping from a character to a case-folded representation in
Normalized Form C.

Fongman. A character used as a list bullet in Thai. See Chapter 9.

Font. 1) A collection of glyphs with a common typographical design. Several fonts may make up a
typeface. 2) A computer program or set of tables that, in conjunction with a text rendering process,
can draw the glyphs in a particular font.

Forfeda. Extra letters added to the Ogham alphabet after it began to be written on paper. See
Chapter 11.

Format effector. Early term for control character.

Formatting character. The category assigned to Unicode characters which have no visual
presentation of their own, but which exist to alter the way some process operating on the text treats
the surrounding characters. See Chapters 5 and 12.

Fourth-level difference. In a multi-level comparison, a difference between fourth-level weights.

Fourth-level weight. In a multi-level comparison, the fourth weight value assigned to a character or
contracting character sequence. In the Unicode Collation Algorithm, the fourth level weight is

 Glossary
.

.

.
.

542 Unicode Demystified

usually either the character’s actual code point value or is algorithmically derived from the
character’s code point value.

Fraction slash. A special slash character that causes surrounding sequences of digits to combine
together into a fraction. If you put a normal slash between 1 and 2, you get “1/2”; if you put a
fraction slash between them, you get “½”. See Chapter 12.

French accent sorting. Alternate name for French secondary.

French secondary. Treating the secondary level of a multi-level sort as a backwards level. So called
because it’s required to sort French properly.

FTP. File Transfer Protocol. A protocol used for sending files over the Internet.

Full_Composition_Exclusion. A derived property assigned to characters that can’t occur in any of the
Unicode normalized forms.

Fullwidth. Used to describe characters that take up a full display cell in East Asian typography.
Unicode draws a distinction between characters that are explicitly fullwidth (i.e., have
“FULWIDTH” in their names) and those that are implicitly fullwidth (such as the Han characters).

Furigana. Alternate term for ruby.

Futhark. The name for a Runic alphabet. See Chapter 11.

G source. The collective name for sources of ideographs submitted to the IRG by the Chinese
national body. See Chapter 10.

G0. The range of the ISO 2022 encoding space running from 0x20 to 0x7F and set aside for printing
characters. 0x20 is always the space and 0x7F is always the DEL character, leaving 94 code points
available for other characters. The term also refers to the set of characters encoded in this space. In
most ISO 2022-based encodings, the G0 set of characters is the ASCII printing characters. See
Chapter 2.

G1. The range of the ISO 2022 encoding space running from 0xA0 to 0xFF and set aside for printing
characters. The term also refers to one of three alternate sets of characters encoded in this space (G2
and G3 are the others). See Chapter 2.

Gakushu Kanji. A list of characters that all Japanese learn in elementary school. See Chapter 2.

Gap storage. A method of storing a large amount of contiguous data, such as the characters in a
document being edited, that can greatly improve the performance of processes, such as interactive

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 543

text editors, that manipulate the data. The basic principle is that the memory block is larger than the
data, to give it room to grow before a new block must be allocated, and the extra memory in the
block is stored at the position of the last change rather than at the end of the block, minimizing the
number of characters that have to be moved around when changes occur. See Chapter 16.

Garshuni. Arabic written using the Syriac alphabet. See Chapter 8.

GB 2312. The main Chinese national standard for character encoding.

Gemination. See consonant gemination.

General category. A property given to every Unicode character that classifies it according to its
general purpose. See Chapter 5.

General scripts area. The area of the BMP running from U+0000 to U+1FFF and containing the
characters for all of the modern non-CJK writing systems.

Geta mark. A mark sometimes used in Japanese typography to take the place of an ideograph for
which a glyph can’t be found.

GL area. In ISO 2022, the range running from 0x20 to 0x7F and set aside for the encoding of
printing characters. In most ISO 2022-based encodings, the ASCII characters are placed into the GL
range.

Glottal stop. The stoppage of sound caused by the closing of the glottis (the back of the throat). The
hyphen in “uh-uh” is a glottal stop.

Glue character. Alternate term for non-breaking character.

Glyph. A concrete written or printed representation of a character or group of characters. See
Chapter 3.

Glyph index. A number identifying a particular glyph description in a font file. The cmap table in a
TrueType font maps from code points to glyph indexes.

Glyph metamorphosis table. In an AAT font, a table that performs complex mappings on glyph
indexes. This is the table responsible for context-sensitive glyph selection, ligature formation, Indic
vowel reordering, etc. See Chapter 16.

Glyph selection. The process of choosing the proper glyph to display for a character in a particular
place.

Glyph substitution table. In an OpenType font, a table that performs complex mappings on glyph
indexes. This is the table responsible for context-sensitive glyph selection, ligature formation, etc.
See Chapter 16.

 Glossary
.

.

.
.

544 Unicode Demystified

Glyphic variant. A different glyph representing the same underlying character. The term is usually
used in opposition to “different character.” For example, $, �, and $ are all glyphic variants of the
same character—$ and ¢ are different characters.

GR area. The part of the ISO 2022 encoding space running from 0xA0 to 0xFF and set aside for
printing characters. See Chapter 2.

Grapheme. 1) A minimal unit of writing in some written language; a mark that is considered a single
“character” by an average reader or writer of a particular written language. 2) In versions of Unicode
prior to Unicode 3.2, this term was used for the concept that is now called a grapheme cluster.

Grapheme cluster. A sequence of one or more Unicode code points that should be treated as an
indivisible unit by most processes operating on Unicode text, such as searching and sorting, hit-
testing, arrow key movement, and so on. A grapheme cluster may or may not correspond to the
user’s idea of a “character” (i.e., a single grapheme)—for instance, an Indic orthographic syllable is
generally considered a grapheme cluster but may still be seen by an average reader or writer as
several letters. The Unicode standard puts forth a default definition of grapheme clusters, but
permits language-sensitive tailoring—for example, a contracting character sequence in most sort
orders is a language-specific grapheme cluster. See Chapter 4.

Grapheme joiner. See combining grapheme joiner.

Grapheme_Base. A property given to all characters that are grapheme clusters unto themselves
unless they occur next to a Grapheme_Extend or Grapheme_Link character. This is a derived
property—all characters that aren’t Grapheme_Extend or Grapheme_Link characters are
Grapheme_Base characters.

Grapheme_Extend. A property given to all characters that belong to the same grapheme cluster as the
characters that precede them. Combining marks are Grapheme_Extend characters.

Grapheme_Link. A property given to all characters that cause the characters that precede and follow
them to be considered part of the same grapheme cluster. The combining grapheme joiner and the
viramas are Grapheme_Link characters.

Graphic character. Alternate term for printing character.

Grave accent.

GSUB table. Abbreviation for glyph substitution table.

Guillemet. A v-shaped mark used in a number of languages, notably French, as a quotation mark.
See Chapter 12.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 545

H source. Collective name for the various sources of ideographic characters submitted to the IRG by
the Hong Kong Special Administrative Region.

Hacek. A v-shaped mark drawn above some consonants to indicate a change in sound. See Chapter
7.

Half mark. See combining half mark.

Half-form. The form that a consonant in Devanagari and some other Indic writing systems often takes
when it’s part of a conjunct consonant. The term comes from the fact that a half-form is usually an
abbreviated version of the character’s normal shape, usually omitting the vertical stem. Half-forms
are glyphic variants of normal consonants and are not given a separate encoding in Unicode. See
Chapter 9.

Halfwidth. The term given to characters that occupy half of a normal display cell in East Asian
typography. Latin letters, for example, are generally considered halfwidth. The Unicode standard
draws a distinction between characters that are explicitly halfwidth—these have “HALFWIDTH” in
their names—and those that are implicitly halfwidth. Halfwidth characters don’t always take up
exactly half the space along the baseline of fullwidth characters; often they’re proportionally spaced,
and the term is used merely to indicate that they take up less space along the baseline than a normal
ideograph. See Chapter 10.

Hamza. A mark used in Arabic to indicate a glottal stop. See Chapter 8.

Han character. Alternate term for Chinese character.

Han unification. The process of collecting Chinese characters from a variety of disparate sources and
weeding out the characters from different sources that are really duplicates of each other. The
characters that are duplicates are encoded once in Unicode, not once for every source encoding they
appear in. The process of Han unification involves keeping careful track of just which characters
from which sources are unified. See Chapter 10.

Handakuten. The small circle applied to certain Kana characters that turns the initial h sound into an
initial p sound. See Chapter 10.

Hangul. The alphabetic writing system used for writing Korean.

Hangul syllable. 1) A cluster of Hangul jamo representing a single Korean syllable. 2) A single
Unicode code point representing a Hangul syllable.

Hangzhou numerals. Alternate term for Suzhou numerals.

Hanja. Korean for Chinese character.

Hankaku. Japanese for halfwidth.

 Glossary
.

.

.
.

546 Unicode Demystified

Hanzi. Mandarin for Chinese character.

Hard sign. A letter of the Cyrillic alphabet that indicates the absence of palatalization in a spot where
it would normally occur.

Headstroke. The characteristic stroke at the top of all of the letters in most Indic writing systems.
Depending on the script, the headstroke may be different shapes. See Chapter 9.

Hex_Digit. A property assigned to those characters that can be used as hexadecimal digits.

High surrogate. A code unit value that is used as the first code unit in a surrogate pair, or the code
point value corresponding to it. The high surrogates run from U+D800 to U+DBFF.

Higher-level protocol. A protocol that is out of the scope of the Unicode standard but that uses the
Unicode standard as its basis. XML is an example of a higher-level protocol.

Hindi numerals. Often used to refer to the native digits used with the Arabic alphabet. (Not to the
digits used with Devenagari.)

Hint. Alternate term for instruction.

Hiragana. The more cursive form of Kana used for writing native Japanese words and grammatical
endings. See Chapter 10.

Hit testing. The process of determining the position in the backing store that corresponds to a
particular pixel position in a piece of rendered text.

HKSCS. Hong Kong Supplemental Character Set. A collection of characters used in the Hong Kong
Special Administrative Region. Many of these characters are used specifically to write Cantonese.

Hollerith. Herman Hollerith, who developed a system of using punched cards for data processing.

Hollerith code. Any of a number of similar methods of representing alphanumeric data on punched
cards.

HTML. Hypertext Markup Language. A method of representing styled text and hypertext links
between documents. The standard method of representing Web page content.

HTTP. Hypertext Transfer Protocol. A protocol for requesting and transferring hypertext documents,
and the standard communication protocol on the Web.

Hyphen (property in PropList.txt). A property assigned to Unicode dash-punctuation characters (and a
couple of connector-punctuation characters) that are hyphens .

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 547

Hyphenation. The process of dividing words between lines of text, usually at syllable boundaries and
with a hyphen added at the end of the first line, in an effort to improve the appearance of justified
text.

HZ. A code-switching scheme used with Chinese text. See Chapter 2.

IAB. Abbreivation for Internet Architecture Board.

IANA. Abbreviation for Internet Assigned Numbers Authority.

ICU. Abbreviation for International Components for Unicode.

IDC. Abbreviation for ideographic description character.

IDS. Abbreviation for ideographic description sequence.

Identifier. A sequence of characters used to identify some entity. Variable and function names in
programming languages are examples of identifiers.

Ideograph. 1) A character that represents an idea. 2) Alternate term for Chinese character.

Ideographic. A property assigned to ideographic characters in Unicode: specifically the Han
characters and radicals.

Ideographic description character. A special character that indicates how the two or three
ideographic characters or ideographic description sequences following it are to be combined to form
a single character. Officially, ideographic description characters are printing characters, but a smart
rendering engine can use them to approximate the appearance of an otherwise-unrepresentable
ideograph. See Chapter 10.

Ideographic description sequence. A sequence of Unicode characters that describe the appearance of
an otherwise-unrepresentable Chinese characters. An ideographic description sequence contains at
least one ideographic description character.

Ideographic Rapporteur Group. A formal standing subcommittee of ISO/IEC JTC1/SC2/WG2
responsible for the maintenance and development of the unified Han repertoire in Unicode and ISO
10646. The IRG is made up of experts from wide variety of Asian countries that use the Han
characters, as well as a few representatives of the UTC. See Chapter 10.

Ideographic variation indicator. A special character that can be used to indicate that the following
character is only an approximation of the desired Chinese character, which can’t be represented in
Unicode. See Chapter 10.

IDS. Abbreviation for ideographic description sequence.

 Glossary
.

.

.
.

548 Unicode Demystified

IDS_Binary_Operator. A property given to ideographic description characters that take two operands.

IDS_Trinary_Operator. A property given to ideographic description characters that take three
operands.

IEC. Abbreviation for International Eletrotechnical Commission.

IETF. Abbreviation for Internet Engineering Task Force.

Ignorable character. A character that is to be ignored by a language-sensitive string comparison
routine, or that is only to be considered significant at certain levels of comparison. The Unicode
Collation Algorithm defines a large collection of characters (mostly spaces and punctuation) as
ignorable by default; tailorings may specify more ignorable characters or make certain characters
significant that are ignorable by default. See Chapter 15.

Independent form. The glyph shape taken by a character in the absence of any surrounding characters
to which it can connect cursively. Usually used with Arabic and Syriac letters.

Independent vowel. A full-fledged letter (as opposed to a mark that gets applied to another letter)
representing a vowel sound in an Indic script. Generally, independent vowels are used for word-
initial vowel sounds and for vowel sounds that follow other vowel sounds. In some scripts, the
“independent vowels” take the form of dependent vowels applied to a “null” consonant. See Chapter
9.

Index.txt. A file in the Unicode Character Database that lists all the Unicode characters by name; it’s
basically a soft copy of the character names index in the Unicode book. See Chapter 5.

Indic script. One of a large collection of scripts used mostly in India, Southeast Asia, and certain
islands in the Pacific and derived from the ancient Brahmi script. See Chapter 9.

Informative. A statement, property, or recommendation in a standard that need not be followed to
conform to the standard. Informative elements are usually there to clarify or supplement the standard
in some way.

Inherent directionality. The directionality a character has by virtue of its definition in the Unicode
standard, as opposed to resolved directionality.

Inherent vowel sound. The vowel sound a consonant in an Indic script has when it has no dependent
vowels attached to it. (Letters in Indic scripts actually represent syllables, not just consonants.) See
Chapter 9.

Initial form. The glyph shape that a character takes when it appears at the beginning of a word, or
when it’s preceded by a character that doesn’t connect to the following character.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 549

Initial-quote punctuation. A property assigned to half of the quotation-marks in Unicode. Whether
the characters with this property are actually opening quotation marks or are instead closing
quotation marks depends on the actual language of the text.

Input method. A piece of software that translates user actions on some input device to characters that
are passed as input to a text-editing utility. The term is usually used specifically to refer to code that
permits input of Chinese characters with a series of keystrokes (and often interactive menu choices).

Insertion point. In an interactive text-editing application, the position, usually marked by a blinking
vertical line, where any text the user types will be inserted.

Instruction. An element of a font that indicates how to deform the ideal shape of a glyph to better fit
the coordinate system of the output device when the output device has low resolution. Instructions
are used, for example, to make the characters in an outline font designed for a printer look good (or
at least legible) on the screen.

Interact typographically. Affect the shapes or positions of characters around it. Two characters are
said to interact typographically if the glyph shape(s) you get when the characters are juxtaposed in
memory is different from the glyph shapes you get when the characters occur in isolation. A
character a and the character b that follows it in memory interact typographically if 1) b is drawn
somewhere other than in the next position after a in the dominant writing direction (e.g., in a left-to-
right script, if b is drawn above, below, to the left of, inside, or overlaying a), 2) the shape of either a
or b or both is different from the shape the character has in isolation, or 3) a and b combine together
into a ligature.

Interlinear annotation. Annotations appearing between lines of text that help to clarify the
pronunciation or meaning of unfamiliar characters or words. See Chapter 10.

International Components for Unicode. An open-source library of routines for performing different
operations on Unicode text, including character encoding conversion, Unicode normalization,
language-sensitive comparison and searching, boundary analysis, transliteration, case mapping and
folding, and various other processes. See Chapter 17.

International Electrotechnical Commission. An international body that issues international standards
for various technical and engineering disciplines.

International Organization for Standardization. An international body that issues international
standards in a wide variety of disciplines and serves as an umbrella organization for the various
national standards bodies.

International Phonetic Alphabet. A special set of characters used for phonetic transcription. See
Chapter 7.

International Telegraphy Alphabet #2. An international encoding standard used for several decades in
telegraphy. See Chapter 2.

Internationalization. The process of designing software so that it can be localized for various user
communities without having to change or recompile the executable code.

 Glossary
.

.

.
.

550 Unicode Demystified

Internet Architecture Board.

Internet Assigned Numbers Authority. A sister organization to the IETF that acts as a central
registration authority for various internet-related identifiers and numbers, such as charsets, MIME
types, and so forth. (The IANA used to be responsible for domain names, but isn’t anymore.)

Internet Engineering Task Force. An informal organization of engineers who do Internet-related work
and which issues various standards for the operation of different parts of the Internet. Most Internet-
related standard, other than those relating to the World Wide Web, are IETF standards.

Internet-draft. A document issued by the IETF that either represents standards-track proposal in its
very earliest stages of discussion or that contains only informative information. Internet-drafts carry
no normative force.

Inversion list. A data structure that represents a collection of values with an array containing only the
initial values in each contiguous range of values. See Chapter 13.

Inversion map. An extension of the inversion list that represents a collection of mappings from one
set of values into another with an array that contains only the initial values for each contiguous range
of source values that map to the same result value. See Chapter 13.

Invisible formatting character. A Unicode code point that has no visual presentation of its own, but
affects the way some process operating on text treats the surrounding characters.

Invisible math operator. A Unicode code point representing a mathematical operation whose
application is implicit (i.e., indicated by the simple juxtaposition of symbols in a mathematical
formula). Invisible math operators have no visual presentation (although sometimes they affect the
spacing of the surrounding characters), but exist to help software parsing a mathematical expression.
See Chapter 12.

IPA. Abbreviation for International Phonetic Alphabet.

IRG. Abbreviation for Ideographic Rapporteur Group.

IRV. International Reference Version. For international standards such as ISO 646 that allow for
variation between countries, the IRV is the version to use in the absence of a country-specific
version. The International Reference Version of ISO 646 is American ASCII.

ISCII. Indian Script Code for Information Interchange. An encoding standard issued by the Indian
government for representing various Indic scripts used in India.

ISO. Abbreviation for International Organization for Standardization.

ISO 10646. Unicode’s sister standard. ISO 10646 is an official international standard, rather than an
ad-hoc industry standard. Since the early 1990s, ISO 10646 has exactly the same assignments of

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 551

characters to code point values as Unicode and shares some other architectural characteristics with it
as well. Unicode goes beyond ISO 10646 to specify more details of character semantics an
implementation details, and there are some other subtle differences between the two standards. See
Chapter 2 for details. The current formal designations for ISO 10646 are ISO/IEC 10646-1:2000 and
ISO/IEC 10646-2:2001 standards; “ISO 10646” is used informally to collectively refer to both (or to
earlier versions).

ISO 10646 comment. Informative text about a character that occurs in the ISO 10646 code charts and
is included as a formal Unicode character property for compatibility with ISO 10646.

ISO 2022. An ISO standard which specifies a general encoding-space layout for various other
encoding standards to follow, and which specifies an elaborate system of escape sequences for
switching between different coded character sets.

ISO 6429. A standard that specifies semantics for control characters in various ISO 2022-derived
encodings.

ISO 646. The international standard based on ASCII. The International Reference Version of ISO
646 is the same as ASCII, but the ISO 646 standard itself specifies a group of “national use” code
points that can be assigned to characters other than the ones in the International Reference Version
by various national bodies. With a few exceptions, such as JIS-Roman, the national-use variants of
ISO 646 have fallen into disuse. See Chapter 2.

ISO 8859. A family of ISO-2022-compatible encoding standards for various European languages and
languages used by large populations of people in Europe. The first 128 code point assignments in all
of the ISO 8859 encodings are identical to the ISO 646 IRV, making all of them downward
compatible with ASCII.

ISO 8859-1. An encoding standard for representing various Western European languages using the
Latin alphabet. This the most common “extended ASCII” encoding standard and was the default
character encoding for HTML up until recently. The first 256 code point assignments in Unicode are
identical to ISO 8859-1. ISO 8859-1 is slowly being superseded by ISO 8859-15 (“Latin-9”), which
is almost the same, but removes a few less-frequently-used character assignments and adds a few new
characters, including the Euro symbol. See Chapter 2.

ISO-2022-CN. A code-switching scheme for Chinese. See Chapter 2.

ISO-2022-CN-EXT. A code switching scheme for Chinese similar to ISO-2022-CN, but including
support for a greater number of characters. See Chapter 2.

ISO-2022-JP. A code-switching scheme for Japanese. See Chapter 2.

ISO-2022-KR. A code-switching scheme for Korean. See Chapter 2.

Isolated form. Alternate term for independent form.

Isshar. A mark used in Bengali to write the name of God. See Chapter 9.

 Glossary
.

.

.
.

552 Unicode Demystified

ITA2. Abbreviation for International Telegraphy Alphabet #2.

J source. Collective name for sources of Han ideographs submitted to the IRG by the Japanese
national body. See Chapter 10.

Jamo. The individual “letters” of the Hangul writing system. Two or more jamo, representing
individual sounds, are arranged in a square display cell to form a Hangul syllable. Modern Hangul
syllables can be represented in Unicode either with series of individual code points representing the
jamo, or with a single code point representing the whole syllable. See Chapters 4 and 10.

Jamo short name. A property assigned to the Hangul jamo in Unicode that is used to derive names
for the Hangul syllables. See Chapter 5.

Jamo.txt. A data file in the Unicode Character Database that specifies the Jamo short name property
for the characters in Unicode that have this property.

Japanese Industrial Standards Commission. The main Japanese national standards-setting body, and
the Japanese member of ISO.

Jinmei-yo Kanji. A list of characters officially sanctioned by the Japanese government for use in
personal names. See Chapter 2.

JIS C 6226. Early term for JIS X 0208.

JIS X 0201. A Japanese encoding standard that includes code points for the ASCII characters and the
Katakana characters.

JIS X 0208. The main Japanese encoding standard that encodes kanji characters.

JIS X 0212. A supplemental Japanese standard that adds more kanji to those already encoded by JIS
X 0208.

JIS X 0213. A supplemental Japanese standard that adds more kanji to those already encoded by JIS
X 0208 and JIS X 0212.

JISC. Abbreviation for Japanese Industrial Standard Commission.

JIS-Roman. Alternate term for JIS X 0201.

Johab. An encoding scheme for Korean that makes it possible to encode all of the modern Hangul
syllables as single code points. See Chapter 2.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 553

Join_Control. A property given to invisible formatting characters that control cursive joining and
ligature formation.

Joiner. See Zero-width joiner.

Jongseong. A Hangul jamo representing a syllable-final consonant sound.

Joyo Kanji. A standardized list of Japanese characters used in government documents and
newspapers.

JTC1. Joint Technical Committee #1 of the International Organization for Standardization and the
International Eletrotechnical Commission. This committee is responsible for developing and
publishing information-technology standards.

Jungseong. A Hangul jamo representing a vowel sound.

Justification. The process of distributing extra white space on a line of text, usually to cause the text
to be flush with both margins.

K source. Collective name for sources of ideographs submitted to the IRG by the Korean national
bodies.

Kana. Collective name for Hiragana and Katakana, the two syllabic writing systems used in
Japanese.

Kangxi radical. One of the radicals used to classify Chinese characters in the Kangxi dictionary.

Kangxi Zidian. A dictionary for Chinese completed in 1716 and widely considered definitive.

Kanji. Japanese for Chinese characters.

Kashida. A long connecting stroke used to elongate Arabic words to make them fit a specified
space. See Chapter 8.

Kashida justification. The process of justifying a line of Arabic text by inserting kashidas.

Katakana. The more angular form of Kana used in Japanese to write foreign words and
onomatopoeia. See Chapter 10.

Kerning. The process of adjusting the spacing between individual pairs of characters (usually by
moving them closer together) to achieve a more pleasing appearance. See Chapter 16.

 Glossary
.

.

.
.

554 Unicode Demystified

Key closure. The process of making sure that for every key in a trie-based data structure, all proper
prefixes of that key are also included as keys. See Chapter 13.

Khan. A Khmer punctuation mark used at the ends of sentences. See Chapter 9.

Khomut. A Thai punctuation mark used at the end of a document. See Chapter 9.

Khutsuri. A style of Georgian writing that mixed asomtavruli and nuskhuri and was used primarily in
ecclesiastical settings. See Chapter 7.

Killer. Alternate term for virama.

Koronis. A diacritical mark used in monotonic Greek to indication elision of vowels. See Chapter 7.

KS C 5601. Old name for KS X 1001.

KS X 1001. One of the main Korean national character encoding standards.

Kunddaliya. A Sinhala punctuation mark that appears at the end of sentences. See Chapter 9.

L2. Committee L2 of the National Committee for Information Technology Standards, which is the
American national body reporting to WG2.

Labialization. Beginning a vowel or ending a consonant with the lips puckered. English speakers
tend to think of this as inserting a w sound between a consonant and a vowel.

Lam-alef ligature. The glyph that is formed when the Arabic letter lam is followed by the Arabic
letter alef. This is the one mandatory ligature in Arabic. See Chapter 8.

Last resort font. A font used (usually by a compound font) to provide glyphs for characters that
couldn’t be displayed by any other font. A typical last-resort font includes different glyphs for each
of the scripts covered by Unicode, allowing the user to at least get an idea of which language (or
script) the missing characters were in and, thus, what kind of font would need to be provided to see
them. See Chapter 18.

Latin-1. Alternate term for ISO 8859-1.

Left-joining letter. An Arabic or Syriac letter that can connect to a letter only on its left. See Chapter
8.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 555

Left-joining vowel. An Indic dependent vowel that attaches to the left-hand side of the consonant it is
applied to. See Chapter 9.

Left-to-right embedding. An explicit embedding character that starts a new embedding level and
specifies its direction to be left-to-right. See Chapter 8.

Left-to-right mark. An invisible formatting character that has string left-to-right directionality and
which can be used to cause characters of neutral directionality to resolve to left-to-right
directionality. See Chapter 8.

Left-to-right override. An explicit override character that causes all following characters to be treated
as having strong left-to-right directionality. See Chapter 8.

Legacy encoding. Generally used to mean “any encoding other than Unicode.” More specifically
used to refer to whatever encoding standard or standards were in use before Unicode.

Letter. 1) A single base character in an alphabetic or alphasyllabic writing system. Usually
represents a single consonant or vowel sound (although in many alphabetic writing systems, vowel
sounds are represented with diacritical marks). 2) Unicode uses this word in many places (including
the general categories) to refer to any character that is used to make up words and isn’t a diacritical
mark, whether that character is a “letter” in the traditional sense, a syllable, or an ideograph.

Letter number. A category containing characters that represent numeric values but have the form or
one or more letters. See Chapter 5.

Letter-mark combination. A letter with one or more diacritical marks applied to it.

Level separator. A sentinel value used in collation keys to delimit the weight values for one level
from the weight values for the next level. The value is usually chosen to be lower than any of the
weight values, so that shorter strings compare before longer strings. Level separators can be
eliminated if the weight values for one level are disjoint from the weight values for the next level.
See Chapter 15.

Lexical comparison. Alternate term for binary comparison.

LF. Line Feed. A control function that signals the receiving equipment to advance the platen to the
next line (on some systems, this also implies moving the carriage back to the home position). The LF
character is used as the new-line function on some systems, particularly most UNIX-based systems
and the Java programming language.

LI18NUX. The Linux Internationalization Initiative. An offshoot of the Linux Standards Base
movement which published a specification for the internationalization capabilities that should be
included in a Linux implementation. See Chapter 17.

Ligature. 1) A single glyph that represents more than one character and is formed when a certain
sequence of characters occurs in succession. A ligature often has a shape that is very different from
the shapes the characters that make it up have in isolation. 2) A glyph in a font file that is drawn

 Glossary
.

.

.
.

556 Unicode Demystified

when a certain sequence of two or more code points occur together in the backing store. Note that
these two definitions are not the same—a ligature in the normal sense may be drawn with two
specially-shaped glyph descriptions in certain fonts, and an accented letter may be drawn with a
“ligature” in a font, even though an accented letter is not normally considered a “ligature.”

Line break. The point in a piece of text where one line ends and another line begins.

Line break property. A property applied to all Unicode characters that describes how they are to be
treated be a line-breaking routine. See Chapter 16.

Line breaking. The process of dividing a piece of text into lines.

Line layout. The process of arranging a series of characters on a line of text.

Line separator. 1) A control function that signals the beginning of a new line, but not the beginning
of a new paragraph. 2) The Unicode character, U+2028, intended to unambiguously represent this
function.

Line starts array. An array that stores the offset in the backing store of the first character on each line
of a piece of displayed text (or the number of code points in each line). Line breaking can be thought
of as the process of building the line starts array (or keeping it up to date as the text changes). See
Chapter 16.

LineBreak.txt. The file in the Unicode Character Database that specifies each character’s line-break
property.

Linked list. A data structure that stores a sequence of values using a separate memory block for each
value, with pointers from one memory block to the next.

Linux Standards Base. A specification that specifies a standard feature set for Linux
implementations. See Chapter 17.

Little-endian. 1) A serialization format that sends and receives multiple-byte values least-significant-
byte-first. 2) A processor architecture that stores the least significant byte of a multi-byte value
lowest in memory.

Ll. The abbreviation used in the UnicodeData.txt file for the “lowercase letter” property.

Lm. The abbreviation used in the UnicodeData.txt file for the “modifier letter” property.

Lo. The abbreviation used in the UnicodeData.txt file for the “other letter” property.

Locale-dependent. Dependent on the language and dialect of the text, and often on the nationality of
the person writing or reading the text. Collation behavior is locale-dependent.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 557

Localization. The process of converting an application for use by a new user community.
Localization involves not just translating any user-visible text, but also altering things like pictures,
color schemes, window layouts, and number, date, and time formats according to the cultural
conventions of the new user community.

Logical character. Alternate term for grapheme cluster.

Logical order. The order in which the characters are pronounced and (usually) typed.

Logical selection. A selection that represents a contiguous range of code points in the backing store,
but which may appear visually discontiguous.

Logical_Order_Exception. A property given to characters that in Unicode are stored in visual order
rather than logical order. This property currently consists just of left-joining vowel signs in Thai and
Lao. See Chapter 5.

Logograph. A character representing a single word. Sometimes used to describe Chinese characters.

Long s. An alternate glyph shape for the lowercase letter s that was used as a non-final form for the
letter s in the eighteenth century. In handwritten text, it looks like an integral sign, and in printed
text, it looks kind of like the letter f. See Chapter 7.

Loop. A series of points in an outline describing a closed shape consisting of line and curve
segments. A glyph description usually consists of one or more loops. See Chapter 16.

Low surrogate. A code unit value used to represent the second code unit in a surrogate pair, or the
code point values corresponding to these code unit values. The low-surrogate range is from U+DC00
to U+DFFF.

Lower case. In a bicameral script, the set of letters used to write most words.

Lowercase letter. The property given to lowercase letters in bicameral scripts.

LRE. Abbreviation for Left-to-Right Embedding.

LRM. Abbreviation for Left-to-Right Mark.

LRO. Abbreviation for Left-to-Right Override.

LS. Abbreviation for line separator.

LSB. 1) Abbreviation for Linux Standards Base. 2) Abbreviation for “least significant bit” or “least
ignificant byte.”

Lt. Abbreviation used in the UnicodeData.txt file to represent the “titlecase letter” property.

 Glossary
.

.

.
.

558 Unicode Demystified

LTRS. A control function in some old telegraphy codes that indicated to the receiving equipment that
it should interpret succeeding code points as letters. See Chapter 2.

Lu. Abbreviation used in the UnicodeData.txt file to represent the “uppercase letter” property.

LZW. Lempel-Ziv-Welch. A general-purpose dictionary-based compression algorithm.

Macron. A line drawn above a vowel to indicate a long vowel sound.

Madda. A mark used with some Arabic letters to indicate a glottal stop. See Chapter 8.

Maiyamok. A mark used in Thai to indicate repetition of the syllable that precedes it. See Chapter 9.

Major version. The part of the Unicode version number before the first decimal point. The major
version number is incremented any time a new version of Unicode is published in book form.

Mark. A collection of Unicode general categories containing the various combining characters.

Markup. A higher-level protocol that uses certain sequences of characters to impose structure on the
text or supplement it with additional information.

Maru. Alternate term for handakuten.

Mathematical symbol. A category containing symbols that are normally used in mathematical
expressions.

MathML. Mathematical Markup Language. An XML-based file format for describing mathematical
expressions.

Medial form. The glyph shape used for a character when it occurs in the middle of a word, or for
Arabic letters, when it can connect to letters on both sides.

MICR. Magnetic Ink Character Recognition.

MIME. Multipurpose Internet Mail Extensions. A method of transmitting different data types in a
standard RFC 822 mail message. See Chapter 17.

Minor version. The second number in a Unicode version number. The minor version is updated
anytime a new version of Unicode is issued that includes new characters or significant architectural
changes, but that version isn’t issued in book form.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 559

Mirrored. The property given to characters that have a different glyph shape when their resolved
directionality is right-to-left than they have when their resolved directionality is left-to-right. The
two glyph shapes are generally mirror images of each other, and often (but not always) mirrored
characters come in pairs that can simply exchange glyphs in right-to-left text. See Chapter 8.

“Missing” glyph. A glyph that is drawn when the font doesn’t have a glyph for a particular code point
value.

Mkhedruli. The modern form of the Georgian alphabet. See Chapter 7.

Modifier letter. A spacing character that has no pronunciation of its own but changes the
pronunciation of the preceding letter. See Chapter 5.

Modifier symbol. Similar to a modifier letter, but used for spacing clones of combing marks and other
characters that don’t necessarily get treated as letters. See Chapter 5.

Monospaced. Used to describe a font in which all the characters are the same width.

Monosyllabic language. A language in which all of the words have only one syllable. Many Chinese
and related languages are generally considered monosyllabic, although most of them actually do have
some polysyllabic words.

Monotonic Greek. A simplified system of Greek spelling that went into effect in the 1970s and
greatly simplified the use of diacritical marks with Greek letters.

Morse. Samuel Morse, who invented the telegraph in 1837.

Morse code. The code that was used to send text with Morse’s telegraph (and is still used in certain
applications today). It used variable-length sequences of long and short signals to represent
characters.

mort table. Abbreviation for glyph metamorphosis table.

Multi-level comparison. The process of comparing a pair of strings in multiple passes, where certain
types of differences are only significant if there are no higher-level differences between the strings
(for example, case differences only count if the strings are otherwise the same).

Murray. Donald Murray, who invented the first teletype machine around 1900.

Muusikatoan. A Khmer mark that converts a second-series consonant to the first-series consonant.
See Chapter 9.

Name. A property given to each character that identifies it and attempts to convey something about
its meaning or use. See Chapter 5.

 Glossary
.

.

.
.

560 Unicode Demystified

NamesList.html. A file in the Unicode Character Database that describes the NamesList.txt file.

NamesList.txt. A file in the Unicode Character Database that is used to produce the code charts in the
Unicode standard. It lists all the characters by name, along with a variety of annotations. See
Chapter 5.

Narrow. A property assigned to all characters that are implicitly halfwidth, and that characters of
neutral or ambiguous East Asian width resolve to when used in Western typography.

Nasalization. Pronouncing a vowel sound with the nasal passage open. The first and last vowel
sounds in the French phrase en passant are nasalized.

National Committee on Information Technology Standards. An American standards body specializing
in information technology standards. NCITS acts as an umbrella organization for various
information-technology-related ANSI working groups, including L2, the group responsible for
representing the American position to WG2.

National digit shapes. A deprecated invisible formatting character that causes the code points in the
ASCII range that represent digits to represent the native digits for the current language (usually
Arabic) rather than the European digits they normally represent. See Chapter 12.

National use character. 1) A code point in ISO 646 (and some other encoding standards) that may
represent a different character in different countries (i.e., different countries can have their own
versions of ISO 646 that can be different from the International Reference Version and still conform
to the standard). 2) A character represented by a national-use code point value.

NBSP. Abbreviation for non-breaking space.

NCITS. Abbreviation for National Committee on Information Technology Standards.

NCR. Abbreviation for numeric character reference.

Nd. The abbreviation used in the UnicodeData.txt file for the “decimal-digit number” general
category.

NEL. New Line. A character in the C1 space (and in EBCDIC) used on some systems to represent
the new-line function.

Nestorian. One of the modern writing styles of the Syriac alphabet. See Chapter 8.

Neutral directionality. No inherent directionality. A character with neutral directionality takes on the
directionality of the surrounding characters.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 561

New-line function. A control function that indicates the end of a line of text and the beginning of a
new line. Depending on the application, the new-line function may also indicate the beginning of a
new paragraph.

NFC. Abbreviation for Normalized Form C.

NFC_MAYBE. A derived property given to characters that may occur in Normalized Form C, but only
in certain contexts. If a string contains NFC_MAYBE characters and no MFC_NO characters, extra
analysis must be done to determine if it is, in fact, in Normalized Form C.

NFC_NO. A derived property given to characters that may not occur in Normalized Form C.

NFD. Abbreviation for Normalized Form D.

NFD_NO. A derived property given to characters that may not occur in Normalized Form D.

NFKC. Abbreviation for Normalized Form KC.

NFKC_MAYBE. A derived property given to characters that may occur in Normalized Form KC, but
only in certain contexts. If a String contains NFKC_MAYBE characters and no NFKC_NO
characters, extra analysis must be done to determine if it is, in fact, in Normalized Form KC.

NFKC_NO. A derived property given to characters that may not occur in Normalized Form KC.

NFKD. Abbreviation for Normalized Form KD.

NFKD_NO. A derived property given to characters that may not occur in Normalized Form KD.

Nigori. Alternate term for dakuten.

Nikahit. A Khmer sign used to indicate nasalization. See Chapter 9.

Nl. Abbreviation used in the UnicodeData.txt file to represent the “letter number” general category.

NL. Alternate term for NEL.

NLF. Abbreviation for new-line function.

No. Abbreviation used in the UnicodeData.txt file for the “other number” general category.

Nominal digit shapes. A deprecated invisible formatting character used to cancel the effects of the
National Digit Shapes character. See Chapter 12.

 Glossary
.

.

.
.

562 Unicode Demystified

Non-breaking character. A character that prevents a line break from happening before or after it. It
“glues” the characters before and after it together on one line. See Chapter 12.

Non-breaking hyphen. A hyphen with non-breaking semantics.

Non-breaking space. A space with non-breaking semantics.

Nonce form. A character coined for an ad-hoc use in one particular paper or situation. This term is
usually applied to rare Chinese characters or mathematical symbols.

Noncharacter. A code point value that is specifically defined never to represent a character (this is
different from private-use characters). Noncharacter code point values are set aside for internal
application use (as sentinel values, for example) and should never appear in interchanged Unicode
text.

Noncharacter_Code_Point. The property given to all noncharacter code points.

Noncognate rule. The rule that states that two similar-looking ideographs that would be unified based
on glyph shape alone aren’t unified if they have different meanings and etymological histories. See
Chapter 10.

Noninflecting language. A language where the forms of words don’t change depending on their
grammatical context. Some Chinese languages are generally noninflecting.

Non-joiner. See zero-width non-joiner.

Non-joining letter. An Arabic or Syric letter that does not connect cursively to the letters on either
side.

Non-spacing mark. A combining character that takes up no space along the baseline. Non-spacing
marks usually are drawn above or below the based character or overlay it.

Non-starter decomposition. A decomposition that consists entirely of combining marks. Non-starter
decompositions are not allowed in Normalized Form C. See Chapter 4.

Normalization. The process of converting a piece of Unicode text to one of the Unicode Normalized
Forms; the process of converting a sequence of Unicode code points that has other equivalent
sequences to one particular equivalent sequence according to rules that dictate which sequences are
preferred. Strings which are different but should be considered equivalent can be compared by
normalizing them first (the normalized versions will be identical). See Chapter 4.

Normalization form. Alternate term for normalized form.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 563

NormalizationTest.txt. A file in the Unicode Character Database that can be used to determine if an
implementation of Unicode normalization actually conforms to the standard. See Chapter 5.

Normalized form. One of four different transformations on Unicode text, each of which converts all
equivalent sequences of characters to a single preferred representation. The four Unicode
normalized forms do this, however, according to different criteria. See Chapter 4.

Normalized Form C. A Unicode normalized form that prefers canonical composites over combining
character sequences when possible. Combining character sequences are converted entirely to
canonical composites or, if that isn’t possible, to the shortest equivalent combining character
sequence. Certain canonical composites, such as those with singleton decompositions, those with
non-starter decompositions, and those that aren’t generally used in certain scripts, are prohibited form
appearing in Normalized Form C. See Chapter 4.

Normalized Form D. A Unicode normalized form that disallows canonical composites. Canonical
composites are replaced with their canonical decompositions, and combining character sequences are
arranged into canonical order. See Chapter 4.

Normalized From KC. A Unicode normalized form that disallows compatibility composites, but
prefers canonical composites over combining character sequences when possible. See Chapter 4.

Normalized Form KD. A Unicode normalized form that disallows both canonical and compatibility
composites. Canonical composites are replaced with their canonical decompositions, compatibility
composites are replaced with their compatibility decompositions, and combining character sequences
are arranged into canonical order. See Chapter 4.

Normative. Used to describe specifications and descriptions in a standard that must be followed in
order to conform to the standard.

Nukta. A dot applied to letters in some Indic scripts, usually to create extra letters to write languages
other than the language the script was originally for.

NULL. A control character that is intended to have no effect, represented with the all-bits-off code
point value. Some programming languages and systems, such as C, treat NULL as a noncharacter
code point signaling the end of a string.

Null consonant. A letter representing the absence of a consonant sound. Usually used as a base to
which vowel marks are applied to represent word-initial vowel sounds or the second vowel sounds in
diphthongs.

Null vowel. A vowel mark representing the absence of a vowel sound after a particular consonant. A
virama can be considered a special kind of null vowel.

Number. 1) A property given to Unicode characters that are generally used to represent numeric
values. 2) A numeric value.

 Glossary
.

.

.
.

564 Unicode Demystified

Numeral. The written representation of a numeric value, which may consist of one or more
characters.

Numeric character reference. A sequence of characters in XML or some other markup language that
together represent a single Unicode code point by its code point value. In XML, a numeric character
reference takes the form “&1234;”.

Nuskhuri. An older style of Georgian writing used in ecclesiastical texts. See Chapter 7.

Nyis shad. A Tibetan punctuation mark analogous to the Indic double danda and used to mark a
change in topic. See Chapter 9.

Object replacement character. A special Unicode character that is used to mark the position of an
embedded object in a stream of Unicode text. This character should normally not occur in Unicode
text for interchange—the function is best left to an markup language such as HTML—but is useful as
an implementation detail, where it can provide an implementation with a character in the text to
attach extra information about the embedded object to. See Chapter 12.

OCR. Optical Character Recognition.

Off-curve point. A point in a loop in an outline font that is used to define the shape of a curve
segment. See Chapter 16.

Ogonek. A hook-like mark that is attached to the bottom of some vowels in some languages to
indicate a change in pronunciation.

On-curve point. A point in a loop in an outline font that defines the beginning of a curve or line
segment and the end of another curve or line segment.

Onomatopoeia. A word whose pronunciation resembles the sound that the word describes: “Crash” is
an example of onomatopoeia.

Opening punctuation. Alternate name for starting punctuation.

OpenType. An advanced font file format backed by Adobe and Microsoft.

Optical alignment. Adjusting the positions of characters along a margin so that they appear to line up.
(If the leftmost pixels of a straight character like an H are aligned with the leftmost pixels of a round
character like an O, they actually don’t appear to line up: the O must be shifted slightly to the left.)
See Chapter 26.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 565

Orthographic syllable. A group of characters in an Indic script that corresponds roughly to a spoken
syllable. The letters in an orthographic syllable don’t necessarily match the sounds in a spoken
syllable: A consonant sound that is spoken at the end of one syllable is actually written at the
beginning of the next orthographic syllable. For example, the “n” in “Hindi” is at the end of the first
spoken syllable but at the beginning of the second orthographic syllable. An Indic orthographic
syllable is one kind of grapheme cluster. See Chapter 9.

Other letter. The category assigned to the majority of “letter” characters in Unicode, including
syllables, ideographs, and uncased letters. See Chapter 5.

Other number. The category assigned to all Unicode characters that represent numeric values but
can’t be used as digits in positional notation. See Chapter 5.

Other punctuation. The category assigned to all Unicode punctuation that doesn’t fit into one of the
more specific punctuation categories (generally all punctuation, other than dashes and hyphens, that
doesn’t come in pairs).

Other symbol. The category assigned to all Unicode symbols (the majority) that don’t fit into one of
the more specific symbol categories (generally, all symbols that aren’t match or currency symbols
and aren’t used to modify another character).

Other_Alphabetic. A property assigned to the characters with the Alphabetic property that can’t be
determined algorithmically (certain categories of character, such as cased letters, automatically have
the Alphabetic property). See Chapter 5.

Other_Default_Ignorable_Code_Point. A property assigned to the characters with the Default
Ignorable Code Point property that can’t be determined algorithmically (certain categories of
characters, such as formatting characters, automatically have the Default Ignorable Code Point
property). See Chapter 5.

Other_Grapheme_Extend. A property assigned to the characters with the Grapheme_Extend property
that can’t be determined algorithmically (certain categories of characters, such as non-spacing marks,
have this property automatically). See Chapter 5.

Other_Lowercase. A property assigned to the characters with the Lowercase property (generally
symbols made up of lower-case letters) that aren’t in the Lowercase Letter general category. See
Chapter 5.

Other_Math. A property assigned to all characters with the Mathematical property that don’t belong
to the Mathematical Symbols general category. See Chapter 5.

Other_Uppercase. A property assigned to the characters with the Uppercase property (generally
symbols made up of upper-case letters) that aren’t in the Uppercase Letter general category. See
Chapter 5.

Outline font. Any font technology whose glyph descriptions are in the form of abstract descriptions
of the ideal character shape rather than bitmapped images of the glyphs. See Chapter 16.

 Glossary
.

.

.
.

566 Unicode Demystified

Out-of-band information. Information about a piece of text that is stored in a separate data structure
(such as a style run array) from the characters themselves.

Oxia. Greek name for the acute accent. See Chapter 7.

Pair table. A two-dimensional table used in boundary analysis. Each axis is indexed by character or
character category, and the cells of the table say whether (or under which conditions) there is a
boundary between those two characters (or characters belonging to those two categories). See
Chapter 16.

Paired punctuation. Punctuation marks that come in matched pairs and are generally used to mark the
beginning and end of some range of text. Parentheses and quotation marks are examples of paired
punctuation.

Paiyannoi. A Thai mark used to indicate elision of letters. See Chapter 9.

Palatalization. Modifying a consonant by ending it with the back of the tongue pressed toward the
roof of the mouth, or beginning a vowel with the tongue in that position. English speakers tend to
think of palatalization as inserting a y sound between a consonant and a vowel. The scraping sound
at the beginning of “Houston” is a palatalized h. See Chapter 7.

Pamudpod. The Hanunóo virama.

Paragraph separator. A special Unicode character, U+2029, that is used to mark the boundary
between two paragraphs. In many applications, the underlying system’s new-line function is treated
as a paragraph separator.

Pc. The abbreviation used in the UnicodeData.txt file to represent the “connector punctuation”
general category.

Pd. The abbreviation used in the UnicodeData.txt file to represent the “dash punctuation” general
category.

PDF. 1) Abbreviation for pop directional formatting. 2) Portable Document Format.

PDUTR. Abbreviation for Proposed Draft Unicode Technical Report.

PDUTR #25. A proposed Unicode technical report describing how Unicode should be used to
represent mathematical expressions.

PDUTR #28. The proposed Unicode technical report specifying Unicode 3.2.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 567

Pe. The abbreviation used in the UnicodeData.txt file to represent the “ending punctuation” general
category.

Perispomeni. The Greek circumflex accent (which actually may look like a circumflex or tilde
depending on type style).

Pf. The abbreviation used in the UnicodeData.txt file to represent the “final-quote punctuation”
general category.

Phonetic. A component of a Chinese character that supplies an approximate idea of the word’s
pronunciation.

Pi. The abbreviation used in the UnicodeData.txt file to represent the “initial-quote punctuation”
general category.

Pictograph. A character that represents the word for an object by depicting the object pictorially.

Pinyin. A system for writing Mandarin Chinese words using Latin letters and digits, designed and
promulgated by the Chinese government.

Place-value notation. Alternate term for positional notation.

Plain text. Pure text with no accompanying metadata, such as formatting information, hyperlinks, or
embedded non-text elements. Plain text is generally considered to be the minimal amount of
information necessary to render a piece of text legibly (i.e., the written characters themselves, plus an
extremely minimal amount of extra information necessary to render those characters legibly). See
Chapter 1.

Plane. A particular range of code point values in a coded character set’s encoding space. Usually if
an encoding space is divided into several different kinds of divisions (such as planes, rows, and
columns), the plane is the largest such division. In Unicode, a plane is a range of 65,536 contiguous
code point values whose first five bits (out of 21) are the same. These first five bits are considered to
be the “plane number.”

Plane 0. In Unicode, the range of code point values from U+000 to U+FFFF. This is called the
Basic Multilingual Plane, and is the range of code points assigned to the characters of all modern
writing systems (except for some relatively rare Chinese characters).

Plane 1. In Unicode, the range of code point values from U+10000 to U+1FFFF. This is called the
Supplementary Multilingual Plane, and is the range of code points assigned to various characters
from historical (i.e., obsolete) writing systems and to various symbols that have fairly specialized
uses.

Plane 2. In Unicode, the range of code point values from U+20000 to U+2FFFF. This is called the
Supplementary Ideograph Plane, and is the range of code point values assigned to a wide variety of
less-common Chinese characters.

 Glossary
.

.

.
.

568 Unicode Demystified

Plane 14. In Unicode, the range of code point values from U+E0000 to U+EFFFF. This is called the
Supplementary Special-Purpose Plane, and is the range of code point values assigned to a number of
special-purpose characters.

Platen. The rubber roller that paper is wrapped around in a typewriter or teletype machine.

Po. The abbreviation used in the UnicodeData.txt file for the “other punctuation” general category.

Point. Any vowel mark or diacritical mark used in Hebrew or Arabic. See Chapter 8.

Pointed Hebrew. Hebrew written with most or all of the points (which are generally optional and
omitted most of the time). See Chapter 8.

Poloytonic Greek. The older system of Greek spelling, which includes a complicated system of
diacritical marks. See Chapter 7.

Pop directional formatting. A special Unicode character with terminates the effect of the most recent
explicit override character or explicit embedding character in the text. See Chapter 8.

Positional notation. The practice of writing a numeric value using a small number of characters
whose value is determined by their position in the numeral. In a decimal integer, the rightmost digit
is a multiple of 1, the next digit to the left is a multiple of 10, and the digits to the left represent
multiples of progressively higher powers of 10. See Chapter 12.

Post-composition version characters. Canonical composites that are in the composition exclusion list
because they were added to Unicode after Unicode 3.0, the version of Unicode on which Normalized
Form C is based. See Chapter 4.

PostScript. A page description language and a collection of font formats developed by Adobe Corp.
The PostScript outline format is one of two outline formats supported by OpenType. See Chapter
16.

Precomposed character. Alternate term for composite character.

Precomposed Hangul syllable. One of the Unicode code points representing a whole Hangul syllable.
The precomposed Hangul syllables are all canonical composites and have canonical decompositions
to sequences of conjoining Hangul jamo. See Chapter 4.

Presentation form. 1) The glyph shape used for a character in a particular situation. 2) A code point
representing a particular glyph shape for a character that can have more than one glyph shape.
Presentation forms are compatibility characters, and are generally compatibility composites with
compatibility decompositions to the code points representing the character irrespective of glyph
shape.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 569

Primary key. The main field by which records are sorted. If two records’ primary keys are equal, the
secondary key determines the order. See Chapter 15.

Primary source standard. One of the main sources of characters for Unicode, and one of the
encoding standards for which it was deemed important to maintain round-trip compability.

Primary weight. The weight value that is compared first in a multi-level comparison. Only f two
strings’ primary weights are all the same are secondary weights compared. In a typical sort order
(and in the UCA default sort order), different primary weights are assigned to code points that are
considered to represent different characters. For example, “a” and “b” have different primary
weights. See Chapter 15.

Primary-level difference. A difference in the primary weights of two collation keys (or the
corresponding difference in the original strings). See Chapter 15.

Printing character. A character with a visible glyph. The term is usually used to distinguish code
points representing actual written characters from code points representing control functions
(“control characters”) or which alter the appearance or treatment of surrounding characters
(“formatting characters”).

Private Use Area. A range of code points whose meaning is purposely unstandardized. The code
points in the private use area are available for ad-hoc use by users and applications, which are free to
assign any meaning they want to them. In Unicode, the Private Use Area runs from U+E000 to
U+F8FF. This is supplemented by two Private Use Planes.

Private-use character. Alternate term for private-use code point.

Private-use code point. A code point whose meaning is purposely unstandardized. In Unicode, the
private use code point values are collected together in the Private Use Area and Private Use Planes.

Private-use high surrogate. A surrogate code unit value that serves as the high-surrogate value for
code points in the Private Use Planes. The private-use high surrogates run from U+DB80 to
U+DBFF.

Private-use planes. One of two planes of the Unicode encoding space set aside as extensions of the
Private Use Area. The two Private Use Planes are Plane 15, which runs from U+F0000 to U+FFFFF,
and Plane 16, which runs from U+100000 to U+10FFFF.

PropertyAliases.txt. A file in the Unicode Character Database that gives short and long names for all
of the Unicode character properties, for use in things like regular-expression syntax. See Chapter 5.

PropertyValueAliases.txt. A file in the Unicode Character Database that gives short and long names
for all the possible values for many of the Unicode character properties (numeric and Boolean values
are left out, for obvious reasons), for use in things like regular-expression syntax. See Chapter 5.

PropList.html. A file in the Unicode Character Database that describes the various properties listed in
PropList.txt. See Chapter 5.

 Glossary
.

.

.
.

570 Unicode Demystified

PropList.txt. A file in the Unicode Character Database that lists a large number of character
properties and the characters that have each of them. See Chapter 5.

Proportionally-spaced. Used to describe a font in which the glyphs have different widths, generally
corresponding to the relative widths of the characters in handwritten text.

Proposed Draft Unicode Technical Report. A Unicode Technical Report that has been published while
still in draft form. Unlike a Draft Unicode Technical Report, where the general content has been
agreed upon in principle, everything about a Proposed Draft Technical Report is still in flux.
Unicode Technical Reports carry no normative force while still in draft form.

Prosgegrammeni.

Ps. The abbreviation used in the UnicodeData.txt file for the “starting punctuation” general category.

PS. Abbreviation for Paragraph Separator.

Psili. The Greek “smooth-breathing mark,” which is used to indicate the absence of an h sound at the
beginning of a word. See Chapter 7.

PUA. Abbreviation for Private Use Area.

Punctuation. The property assigned to all Unicode characters that are used as punctuation marks.

Quotation_Mark. The property assigned to all Unicode characters that are used as quotation marks.

Quoted-printable. A transfer encoding syntax that encodes generic binary data as ASCII text. Byte
values corresponding to most ASCII printing characters are represented with those characters; other
byte values are represented with a sequence of ASCII characters that contains the spelled-out
hexadecimal byte value. This transfer encoding syntax is generally used to represent text in an
ASCII-based encoding, such as UTF-8 or ISO 8859-1, in an RFC 822 message. See Chapter 17.

Radical. 1) The component of a Chinese character by which it is classified in dictionaries. Usually
the radical is thought to convey an idea of the meaning of the character. 2) The main consonant in a
Tibetan syllable. 3) A component of a Yi syllable by which it is classified in dictionaries. 4) The
property given to Unicode code points that represent Chinese radicals.

Rafe. A diacritical mark used in Hebrew. See Chapter 8.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 571

ReadMe.txt. A file in the Unicode Character Database that provides important background and
overview information on the database. See Chapter 5.

Reahmuk. A Khmer mark that indicates a glottal stop. See Chapter 9.

Rebus. A method of writing words that uses pictures of objects to represent the sounds of those
object’s names. See Chapter 10.

Regular expression. An expression in some structured syntax (there are many regular-expression
languages) that describes a pattern of characters. If a sequence of characters fits the pattern, it is said
to “match” the regular expression. Regular-expression matching is used to do complicated searches
on text. See Chapter 15.

Rendering. The process of converting a sequence of code unit values in memory to a visible
sequence of glyphs on some output device, such as the computer’s screen or a printer.

Rendering process. The software responsible for converting a series of code units in memory to a
series of visible glyphs on an output device. The rendering process encompasses breaking the text
into pages and lines, choosing appropriate glyphs for each character, arranging those glyphs on a
line, and drawing the glyph images to the output device. The software usually encompasses both
system software and logic in the font files themselves.

Repertoire. See Abstract character repertoire.

Repetition mark. A mark that indicates that the preceding character, syllable, or word should be
repeated.

Repha. In Devanagari and a few other Indic scripts, the form that the letter ra takes when it’s the first
letter in a conjunct consonant. This is a hook-shaped mark that attaches to the top of the last
consonant in the conjunct. See Chapter 9.

Replacement character. A special Unicode character intended to be used to stand in for an otherwise-
unrepresentable character. It’s usually emitted by character code converters when they encounter an
illegal sequence of code units or a character that can’t be represented in Unicode.

Representative glyph. The glyph shape shown for a character in the Unicode standard’s code charts.
As the name suggests, the glyph is chosen to clarify to the reader which character a code point is
supposed to represent; it’s generally not the only possible glyph shape for the character, nor is it
necessarily even the preferred glyph shape. Representative glyphs have no normative force.

Reserved. Set aside for future standardization. For example, all unassigned code point values
(except for those in the Private Use Area) are reserved—the Unicode Technical Committee is
reserving for itself the right to make future character assignments to all these code point values, and
they are not free for other uses in the meantime.

 Glossary
.

.

.
.

572 Unicode Demystified

Resolved directionality. The directionality a character of neutral directionality takes on by virtue of
its position in the text. For example, is a neutral character is preceded and followed by left-to-right
characters, its resolved directionality is left-to-right.

RFC. Request for Comments. This is the term used for documents published by the IETF that are
intended to become standards at some point. Because documents tend to stay in RFC form for a long
time, many become de facto standards well before they become real standards, and those that do
become actual IETF standards tend to continue to be referred to by their RFC number even after
official publication as standards.

RFC 822. An IETF standard that specifies a standard format for text messages, such as email and
Usenet messages. Mail messages on the Internet are almost always in RFC 822 format, although
because RFC 822 is an ASCII-based format that requires explicit line breaks between the lines of a
message, today most mail messages are sent in a format, such as MIME, that can encode much richer
content within the framework of an RFC 822 text message. See Chapter 17.

Rhotacization. Pronouncing a vowel with the tongue curled upward. In American English, this is
generally thought of as following the vowel with an r sound. The a in “car,” as spoken by most
Americans, is a rhotacized a.

Rich text. Text with accompanying metadata, such as formatting information, language information,
or embedded non-text objects.

Right-joining letter. An Arabic or Syriac letter that can connect to a character to its right, but not a
character to its left. See Chapter 8.

Right-joining vowel. A dependent vowel in an Indic writing system that attaches to the right-hand
side of the consonant it modifies. See Chapter 9.

Right-to-left embedding. An explicit embedding character that starts a new embedding level with left-
to-right directionality. See Chapter 8.

Right-to-left mark. An invisible character with strong right-to-left directionality. This character can
be used to alter the resolved directionality of neutral-directionality characters. See Chapter 8.

Right-to-left override. An explicit override character that causes all of the following characters to be
treated as strong left-to-right characters.

RLE. Abbreviation for right-to-left embedding.

RLM. Abbreviation for right-to-left mark.

RLO. Abbreviation for right-to-left override.

Romaji. The Japanese term for Japanese written with Latin letters.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 573

Romanization. Transliteration to Latin letters, particularly transliteration of languages that use
Chinese characters to Latin letters. Pinyin is a system of Romanization.

Rough-breathing mark. Alternate term for dasia.

Round-trip compatibility. The ability to perform some transformation, followed by its inverse, and
end with the original data in its original form. Two encodings are said to have round-trip
compatibility if you can convert from one to the other and back to the first without losing data.
Unicode includes a number of characters specifically to make this guarantee with respect to some
source encoding.

Ruby. Japanese term for interlinear annotation.

Run array. A data structure that associates information with contiguous sequences of records in some
other data structure (such as a sequence of characters in a character array).

Run-length encoding. A data compression technique that compresses sequences of repeating values
by storing the repeating value or pattern once, accompanied by a repeat count.

SAM. Abbreviation for Syriac abbreviation mark.

Sc. The abbreviation used in the UnicodeData.txt file for the “currency symbol” general category.

SC2. Subcommittee #2 of ISO/IEC Joint Technical Committee #1, which is responsible for
international coded-character-set standards. WG2, which is responsible for ISO 10646, is a working
group of SC2.

Script. Alternate term for writing system.

Scripts.txt. A file in the Unicode Character Database that identifies the script to which each character
in Unicode belongs. See Chapter 5.

SCSU. Standard Compression Scheme for Unicode. A technique for compressing Unicode text that
is backward compatible with ISO 8859-1 and generally allows text encoded with Unicode to be
stored in roughly the same amount of space as it would occupy if encoded with an appropriate legacy
encoding. See Chapter 6.

Second series consonants. Khmer consonants that carry an inherent o sound.

Secondary key. A key which is used to determine the sorted order of two records only if their
primary keys are the same.

Secondary weight. The weight value that is compared in the second pass of a multi-level comparison.
Differences in secondary weights are only significant in a comparison if the primary weights are all

 Glossary
.

.

.
.

574 Unicode Demystified

the same. In most sort orders, differences in secondary weight correspond to different variants of the
same letter, such as the letter with different accents applied to it. For example, “a” and “ä” typically
have the same primary weight but different secondary weights. Note that this is language-specific: In
languages such as Swedish, where “ä” is a completely different letter, “a” and “ä” have different
primary weights. See Chapter 15.

Secondary-level difference. A difference in the secondary weights of two collation keys, or the
corresponding difference in the strings they were created from.

Separator. A property given to characters that mark divisions between units of text. There are three
separator categories: the line and paragraph separators, which are each categories unto themselves,
and a third category containing all of the spaces.

Serialization format. Alternate term for character encoding scheme.

Series-shifter. The Khmer muusikatoan and triisap characters, which change a consonant from one
series to the other. See Chapter 9.

Serto. One of the modern writing styles of the Syriac alphabet. See Chapter 8.

Shad. A Tibetan punctuation mark analogous to the Devanagari danda and used to indicate the end
of an expression. See Chapter 9.

Shadda. A mark written over an Arabic letter to indicate consonant gemination.

Sheva. A Hebrew point used to indicate the absence of a vowel sound after a letter. See Chapter 8.

Shifted. An alternate-weighting setting in the Unicode Collation Algorithm that causes strings with
ignorable characters in analogous positions to sort together. See Chapter 15.

Shift-JIS. A character encoding scheme that represents characters form the JIS X 0201 and JIS X
0208 standards with various one- and two-byte combinations. See Chapter 2.

Shift-trimmed. An alternate-weighting setting in the Unicode Colleciton Algorithm that causes strings
with ignorable characters in analogous positions to sort together. See Chapter 15.

Shin dot. A dot drawn over the leftmost tine of the Hebrew letter shin to indicate it has an sh sound.
See Chapter 8.

SHY. Abbreviation for soft hyphen.

Simplified Chinese. A method of writing Chinese that uses simplified (sometimes greatly simplified)
versions of many of the Chinese characters. This method is used today in most of the People’s
Republic of China and in Singapore.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 575

Sin dot. A dot drawn over the rightmost time of the Hbrew letter shin to indicate it has an s sound.
See Chapter 8.

Singleton decomposition. A canonical decomposition consisting of a single character, or a canonical
composite with a one-character decomposition. Singleton decompositions are generally variants of
characters that are included elsewhere in Unicode and disunified for round-trip compatibility with
some other standard. These variants are effectively discouraged from normal use by prohibiting their
appearance in any of the Unicode normalized forms. See Chapter 4.

SIP. Abbreviation for Supplementary Ideographic Plane.

Sk. The abbreviation used in the UnicodeData.txt file for the “modifier symbol” general category.

Slur. A musical marking that indicates that two or more notes should be played with no separation
between them.

Sm. The abbreviation used in the UnicodeData.txt file for the “mathematical symbol” general
category.

Small. When used to talk about a letter in a bicameral script, a synonym for lower case.

Smooth-breathing mark. Alternate term for psili.

SMP. Abbreviation for Supplementary Multilingual Plane.

So. The abbreviation used in the UnicodeData.txt file for the “other symbol” general category.

Soft hyphen. A code point that indicates to a text rendering process a location where a word can be
hyphenated. When a soft hyphen appears immediately before a line break, it s rendered as a regular
hyphen; otherwise, the soft hyphen is invisible.

Soft sign. A Cyrillic letter used to indicate palatalization in a location where it isn’t otherwise
implied by the spelling. See Chapter 7.

Soft_Dotted. A property given to characters whose glyphs include a dot that usually disappears when
a diacritical mark is applied. The lowercase i and j and their variants, whose dots go away when an
accent is applied (for example, in “naïve”) have this property. (There are a few languages, such as
Lithuanian, where the dot doesn’t disappear—this is usually represented with a specific combining-
dot character following the i; case mappings then have to take care to add or remove the combining
dot when appropriate.) See Chapter 5.

Sort key. Alternate term for collation key.

Source separation rule. The rule that dictates that two characters that are disunified in one of
Unicode’s primary source standards will also be disunified in Unicode, even if they would otherwise
be unified.

 Glossary
.

.

.
.

576 Unicode Demystified

Space separator. The general category given to all of the space characters in Unicode, except for a
few that explicitly have non-breaking semantics.

SpecialCasing.txt. A file in the Unicode Character Database that lists complex case mappings. For
historical reasons, simple one-to-one case mappings are in UnicodeData.txt; case mappings that are
specific to certain languages, only happen in certain contexts, or result in a single character turning
into two or more are listed in SpecialCasing.txt.

Split caret. In a text-editing application, an insertion point marking a position in the backing store
that corresponds to two positions in the rendered text. Generally, an insertion point is drawn at both
positions in the rendered text, often with a tick mark or arrow that indicates where different kinds of
text will go if the user enters more text. Split carets generally appear at the boundaries of directional
runs. See Chapter 16.

Split vowel. An Indic dependent vowel with components that appear on two different sides (such as
both the left- and right-hand sides, or above and to the right) of the consonant it modifies. Often, but
not always, the two components of a split vowel are vowel sounds in their own right, used in
combination to represent another vowel sound. See Chapter 9.

SSP. Abbreviation for Supplementary Special-Purpose Plane.

StandardizedVariants.html. A file in the Unicode Character Database that lists all combinations of a
regular Unicode character and a variation selector that are legal and the exactly glyph shape each
combination should produce. See Chapter 12.

Starting punctuation. A category of characters that mark the beginning of some range of text (such as
a parenthetical expreesion or a quotation). See Chapter 5.

State machine. A function that remembers things from invocation to invocation. It’s possible for a
state machine to produce different outputs for the same input, as its behavior is dependent not only
on the current input, but on some number of previous inputs as well.

State table. A state machine implemented as an array. The function looks up a new state and maybe
an action based on the current state and the input value.

Stateful. When applied to an encoding scheme, indicates that the interpretation of particular code
unit values can vary depending on which code unit values have been seen earlier in the text stream.
The term typically isn’t used to refer to variable-length encoding schemes such as UTF-8, where it
takes several code units following a well-defined syntax to represent a single code point, but to
schemes such as SCSU, ISO 2022, or the old Baudot code, where one may have to scan backwards
an arbitrary distance (maybe all the way to the beginning of the text stream) to know for sure how a
particular arbitrary byte in the middle of the stream is to be interpreted.

Stem. The vertical stroke in the middle of most Devanagari consonants that represents the core of the
syllable and goes away when the consonant is part of a conjunct.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 577

STIX. Scientific and Technical Information Exchange. A consortium of experts on mathematical
typesetting that has derived a standard set of mathematical symbols. See Chapter 12.

Storage format. Alternate term for character encoding form.

Strong directionality. Directionality sufficient to terminate an embedding level and to affect the
resolved directionality of neutral-directionality characters. A sequence of strong-directionality
characters placed into a sequence of characters of the opposite directionality will cause that sequence
to be split into separate directional runs at the same embedding level. Compare weak directionality.

Style run. A contiguous sequence of characters with the same styling information.

Styled text. Alternate term for rich text.

SUB. Substitute. The ASCII control character (0x1A) that is often used to mark the position of an
otherwise-unrepresentable characters. The ASCII equivalent of Unicode’s REPLACEMENT
CHARACTER.

Subjoined consonant. In Tiebtan, this refers to a consonant that occurs in a stack somewhere other
than at the top. Since there’s no virama in Tibetan, consonant stacks are represented as a regular
consonant followed by one or more subjoined consonants. See Chapter 9.

Sukun. The Thaana null-vowel character. See Chapter 8.

Supervisory code. Alternate term for control character used in FIELDATA and some other early
encoding standards. See Chapter 2.

Supplementary Ideographic Plane. Alternate name for Plane 2.

Supplementary Multilingual Plane. Alternate name for Plane 1.

Supplementary planes. All of the planes in the Unicode encoding space except for the Basic
Multilingual Plane.

Supplementary Special-Purpose Plane. Alternate name for Plane 14.

Surrogate. 1) A code unit value in UTF-16 that is half of the UTF-16 representation of a
supplementary-plane character. In UTF-16, supplementary-plane characters are represented as a
sequence of two code units: a high surrogate followed by a low surrogate. 2) A code point value in
the range U+D800 to U+DFFF, corresponding to the surrogate code-unit values. 3) The general
category assigned to code point values in the surrogate range. See Chapter 6.

Surrogate mechanism. The practice of representing supplementary-plane characters using pairs of
code unit values from the surrogate range; now part of UTF-16. See Chapter 6.

 Glossary
.

.

.
.

578 Unicode Demystified

Surrogate pair. A sequence of two UTF-16 code units from the surrogate range—a high surrogate
followed by a low surrogate—used together to represent characters in the supplementary planes. See
Chapter 6.

Suzhou numerals. A collection of commercial numerals used in parts of China and Japan. See
Chapter 10.

SVG. Scalable Vector Graphics. An XML-based format for describing object-based graphics.

Syllabary. A writing system whose characters represent whole syllables. In a true syllabary, the
characters representing syllables cannot be further decomposed into components representing
individual sounds.

Syllable cluster. Alternate term for orthographic syllable.

Symbol. A group of general categories containing symbols and other miscellaneous characters.

Symbols area. The part of the Unicode encoding space running from U+2000 to U+2E7F and
containing various punctuation marks and symbols.

Symmetric swapping. Alternate name for mirroring (i.e., the process of using mirror-image glyphs
for characters with the “mirrored” property when they appear in right-to-left text). There are two
deprecated characters that turn this behavior on and off. See Chapter 12.

Syriac abbreviation mark. A special character used with Syriac to indicate abbreviations. Syriac
abbreviations are denoted with a bar drawn above the characters in the abbreviation: the Syriac
abbreviation mark has no appearance of its own, but indicates to the rendering process that an
abbreviation should be drawn over every character from the next character to the end of the word.
See Chapter 8.

T source. Collective name for the various sources of ideographs submitted to the IRG by the
Tiawanese national body.

Tag. Some sort of metainformation (such as a language tag) represented in Unicode plan text with
tag characters.

Tag characters. A group of special characters that are invisible but can be used to place information
about the text into the plain-text stream along with the text itself. Currently only language tagging
(using the tag characters to mark certain ranges of text as being in a particular language) is supported
by Unicode. Use of the tag characters is strongly discouraged in favor of higher-level protocols such
as XML. See Chapter 12.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 579

Tailoring. A set of modifications to the default behavior of a process, usually to adapt its behavior to
the requirements of a particular language. The Unicode Collation Algorithm provides a tailoring
syntax to let you change the default sort order to a language-specific one, and the Unicode standard
also allows for tailoring of the rules for finding grapheme-cluster boundaries, although no formalized
syntax exists for this yet.

Tate-chu-yoko. Japanese for “horizontal in vertical.” The practice of setting two or more characters
horizontally in a single display cell in vertical Asian text. See Chapter 10.

Tatweel. Alternate term for kashida.

TCVN 5712. The Vietnamese national character encoding standard. See Chapter 2.

Technical report. See Unicode Technical Report.

Teh marbuta. A special form of the Arabic letter the used to write feminine endings. See Chapter 8.

Telegraph. An electrical device for sending and receiving written communication over long distances.

Telegraphy code. An encoding scheme used to represent text in the communication link between two
telegraphs.

Teletype. A kind of telegraph where text being received is output as printed characters on a piece of
paper and (usually) the text being sent is entered into the machine with a typewriter keyboard.

Terminal_Punctuation. A property given to punctuation marks used at the end of a sentence or clause.

Ternary tree. A linked data structure consisting of individual nodes that are arranged in a hierarchy
and where each node points to no more than three other nodes.

Tertiary weight. The weight value that is compared in the third pass of a multi-level comparison.
Differences in tertiary weights are only significant in a comparison if both the primary and secondary
weights are all the same. In most sort orders, differences in tertiary weight correspond to case
differences or to differences between characters whose compatibility decompositions are the same.
See Chapter 15.

Tertiary-level difference. A difference in the tertiary weights of two collation keys, or the
corresponding difference in the original strings. For example, the strings “HELLO” and “Hello”
have a tertiary-level difference at the second character position.

TeX. A computer language for describing typeset text, used especially for mathematical and technical
typesetting.

Text rendering process. See rendering process.

Thanthakhat. A mark sometimes used in Thai to mark a silent letter. See Chapter 9.

 Glossary
.

.

.
.

580 Unicode Demystified

Tie. A marking that connects two musical notes together and indicates that they should be played as a
single note with the combined value of the two tied notes.

Tilde. A diacritical mark that looks like a sideways s drawn above a letter.

Tippi. The Gurmukhi candrabindu.

TIS 620. The Thai national encoding standard.

Titlecase. The property given to single Unicode code points representing digraphs where the first
letter in the digraph is upper case and the second is lower case (for all other characters, “titlecase” is
equivalent to “uppercase”).

Tonal language. A spoken language where the pitch of the voice (or the change in pitch of the voice)
is a significant component of pronunciation (significant enough that a change in voice pitch or pitch
contour alone is enough to turn a word into a different word). Many Asian and African languages are
tonal languages.

Tone letter. A spacing character that indicates the tone of the preceding letter in the written form of a
tonal language.

Tone mark. A diacritical mark that indicates the vocal pitch contour that a letter or syllable should be
spoken with.

Tonos. The accent mark used in monotonic Greek. See Chapter 7.

Top-joining vowel. An Indic dependent vowel that joins to the top of the consonant it modifies.

Tracking. Widening a line of test by adding extra space between all the characters.

Traditional Chinese. Chinese written using the more-complicated traditional forms of the characters.
The term is usually used to draw a distinction with Simplified Chinese. Traditional Chinese is used
in Taiwan and Hong Kong, among other places. See Chapter 10.

Transfer encoding syntax.

Translation. Converting a particular series of thoughts expressed in one language to the same series
of thoughts expressed in another language.

Transliteration. 1) Converting text in a particular language from one writing system to another. The
words stay the same; the characters used to write them change. 2) Performing an algorithmic
transformation on a sequence of text according to some set of rules. Software that does this can be
used for actual transliteration, but also for other types of transforms.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 581

Trema. Alternate term for dialytika.

Trie. An n-way tree structure in which a node at any level of the tree represents the set of keys that
start with a particular sequence of characters. See Chapter 13.

Triisap. A Khmer mark that converts a first-series consonant to a second-series consonant.

TrueType. A file format for describing an outline font. Both OpenType and AAT extend the
TrueType file format with extra tables that allow for more complex typography than a traditional
TrueType font, but in incompatible ways. See Chapter 16.

TrueType GX. Former name for AAT.

Tsheg. A dot used to mark word divisions in Tibetan. See Chapter 9.

Typeface. A collection of fonts with common design characteristics intended to be used together.
(For example, Times is a typeface; Times Roman and Times Italic are fonts.)

Typographer’s ellipsis. A single character representing the European ellipsis: a series of three periods
in a row. Three normal periods in a row generally are spaced too close together; the typographer’s
ellipsis includes the optimal amount of spacing between the periods. See Chapter 10.

U source. Collective name given to sources of ideographs used by the IRG without their being
submitted by a particular national body.

UAX. Abbreviation for Unicode Standard Annex.

UAX #9. The official specification of the Unicode bidirectional layout algorithm. See Chapter 8.

UAX #11. The official specification of the East Asian Width property. See Chapter 10.

UAX #13. A set of guidelines on how line and paragraph divisions should be represented in Unicode.
See Chapter 12.

UAX #14. The official specification of the Unicode line breaking properties. See Chapter 16.

UAX #15. The official specification of the Unicode normalization forms. See Chapter 4.

UAX #19. The official definition of UTF-32. See Chapter 6.

UAX #27. The official specification of Unicode 3.1. See Chapter 3.

 Glossary
.

.

.
.

582 Unicode Demystified

UCA. Abbreviation for Unicode Collation Algorithm.

UCAS. Abbreviation for Unified Canadian Aborginal Syllabics. See Chapter 11.

UCD. Abbreviation for Unicode Character Database.

UCS. Abbreviation for Universal Character Set, an alternate name for ISO 10646.

UCS-2. One of the two character encoding forms specified by ISO 10646. UCS-2 represents
characters in the Basic Multilingual Plane as 16-bit quantities. Characters in the supplemental planes
can’t be represented in UCS-2; the surrogate space is not used and is treated like a range of
unassigned code point values. UCS-2 is now generally discouraged in favor of UTF-16.
(Applications that can’t handle surrogate pairs properly often bill themselves as “supporting UCS-
2.”)

UCS-4. One of the two character encoding forms specified by ISO 10646. This represents the
abstract code point value as a 32-bit quantity, with the extra bits filled with zeros. With the most
recent versions of ISO 10646 and Unicode, UCS-4 is equivalent to UTF-32 (in earlier versions, code
point values above 0x10FFFF were theoretically allowed in UCS-4 but not in UTF-32, although this
is of little practical significance, since nothing was encoded there).

Umlaut. A brightening of a vowel sound in languages such as German, or the mark (a double dot)
placed on a vowel to indicate umlaut. (The diaeresis and the umlaut are essentially the same mark
used to represent different things; Unicode unifies them and standardizes on the term “diaeresis” to
refer to the mark itself.)

Unassigned. Used to describe a code point value that hasn’t been assigned to a character.
Unassigned code point values in Unicode are reserved for possible future encoding and not available
for ad-hoc uses.

Unicode 1.0 name. A property that gives the name a character had in Unicode 1.0, in the cases where
it differs from the character’s current name. See Chapter 5.

Unicode Character Database. A collection of data files that specify fully the character properties
given to each of the Unicode code point values, along with other useful information about the
characters. For more information, see Chapter 5.

Unicode Collation Algorithm. A specification for a standard method of performing language-sensitive
comparison on Unicode text. The UCA comprises an algorithm for comparing strings, a default
order for all the Unicode code points in the absence of tailoring, a syntax for specifying tailorings,
and some useful implementation hints. See Chapter 15.

Unicode Consortium. The organization responsible for developing, maintaining, and promoting the
Unicode standard. The Unicode Consortium is a membership organization generally made up of
corporations, nonprofit institutions, and governments with an interest in character encoding.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 583

Unicode mailing list. A mailing list for general discussion of Unicode. The address is
unicode@unicode.org. Membership is open to anyone; to join, go to the Unicode Web site.

Unicode normalization form. One of four methods of standardizing the Unicode representation of text
that has multiple representations in Unicode. Normalized Forms D and KD favor decomposed
forms, while Normalized Forms C and KC favor composed forms. Normalized Forms C and D
normalize only canonically-equal strings to the same representation; Normalized Forms KC and KD
extend this to characters whose compatibility decompositions are also the same. See Chapter 4.

Unicode scalar value. The term used in Unicode 2.0 for what is now called a code point.

Unicode standard. 1) The Unicode Standard, Version 3.0 (Reading, MA: Addison-Wesley, 2000).
2) The full Unicode standard, comprising not only the book listed above, but also the complete suite
of current Unicode Technical Reports and the Unicode Character Database.

Unicode Standard Annex. A technical report that carries normative force and is considered an
addition to the standard itself. Unicode 3.1 and 3.2 are published as Unicode Standard Annexes, and
certain sets of character properties added after Unicode 2.0, such as line breaking and East Asian
width properties, are also published as Unicode Standard Annexes.

Unicode Technical Committee. The group within the Unicode Consortium that actually makes
decisions about changing and extending the standard. This group is made up of experts from the
Unicode Consortium’s member organizations.

Unicode Technical Report. 1) A document issued by the Unicode Consortium that amends or
supplements the standard in some way. The term, used this way, refers collectively to Unicode
Standard Annexes, Unicode Technical Standards, and Unicode Technical Reports (in the more
restrictive sense). This usage, and the fact that all three types of technical reports are numbered from
the same series, stems from the fact that “Unicode Standard Annex” and “Unicode Technical
Standard” are relatively new terms—everything used to be called a Unicode Technical Report. 2)
Those documents that are still called Unicode Technical Reports are informative supplements to the
Unicode standard, providing clarifying information useful implementation information, or techniques
for using Unicode in certain situations.

Unicode Technical Standard. A supplementary standard issued by the Unicode Consortium and based
on Unicode. Unicode Technical Standards are not part of the Unicode standard itself, but are
separate, independent standards with their own conformance rules. The Unicode Collation
Algorithm is one example of a Unicode Technical Standard.

Unicode Web site. The Web site maintained by the Unicode Consortium. This Web site serves as the
definitive source for all things Unicode, in particular the most recent versions of the Unicode
Character Database and Unicode Technical Reports. The URL is http://www.unicode.org.

UnicodeCharacterDatabase.html. A file in the Unicode Character Database that gives an overview of
all the files in the database. See Chapter 5.

UnicodeData.html. A file in the Unicode Character Database that describes the contents and format
of UnicodeData.txt. See Chapter 5.

 Glossary
.

.

.
.

584 Unicode Demystified

UnicodeData.txt. A file in the Unicode Character Database that lists all the characters in the current
version of Unicode, plus their most important properties: name, general category, decomposition,
numeric value, simple case mappings, and some other things. See Chapter 5.

Unicore mailing list. A mailing list for internal discussion by members of the Unicode Consortium.
Membership is open only to designated representatives of Unicode Consortium members and certain
invited experts.

Unification. 1) Declaring two “characters” from different sources (or with different appearances) to
be the same character and assigning them a single code point. 2) Declaring two scripts to be variants
of one another and unifying the characters they have in common. See Chapter 3.

Unified Han Repertoire. The complete set of Han characters in Unicode (excluding the characters in
the Han Compatibility Ideographs blocks), which is the result of unifying a wide variety of different
collections of Han characters from different sources. See Chapter 10.

Unified Repertoire and Ordering. The name of the original set of Han characters in Unicode,
developed by the CJK Joint Research Group.

Unified_Ideograph. The property given to the Chinese characters in Unicode. The difference
between this property and te Ideographic property is that this property excludes the Han radicals.

Uniform early normalization. See early normalization.

Unify. See Unification.

Unihan. Nickname for Unicode Han Repertoire.

Unihan.txt. A data file in the Unicode Character Database that lists all of the Han characters in
Unicode, along with their counterparts in a wide variety of sources and a variety of other information
about them. See Chapter 5.

Uniscribe. The advanced text rendering engine in more recent versions of Microsoft Windows.

Update version. The final component of a Unicode version number, after the second decimal point.
The update version number is incremented whenever changes are made to the Unicode Character
Database without changes being made to other parts of the standard.

Upper case. In a bicameral script, the set of letters used at the beginnings of sentences and proper
names and for emphasis.

Uppercase letter. The property given to upper-case letters in bicameral scripts. See Chapter 5.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 585

URI. Uniform Resource Identifier. A string of characters that identifies a resource on the World
Wide Web. URLs and URNs are types of URI. See Chapter 17.

URL. Uniform Resource Locator. A URI that identifies a resource on the Web by specifying a
location and a path to follow to reach the resource. See Chapter 17.

URN. Uniform Resource Name. A URI that identifies a resource on the Web using a location-
independent name.

URO. Abbreviation for Unified Repertoire and Ordering.

User character. Alternate term for grapheme cluster.

UTC. Abbreviation for Unicode Technical Committee.

UTF-16. 1) A Unicode encoding form that represents Unicode code points in the BMP with 16-bit
code units and Unicode code points in the supplementary planes with pairs of 16-bit code points. 2)
A Unicode encoding scheme based on UTF-16 that uses the byte order mark to indicate the
serialization order of bytes in each code unit. See Chapter 6.

UTF-16BE. A Unicode encoding scheme based on UTF-16 that serializes the bytes in each code unit
in big-endian order. See Chapter 6.

UTF-16LE. A Unicode encoding scheme based on UTF-16 that serialized the bytes in each code unit
in little-endian order. See Chapter 6.

UTF-32. 1) A Unicode encoding form that represents Unicode code points as 32-bit values. 2) A
Unicode encoding scheme based on UTF-32 that uses the byte order mark to indicate the
serialization order of bytes in each code unit. See Chapter 6.

UTF-32BE. A Unicode encoding scheme based on UTF-32 that serializes the bytes in each code unit
in big-endian order. See Chapter 6.

UTF-32LE. A Unicode encoding scheme based on UTF-32 that serializes the bytes in each code unit
in little-endian order. See Chapter 6.

UTF-7. A transfer encoding syntax that makes it possible to use Unicode text in environments, such
as RFC 822 messages, that can only handle 7-bit values. Rarely used anymore. See Chapter 6.

UTF-8. A Unicode encoding form that represents Unicode code points as sequences of eight-bit code
units. 7-bit ASCII characters are represented using single bytes, characters from the rest of the BMP
are represented using sequences of two or three bytes, and characters form the supplementary planes
are represented using sequences of four bytes. See Chapter 6.

UTF-8-EBCDIC. Alternate name for UTF-EBCDIC.

 Glossary
.

.

.
.

586 Unicode Demystified

UTF-EBCDIC. A UTF-8-like encoding form that maintains backward compatibility with EBCDIC
rather than with ASCII. See Chapter 6.

UTR. Abbreviation for Unicode Technical Report.

UTR #16. The description of UTF-EBCDIC. See Chapter 6.

UTR #17. A set of definitions of terms for discussion character encodings. See Chapter 2.

UTR #18. A set of guidelines for supporting Unicode in a regular-expression engine. See Chapter 15.

UTR #20. A set of guidelines for using Unicode in markup languages such as XML. See Chapter 17.

UTR #21. A more detailed discussion of case mapping in Unicode. See Chapter 14.

UTR #22. A specification for an XML-based file format for describing mappings between Unicode
and other encoding standards. See Chapter 14.

UTR #24. Defines the script-name property. See Chapter 5.

UTS. Abbreviation for Unicode Technical Standard.

UTS #6. The official definition of the Standard Compression Scheme for Unicode.

UTS #10. The official definition of the Unicode Collation Algorithm.

V source. Collective term for sources of Han ideographs submitted to the IRG by the Vietnamese
national body.

Varia. The Greek name for the grave-accent character. See Chapter 7.

Variation selector. A special formatting character that has no appearance of its own, but tells the
rendering engine to use a particular alternate glyph for the preceding character (if possible). See
Chapter 3.

Vertical Extension A. Alternate name for the CJK Unified Ideographs Extension A block in Unicode.
(The “vertical,” by the way, refers not to the fact that Han is often written vertically, but to the fact
that the extension adds characters. A “horizonal” extension merely adds new mappings from
Unicode to a source standard.)

Vertical Extension B. Alternate name for the CJK Unicode Ideographs Extension B area in Unicode.

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 587

Virama. 1) A mark that cancels the inherent vowel sound of an Indic consonant, causing it to be
counted as part of the same orthorgrphic syllable as the consonant that follows it. 2) In Unicode, a
code point representing a virama may not always result in a visible virama in the rendered output; the
code point is also used to signal the formation of a conjunct consonant. (Conceptually, this is the
same thing: the canceling of the inherent vowel on an Indic consonant; all that’s different is how this
concept gets drawn.) See Chapter 9.

Virtual font. A font that doesn’t include any glyph images of its own but merely refers to other fonts
for the glyph images.

Visarga. A mark in various Indic scripts that indicates an h sound. See Chapter 9.

VISCII. Vietnamese Standard Code for Information Interchange. An informal character encoding
standard for Vietnamese.

Visual order. The order in which the characters are displayed on the screen.

Visual selection. A selection that encompasses a group of characters that are continuous in the
rendered text, but may be split into two or more separate ranges in the backing store.

Vowel bearer. One of three marks used in Gurmukhi with the dependent vowels to form independent
vowels. See Chapter 9.

Vowel mark. A mark applied to a consonant to indicate the vowel sound that follows it.

Vowel point. Alternate term for vowel mark.

Vowel sign. Alternate term for dependent vowel.

VT. Vertical Tab. An ASCII control character sometimes used as a line-separator character in
applications that use the system new-line function as a paragraph separator.

Vulgar fraction. A single character representing an entire fraction: the numerator, fractional bar, and
denominator. See Chapter 12.

W3C. Abbreviation for World Wide Web Consortium.

W3C character model. A W3C recommendation that specifies how text is to be represented in all
W3C data file formats. It mandates early uniform normalization, specifies UTF-16 or UTF-8 as the
default character encoding, and specifies that numeric character references also have to be in
normalized form. See Chapter 17.

W3C normalization. The normalized form that Unicode should take on the World Wide Web. This is
essentially Normalized Form C, but with the extra provision that numeric character references, when

 Glossary
.

.

.
.

588 Unicode Demystified

expanded, can’t break normalization. Earlier versions of the W3C character model also included
prohibitions on characters that made “W3C normalization” more restrictive than Normalized Form C,
but these have been moved out into a separate document and are no longer a requirement.

wchar_t. A C and C++ data type representing a “wide character.” Like char, which merely specifies
an integral type large enough to hold a character and no larger than any of the other integral data
types, wchar_t doesn’t impose any semantics on the contents—it merely defines an integral type
large enough to hold a “wide character.” wchar_t must be at least as large as char, but isn’t
required to be any larger.

Weak directionality. Directionality that isn’t strong enough to start a new embedding level. A
sequence of characters with weak directionality is drawn with the correct directionality, but doesn’t
break up the enclosing directional run. See Chapter 8.

Weight. An arbitrary value assigned to a character that controls how that character sorts. In other
words, if B should sort after A, B is assigned a higher weight value. See Chapter 16.

WG2. Working Group #2 of Subcommittee #2 of ISO/IEC Joint Technical Committee #1; the group
responsible for maintaining the ISO 10646 standard.

White_space. A property assigned to all characters that should be treated as “white space” by
programming-language parsers and similar applications. This generally consists of all space
characters, the TAB character, the line and paragraph separators, and all of the control characters that
are used as line and paragraph separators on various systems.

Wide. A property assigned to all characters that are implicitly fullwidth, and that neutral and
ambiguous characters resolve to when used in vertical text.

WJ. Abbreviation for word joiner.

Word joiner. A special character that prevents word breaks from being placed between it and the
preceding and following characters: It essentially “glues” those two characters together on one line.
See Chapter 12.

Word wrapping. Breaking text up into lines in such a way as to make sure that words aren’t divided
across two lines (or are hyphenated). The term is generally functionally equivalent to “line breaking”
now.

World Wide Web Consortium. An industry body that issues standards (called “recommendations”) for
various operations and data file formats on the World Wide Web.

Writing system. A collection of characters and rules for writing them that is used to write one or
more written languages. The characters and rules may vary slightly between languages (for example,
English and German have different letters in their alphabets, but can still both be considered to be
written with the Latin alphabet), and the same language may be written with more than one writing
system (Kanji and Hiragana for Japanese, or the Latin and Cyrillic alphabets for Serbo-Croatian).

 Glossary

 A Practical Programmer’s Guide to the Encoding Standard 589

WRU. “Who are you?” A control function used in early teletype machines as part of a handshaking
protocol. In response to this signal, the receiving equipment would send back a short identifying
string. See Chapter 2.

www.unicode.org. The URL of the Unicode Web site.

WYSIWYG. What You See Is What You Get. A term applied to applications where the document
being operated on appears on the screen exactly the same way (or close enough) to the way it will
look when printed.

X3. ANSI Committee X3, the committee responsible for information technology standards at the
time ASCII was published. X3 has since morphed into NCITS.

X3.4. See ANSI X3.4-1967.

XCCS. Xerox Coded Character Set. One of the important predecessors of Unicode.

x-height. The height of the lowercase letter x in a Latin font (and, by extension, the height of the
other lowercase letters that don’t have ascenders and descenders, and the height of the parts of the
other loercase letters other than the ascenders and descenders).

XHTML. Extensible Hypertext Markup Language. And XML-based page description language with
functionality equivalent to HTML.

XML. Extensible Markup Language. A W3C standard for describing structured data in a text file.
Forms the basis of many W3C data-file standards. See Chapter 17.

XSL. Extensible Stylesheet Language. An XML-based language for describing the look of a page of
text.

Xu Shen. The compiler of the first known Chinese dictionary in AD 100.

Ypogegrammeni. The iota subscript used with some vowels in ancient Greek to write some
diphthongs. See Chapter 7.

Zenkaku. Japanese for fullwidth.

 Glossary
.

.

.
.

590 Unicode Demystified

Zero width space. A special invisible character that indicates to a line-breaking algorithm a location
where it is okay to put a line break. Generally used in situations (such as Thai) where this can’t be
determined from looking at the real characters. See Chapter 12.

Zero-width joiner. A special formatting character that has no appearance of its own, but indicates to a
text rendering process that the characters on either side should be joined together in some way, if
possible. This may involve cursive joining or forming of a ligature (if both are possible, it requests
that both happen). See Chapter 12.

Zero-width non-breaking space. The character that, in versions of Unicode prior to Unicode 3.2,
served the same purpose as the word joiner. The same code point also serves as the byte order mark.

Zero-width non-joiner. A special formatting character that has no appearance of its own, but indicates
to a text rendering process that the character on either side should not be joined together. It is used
to break a cursive connection that would otherwise happen, or to prevent the formation of a ligature.
See Chapter 12.

Zl. The abbreviation used in the UnicodeData.txt file for the “line separator” general category, which
consists solely of the line-separator character.

Zone row. A row of a punched card that is used to change the meanings of punches in other rows.
See Chapter 2.

Zp. The abbreviation used in the UnicodeData.txt file for the “paragraph separator” general category,
which consists solely of the paragraph-separator character.

Zs. The abbreviation used in the UnicodeData.txt file for the “space separator” general category.

ZWJ. Abbreviation for zero-width joiner.

ZWNBSP. Abbreviation for zero-width non-breaking space.

ZWNJ. Abbreviation for zero-width non-joiner.

ZWSP. Abbreviation for zero-width space.

ZWWJ. Zero-width word joiner. An old term for word joiner.

 591

Bibliography

The Unicode Standard

The Unicode Consortium, The Unicode Standard, Version 2.0, Reading, MA: Addison-Wesley,
1996.

The Unicode Consortium, The Unicode Standard, Version 3.0, Reading, MA: Addison-Wesley,
2000.

Davis, Mark, “Unicode Standard Annex #9: The Bidirectional Algorithm,” version 3.1.0, March 23,
2001, http://www.unicode.org/unicode/reports/tr9/.

Freytag, Asmus, “Unicode Standard Annex #11: East Asian Width,” version 3.1.0, March 23, 2001,
http://www.unicode.org/unicode/reports/tr11/.

Davis, Mark, “Unicode Standard Annex #13: Unicode Newline Guidelines,” version 3.1.0, March
23, 2001, http://www.unicode.org/unicode/reports/tr13/.

Freytag, Asmus, “Unicode Standard Annex #14: Line Breaking Properties,” version 3.1.0, March 23,
2001, http://www.unicode.org/unicode/reports/tr14/.

Davis, Mark and Dürst, Martin, “Unicode Standard Annex #15: Unicode Normalization Forms,”
version 3.1.0, March 23, 2001, http://www.unicode.org/unicode/reports/tr15/.

 Bibliography

592 Unicode Demystified

Davis, Mark, “Unicode Standard Annex #19: UTF-32,” version 3.1.0, March 23, 2001,
http://www.unicode.org/unicode/reports/tr19/.

Davis, Mark; Everson, Michael; Freytag, Asmus; Jenkins, John H.; et. al., “Unicode Standard Annex
#27: Unicode 3.1,” version 3.1.0, May 16, 2001,
http://www.unicode.org/unicode/reports/tr27/.

Wolf, Misha; Whistler, Ken; Wicksteed, Charles; Davis, Mark; and Freytag, Asmus, “Unicode
Technical Standard #6: A Standard Compression Scheme for Unicode,” version 3.2, August 31,
2000, http://www.unicode.org/unicode/reports/tr6/.

Davis, Mark, and Whistler, Ken, “Unicode Technical Standard #10: Unicode Collation Algorithm,”
version 8.0, March 23, 2001, http://www.unicode.org/unicode/reports/tr10/.

Umamaheswaran, V. S., “Unicode Technical Report #16: UTF-EBCDIC,” version 7.2, April 29,
2001, http://www.unicode.org/unicode/reports/tr16/.

Whistler, Ken and Davis, Mark, “Unicode Technical Report #17: Character Encoding Model,”
version 3.2, August 31, 2000, http://www.unicode.org/unicode/reports/tr17/.

Davis, Mark, “Unicode Technical Report #18: Unicode Regular Expression Guidelines,” version 5.1,
August 31, 2000, http://www.unicode.org/unicode/reports/tr18/.

Dürst, Martin and Freytag, Asmus, “Unicode Technical Report #20: Unicode in XML and Other
Markup Languages,” version 5, December 15, 2000,
http://www.unicode.org/unicode/reports/tr20/.

Davis, Mark, “Unicode Technical Report #21: Case Mappings,” version 4.3, February 23, 2001,
http://www.unicode.org/unicode/reports/tr21/.

Davis, Mark, “Unicode Technical Report #22: Character Mapping Markup Language,” version 2.2.,
December 1, 2000, http://www.unicode.org/unicode/reports/tr22/.

Davis, Mark, “Unicode Technical Report #24: Script Names,” version 3, September 27, 2001,
http://www.unicode.org/unicode/reports/tr24/.

Phipps, Toby, “Draft Unicode Technical Report #26: Copatibility Encoding Scheme for UTF-16: 8-
Bit (CESU-8),” version 2.0, December 12, 2001,
http://www.unicode.org/unicode/reports/tr26/.

 Bibliography

 A Practical Programmer’s Guide to the Encoding Standard 593

Beeton, Barbara; Freytag, Asmus; and Sargent III, Murray, “Proposed Draft Unicode Technical
Report #25: Unicode Support for Mathematics,” version 1.0, January 3, 2002,
http://www.unicode.org/unicode/reports/tr25/.

The Unicode Consortium, “Proposed Draft Unicode Technical Report #28: Unicode 3.2,” version
3.2.0, January 21, 2002, http://www.unicode.org/unicode/reports/tr28/.

The Unicode Character Database, http://www.unicode.org/Public/UNIDATA/.

Other Standards Documents

ECMA-35, “Character Code Structure and Extension Techniques,” 6th edition, December 1994

ECMA-94, “8-Bit Single Byte Coded Graphic Character Sets - Latin Alphabets No. 1 to No. 4,” 2nd
edition, June 1986.

Linux Internationalization Initiative, “LI18NUX 2000 Globalization Specification,” version 1.0,
amendment 2. http://www.li18nux.net/docs/html/LI18NUX-2000.htm.

IETF RFC 1034, “Domain names: Concepts and Facilities.”

IETF RFC 2825, “A Tangled Web: Issues of I18N, Domain Names, and the Other Internet proto-
cols.”

W3C Working Draft, “Character Model for the World Wide Web,” December 20, 2001,
http://www.w3.org/TR/charmod/.

Books and Magazine Articles

Boyer, Robert S. and Moore, J. Strother, “A Fast String Searching Algorithm,” Communications of
the Association for Computing Machinery, Vol. 20, No. 10, pp. 762-772, 1977.

Daniels, Peter T. and Bright, William, eds., The World’s Writing Systems, Oxford: Oxford University
Press, 1995

Ifrah, Georges (trans. David Bellos, E. F. Harding, Sophie Wood, and Ian Monk), The Universal
History of Numbers, New York: Wiley, 2000.

Jenkins, John H., “Adding Historical Scripts to Unicode,” Multilingual Computing & Technology,
September 2000.

 Bibliography

594 Unicode Demystified

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, first edition
Englewood Cliffs, NJ: Prentice-Hall, 1978.

Lunde, Ken, CJKV Information Processing, Cambridge, MA: O’Reilly, 1999.

Nakanishi, Akira, Writing Systems of the World, Tokyo: Charles E. Tuttle Co., 1980.

Unicode Conference papers

Atkin, Steven and Stansifer, Ryan, “Implementations of Bidirectional Reordering Algorithms,”
Proceedings of the Eighteenth International Unicode Conference, session C13, April 27, 2001.

Davis, Mark, “Bits of Unicode,” Proceedings of the Eighteenth International Unicode Conference,
session B11, April 27, 2001.

Davis, Mark, “Collation in ICU 1.8,” Proceedings of the Eighteenth International Unicode
Conference, session B10, April 27, 2001.

Davis, Mark and Liu, Alan, “Transliteration in ICU,” Proceedings of the Eighteenth International
Unicode Conference, session B14, April 27, 2001.

Edberg, Peter K., “Survey of Character Encodings,” Proceedings of the Thirteenth International
Unicode Conference, session TA4, September 9, 1998

Gillam, Richard, “Text Boundary Analysis in Java,” Proceedings of the Fourteenth International
Unicode Conference, session B2, March 24, 1999.

Jenkins, John H., “New Ideographs in Unicode 3.0 and Beyond,” Proceedings of the Fifteenth
International Unicode Conference, session C15, September 1, 1999.

Ksar, Mike, “Unicode and ISO 10646: Achievements and Directions,” Proceedings of the Thirteenth
International U nicode Conference, session B11, September 11, 1998.

Milo, Thomas, “Creating Solutions for Arabic: A Case Study,” Proceedings of the Seventeenth
International Unicode Conference, session TB3, September 6, 2000.

Werner, Laura, “Unicode Text Searching in Java,” Proceedings of the Fifteenth International
Unicode Conference, session B1, September 1, 1999.

Other papers

Emerson, Thomas, “On the ‘Hangzhou-Style’ Numerals in ISO/IEC 10646-1,” a white paper
publshed by Basis Technology.

 Bibliography

 A Practical Programmer’s Guide to the Encoding Standard 595

Halpern, Jack, “The Pitfalls and Complexities of Chinese to Chinese Conversion,” an undated white
paper published by the CJK Dictionary Publishing Society.

Online resources

Adobe Systems, “OpenType Specification v1.3,”
http://partners.adobe.com/asn/developer/opentype/.

Apple Computer, “Developer Documentation,” http:// developer.apple.com/techpubs.

Apple Computer, “TrueType Reference Manual,”
http://developer.apple.com/fonts/TTRefMan/index.html.

Czyborra, Roman, “Good Old ASCII,”
http://www.czyborra.com/charsets/iso646.html.

Czyborra, Roman, “ISO 8859 Alphabet Soup”,
http://www.czyborra.com/charsets/iso8859.html

Davis, Mark and Scherer, Markus, “Binary-Ordered Compression for Unicode,” IBM
DeveloperWorks, http://www-106.ibm.com/developerworks/unicode/library/u-
binary.html.

Dürst, Martin, “URIs and Other Identifierrs,” http://www.w3.org/ International/O-URL-
and-ident

Jennings, Tom, “Annotated History of Character Codes,”
http://www.wps.com/texts/codes.

Jones, Douglas W., “Punched Cards: An Illustrated Technical History” and “Doug Jones’ Punched
Card Codes,” http://www.cs.uiowa.edu/~jones/cards.

McGowan, Rick, “About Unicode Consortium Procedures, Policies, Stability, and Public Access,”
published as an IETF Internet-Draft, http:/search.ietf.org/internet-drafts/draft-

rmcgowan-unicode-procs-00.txt.

Microsoft, “Global Software Development,” http://www.microsoft.com/globaldev.

Opstad, Dave, “Comparing GX Line Layout and OpenType Layout,”
http://fonts.apple.com/WhitePapers/ GXvsOTLayout.html.

Perldoc.com, “Perl 5.6 Documentation: perlunicode,”
http://www.perldoc.com/perl5.6/pod/ perlunicode.html.

 Bibliography

596 Unicode Demystified

Searle, Steven J., “A Brief History of Character Codes,” found at
http://www.tronweb.super-nova-co-jp/characcodehist.html.

SIL International, “Ethnologue,” http://www.ethnologue.com.

